MAT 319/320: HOMEWORK 5

DUE FRIDAY, OCT 20

1. For each of the following sequences, find out whether it is convergent. If convergent, find the limit.
(a) $a_{n}=(-1)^{n}+\frac{1}{n}$.
(b) $b_{n}=\frac{\sin n}{n}$
(c) $c_{n}=\frac{4 n^{2}+2 n-1}{2 n^{2}-3}$
(d) $d_{n}=\frac{2^{n}}{n!}($ recall that $n!=1 \cdot 2 \ldots(n-1) \cdot n$.)
(e) $e_{n}=\left(1+\frac{2}{n}\right)^{n}$.
2. Let the sequence a_{n} be defined by $a_{1}=1, a_{n+1}=\sqrt{1+a_{n}}$.
(a) Show that for any n we have $a_{n}<a_{n+1}<\Phi$, where Φ is the root of the equation $x=\sqrt{1+x}$.
(b) Show that a_{n} converges and find the limit.
3. Let the sequence x_{n} be defined by $x_{1}=1, x_{n+1}=\sin \left(x_{n}\right)$. Show that the sequence is convergent and find the limit.
4. Let $I_{n}=\left[a_{n}, b_{n}\right]$ be a sequence of nested intervals such that $\lim \left(b_{n}-a_{n}\right)=0$. Show that then $\lim a_{n}=\lim b_{n}$, and if we denote this common limit by a, then $\bigcap_{n=1}^{\infty} I_{n}=\{a\}$.
5. Let a_{n} be an unbounded sequence.
(a) Show that there exists a subsequence $a_{n_{k}}$ such that $\lim \left(1 / a_{n_{k}}\right)=0$.
(b) Is it true that for any subsequence $a_{n_{k}}$ we have $\lim \left(1 / a_{n_{k}}\right)=0$?
