Tritangent circles to a generic curve

September 22, 2015

Pre-history

For a circle generically immersed to the plane

Pre-history

For a circle generically immersed to the plane
$\#(\longleftarrow)-\#(\nearrow)=\#(\nsim)+\frac{1}{2} \#(\ulcorner)$

Pre-history

For a circle generically immersed to the plane
$\#(\longleftarrow)-\#(\nearrow)=\#(\nsim)+\frac{1}{2} \#(\ulcorner)$
Fabricius-Bjerre formula (1962):

$$
e-i=n+\frac{1}{2} f
$$

Pre-history

For a circle generically immersed to the plane
$\#(\longleftarrow)-\#(\nearrow)=\#(\nsim)+\frac{1}{2} \#(\ulcorner)$
Fabricius-Bjerre formula (1962):

$$
e-i=n+\frac{1}{2} f
$$

Ferrand splitted this formula (1997):

$$
\begin{aligned}
& e^{+}-i^{+}=J^{+}+w^{2}-1+\frac{1}{2} f \\
& e^{-}-i^{-}=-J^{-}-w^{2}+1,
\end{aligned}
$$

where w is the Whitney number and $J^{ \pm}$are the Arnold invariants.

Pre-history

For a circle generically immersed to the plane

$$
\#(\longleftarrow)-\#(\longleftarrow)=\#(\downarrow)+\frac{1}{2} \#(\ulcorner)
$$

Fabricius-Bjerre formula (1962):

$$
e-i=n+\frac{1}{2} f
$$

Ferrand splitted this formula (1997):

$$
\begin{aligned}
& e^{+}-i^{+}=J^{+}+w^{2}-1+\frac{1}{2} f \\
& e^{-}-i^{-}=-J^{-}-w^{2}+1,
\end{aligned}
$$

where w is the Whitney number and $J^{ \pm}$are the Arnold invariants.
In pictograms:

Winding numbers

Winding numbers of faces: $f \mapsto i_{f} \in \mathbb{Z}$

Winding numbers

Winding numbers of faces: $f \mapsto i_{f} \in \mathbb{Z}$

The harmonic extension for a function of faces.

Winding numbers

Winding numbers of faces: $f \mapsto i_{f} \in \mathbb{Z}$

The harmonic extension for a function of faces.

Winding numbers

Winding numbers of faces: $f \mapsto i_{f} \in \mathbb{Z}$

The harmonic extension for a function of faces.

Winding numbers

Winding numbers of faces: $f \mapsto i_{f} \in \mathbb{Z}$

The harmonic extension for a function of faces.

Winding numbers

Winding numbers of faces: $f \mapsto i_{f} \in \mathbb{Z}$

The harmonic extension for a function of faces.

Denote by i_{v} the value on a vertex v of the harmonic extension of the winding number.

Winding numbers

Winding numbers of faces: $f \mapsto i_{f} \in \mathbb{Z}$

The harmonic extension for a function of faces.

Denote by i_{v} the value on a vertex v
of the harmonic extension of the winding number.

Winding numbers

Winding numbers of faces: $f \mapsto i_{f} \in \mathbb{Z}$

The harmonic extension for a function of faces.

Denote by i_{v} the value on a vertex v of the harmonic extension of the winding number.

Formulas for $J^{ \pm}$

Formulas for $J^{ \pm}$

$$
J^{-}=1-\sum_{f} i_{f}^{2}+\sum_{v} i_{v}^{2}
$$

Formulas for $J^{ \pm}$

$$
\begin{gathered}
J^{-}=1-\sum_{f} i_{f}^{2}+\sum_{v} i_{v}^{2} \\
J^{+}=1+n-\sum_{f} i_{f}^{2}+\sum_{v} i_{v}^{2}
\end{gathered}
$$

Formulas for $J^{ \pm}$

$$
\begin{gathered}
J^{-}=1-\sum_{f} i_{f}^{2}+\sum_{v} i_{v}^{2} \\
J^{+}=1+n-\sum_{f} i_{f}^{2}+\sum_{v} i_{v}^{2}=1-\sum_{f} i_{f}^{2}+\sum_{v}\left(1+i_{v}^{2}\right)
\end{gathered}
$$

