Calculus II, MAT132

Fall 2009

Midterm II

Name: \qquad ID Number: \qquad

Put a check mark next to your recitation section in the table below:

\checkmark				
	R01	MW 6:50pm-7:45pm	Physics P127	Chaya Rosen
	R02	TuTh 5:20pm-6:15pm	S B Union 226	Luca Di Cerbo
	R03	MW 11:45am-12:40pm	S B Union 231	Young-Woo Nam
	R04	MF 12:50pm-1:45pm	S B Union 231	Jan Gutt
	R05	MF 3:50pm-4:45pm	Physics P-116	Jan Gutt
	R06	TuTh 9:50am-11:10am	Physics P117	Andrew Stimpson
	R07	MW 11:45am-12:40pm	S B Union 226	Andrew Candela
	R08	TuTh 8:20am-9:40am	S B Union 237	Andrew Stimpson
	R09	MW 3:50pm-4:45pm	S B Union 226	Chaya Rosen
	R10	MF 12:50pm-1:45pm	Lgt Engr Lab 154	Andrew Candela

This is a closed book, closed notes test. No consultations with others. Calculators are not allowed.
The first page of the exam contains some useful formulas. You can use those as needed.

Please turn off and take off the desk cell phones, pagers, etc. Only the exam and pens/pencils should be on your desk. If you need extra paper, ask your proctors.

Unless the problem explicitly states otherwise, please explain all your answers and show all work. Answers without explanation will receive little credit.

The problems are not in the order of difficulty. You may want to look through the exam and do the easier questions first.

Each question is worth 20 points. If a question consists of several parts, the parts have equal weight.

DO NOT TURN THIS PAGE UNTIL INSTRUCTED TO DO SO

Please do not write in this table

1	2	3	4	5	Total

Reference Page

Trig Formulas

$$
\sin ^{2} x+\cos ^{2} x=1 \quad \sin ^{2} x=\frac{1-\cos 2 x}{2} \quad \cos ^{2} x=\frac{1+\cos 2 x}{2}
$$

Derivatives of inverse trig functions

$$
\begin{aligned}
& (\arcsin x)^{\prime}=\left(\sin ^{-1} x\right)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \\
& (\arccos x)^{\prime}=\left(\cos ^{-1} x\right)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \\
& (\arctan x)^{\prime}=\left(\tan ^{-1} x\right)^{\prime}=\frac{1}{1+x^{2}}
\end{aligned}
$$

Integration by parts formula

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