Formulas for $J^{ \pm}$

$$
\begin{gathered}
J^{-}=1-\sum_{f} i_{f}^{2}+\sum_{v} i_{v}^{2} \\
J^{+}=1+n-\sum_{f} i_{f}^{2}+\sum_{v} i_{v}^{2}=1-\sum_{f} i_{f}^{2}+\sum_{v}\left(1+i_{v}^{2}\right) \\
w=\sum_{f} i_{f}-\sum_{v} i_{v}
\end{gathered}
$$

Formulas for $J^{ \pm}$

$$
\begin{gathered}
J^{-}=1-\sum_{f} i_{f}^{2}+\sum_{v} i_{v}^{2} \\
J^{+}=1+n-\sum_{f} i_{f}^{2}+\sum_{v} i_{v}^{2}=1-\sum_{f} i_{f}^{2}+\sum_{v}\left(1+i_{v}^{2}\right) \\
w=\sum_{f} i_{f}-\sum_{v} i_{v} \\
e^{+}-i^{+}=\sum_{f} i_{f}^{2}-\sum_{v}\left(1+i_{v}^{2}\right)+w^{2}+\frac{1}{2} f \\
e^{-}-i^{-}=\sum_{v} i_{v}^{2}-\sum_{f} i_{f}^{2}-w^{2}
\end{gathered}
$$

Formulas for $J^{ \pm}$

$$
\begin{gathered}
J^{-}=1-\sum_{f} i_{f}^{2}+\sum_{v} i_{v}^{2} \\
J^{+}=1+n-\sum_{f} i_{f}^{2}+\sum_{v} i_{v}^{2}=1-\sum_{f} i_{f}^{2}+\sum_{v}\left(1+i_{v}^{2}\right) \\
w=\sum_{f} i_{f}-\sum_{v} i_{v} \\
e^{+}-i^{+}=\sum_{f} i_{f}^{2}-\sum_{v}\left(1+i_{v}^{2}\right)+w^{2}+\frac{1}{2} f \\
e^{-}-i^{-}=\sum_{v} i_{v}^{2}-\sum_{f} i_{f}^{2}-w^{2}
\end{gathered}
$$

Extra splitting of $e^{ \pm}, i^{ \pm}, J^{ \pm}$and n.

Planar circles

The space of circles on \mathbb{R}^{2}

Planar circles

$\left\{\right.$ The space of circles on $\left.\mathbb{R}^{2}\right\}=\mathbb{R}_{>0}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z>0\right\}$.

Planar circles

$\left\{\right.$ The space of circles on $\left.\mathbb{R}^{2}\right\}=\mathbb{R}_{>0}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z>0\right\}$.

Planar circles

$\left\{\right.$ The space of circles on $\left.\mathbb{R}^{2}\right\}=\mathbb{R}_{>0}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z>0\right\}$.

Circles tangent to a fixed line at a fixed point form two rays:

Planar circles

$\left\{\right.$ The space of circles on $\left.\mathbb{R}^{2}\right\}=\mathbb{R}_{>0}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z>0\right\}$.

Circles tangent to a fixed line at a fixed point form two rays:

Circles tangent to a curve form a surface:

Circles tangent to a curve

Let γ be a generic immersion of S^{1} to \mathbb{R}^{2} or S^{2}.

Circles tangent to a curve

Let γ be a generic immersion of S^{1} to \mathbb{R}^{2} or S^{2}.
The surface T_{1} of all circles tangent to γ, a big wave front in $\mathbb{R}_{>0}^{3}$.

Circles tangent to a curve

Let γ be a generic immersion of S^{1} to \mathbb{R}^{2} or S^{2}.
The surface T_{1} of all circles tangent to γ, a big wave front in $\mathbb{R}_{>0}^{3}$.
Osculating circles form the caustic T_{2}, a cuspidal edge of T_{1}.

Circles tangent to a curve

Let γ be a generic immersion of S^{1} to \mathbb{R}^{2} or S^{2}.
The surface T_{1} of all circles tangent to γ, a big wave front in $\mathbb{R}_{>0}^{3}$.
Osculating circles form the caustic T_{2}, a cuspidal edge of T_{1}.
Bi-tangent circles form the self-intersection curve $T_{1,1}$ of T.

Circles tangent to a curve

Let γ be a generic immersion of S^{1} to \mathbb{R}^{2} or S^{2}.
The surface T_{1} of all circles tangent to γ, a big wave front in $\mathbb{R}_{>0}^{3}$.
Osculating circles form the caustic T_{2}, a cuspidal edge of T_{1}.
Bi-tangent circles form the self-intersection curve $T_{1,1}$ of T.
Tri-tangent circles form a finite set $T_{1,1,1}$
of triple transversal self-intersections points.

Circles tangent to a curve

Let γ be a generic immersion of S^{1} to \mathbb{R}^{2} or S^{2}.
The surface T_{1} of all circles tangent to γ, a big wave front in $\mathbb{R}_{>0}^{3}$.
Osculating circles form the caustic T_{2}, a cuspidal edge of T_{1}.
Bi-tangent circles form the self-intersection curve $T_{1,1}$ of T.
Tri-tangent circles form a finite set $T_{1,1,1}$
of triple transversal self-intersections points.
Osculating circles that are tangent γ at another point form a finite set $T_{2,1}$.

Circles tangent to a curve

Let γ be a generic immersion of S^{1} to \mathbb{R}^{2} or S^{2}.
The surface T_{1} of all circles tangent to γ, a big wave front in $\mathbb{R}_{>0}^{3}$.
Osculating circles form the caustic T_{2}, a cuspidal edge of T_{1}.
Bi-tangent circles form the self-intersection curve $T_{1,1}$ of T.
Tri-tangent circles form a finite set $T_{1,1,1}$
of triple transversal self-intersections points.
Osculating circles that are tangent γ at another point form a finite set $T_{2,1}$.

Osculating circles at extremal points of the curvature of γ form a finite set T_{3} of swallow tail singularities.

Circles tangent to a curve

Let γ be a generic immersion of S^{1} to \mathbb{R}^{2} or S^{2}.
The surface T_{1} of all circles tangent to γ, a big wave front in $\mathbb{R}_{>0}^{3}$.
Osculating circles form the caustic T_{2}, a cuspidal edge of T_{1}.
Bi-tangent circles form the self-intersection curve $T_{1,1}$ of T.
Tri-tangent circles form a finite set $T_{1,1,1}$
of triple transversal self-intersections points.
Osculating circles that are tangent γ at another point form a finite set $T_{2,1}$.

Osculating circles at extremal points of the curvature of γ form a finite set T_{3} of swallow tail singularities.

Resolution of its multi-singularities

$$
S=\left\{(c, p) \mid p \in S^{1}, c \text { is tangent to } \gamma \text { at } \gamma(p)\right\}
$$

Ordinary tritangent circles

Ordinary tritangent circles

Cyclic order of tangency points on γ defines
the orientation of a tritangent circle $C \in T_{1,1,1}$.

Ordinary tritangent circles

Cyclic order of tangency points on γ defines
the orientation of a tritangent circle $C \in T_{1,1,1}$.

Ordinary tritangent circles

Cyclic order of tangency points on γ defines
the orientation of a tritangent circle $C \in T_{1,1,1}$.

Ordinary tritangent circles

Cyclic order of tangency points on γ defines
the orientation of a tritangent circle $C \in T_{1,1,1}$.

Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.

At an ordinary tangency point, a curve is either on the right, or on the left side of the circle.

Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.

At an ordinary tangency point, a curve is either on the right, or on the left side of the circle.

Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.

At an ordinary tangency point, a curve is either on the right, or on the left side of the circle.

The sign $\sigma(C)$ of the circle C is negative if the curve is on the right of the circle at odd number of points (1 or 3).

Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.

At an ordinary tangency point, a curve is either on the right, or on the left side of the circle.

The sign $\sigma(C)$ of the circle C is negative if the curve is on the right of the circle at odd number of points (1 or 3).
On the picture, $\sigma=-1$.

Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.

A coherency of C is the number of tangency points, where the orientations of C and γ agree.

Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.

A coherency of C is the number of tangency points, where the orientations of C and γ agree.
On the picture, the coherency is two.

Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.

A coherency of C is the number of tangency points, where the orientations of C and γ agree.
On the picture, the coherency is two.
Denote by T^{i} the set of tritangent circles with coherency i and put

$$
t^{i}=\sum_{C \in T^{i}} \sigma(C) .
$$

Osculating tritangent circles

Osculating tritangent circles

Orientation of γ at point of osculating tangency defines the orientation of osculating tritangent circle $C \in T_{2,1}$.

Osculating tritangent circles

Orientation of γ at point of osculating tangency defines the orientation of osculating tritangent circle $C \in T_{2,1}$.

Osculating tritangent circles

Orientation of γ at point of osculating tangency defines the orientation of osculating tritangent circle $C \in T_{2,1}$.

Osculating tritangent circles

Orientation of γ at point of osculating tangency defines the orientation of osculating tritangent circle $C \in T_{2,1}$.

Osculating tritangent circles

Orientation of γ at point of osculating tangency defines the orientation of osculating tritangent circle $C \in T_{2,1}$.

The sign $\sigma(C)$ is negative
if the curve at the non-osculating tangency point is on the left.

Osculating tritangent circles

Orientation of γ at point of osculating tangency defines the orientation of osculating tritangent circle $C \in T_{2,1}$.

The sign $\sigma(C)$ is negative
if the curve at the non-osculating tangency point is on the left.
Denote the set of osculating tritangent circles with coherent/incoherent tangency at non-osculating point by S^{+} / S^{-}, respectively.

Osculating tritangent circles

Orientation of γ at point of osculating tangency defines the orientation of osculating tritangent circle $C \in T_{2,1}$.

The sign $\sigma(C)$ is negative
if the curve at the non-osculating tangency point is on the left.
Denote the set of osculating tritangent circles with coherent/incoherent tangency at non-osculating point by S^{+} / S^{-}, respectively.
Let $s^{ \pm}=\sum_{C \epsilon S^{ \pm}} \sigma(C)$.

The main formulations

The main formulations

Theorem (Yu. Sobolev). The numbers $t^{0}, t^{1}, \tau^{2}=t^{2}+\frac{s^{-}}{2}$ and $\tau^{3}=t^{3}+\frac{s^{+}}{2}$ are diffeomorphism invariants of γ. They change under the moves (perestroikas) of C as follows:

The main formulations

Theorem (Yu. Sobolev). The numbers $t^{0}, t^{1}, \tau^{2}=t^{2}+\frac{s^{-}}{2}$ and $\tau^{3}=t^{3}+\frac{s^{+}}{2}$ are diffeomorphism invariants of γ. They change under the moves (perestroikas) of C as follows:

	$\Delta\left(t^{0}\right)$	$\Delta\left(t^{1}\right)$	$\Delta\left(\tau^{2}\right)$	$\Delta\left(\tau^{3}\right)$
Triple point proper strong	-1	-3	3	1
Triple point reflected strong	1	3	-3	-1
Triple point proper weak	1	-1	1	-1
Triple point reflected weak	-1	1	-1	1
Direct self-tangency	2 ind	-2 ind	2 ind	-2 ind
Indirect left self-tangency	0	4 ind -4	-4 ind +4	0
Indirect right self-tangency	0	4 ind +4	-4 ind -4	0

Formulas

Table of Contents

Formulas
Let $F=\sum_{f} \operatorname{ind}(f)^{3}, E=\sum_{e} \operatorname{ind}(e)^{3}, V=\sum_{v} \operatorname{ind}(v)^{3}$

Formulas
Let $F=\sum_{f} \operatorname{ind}(f)^{3}, E=\sum_{e} \operatorname{ind}(e)^{3}, V=\sum_{v} \operatorname{ind}(v)^{3}$
$t^{0}=-\tau^{3}=-\frac{1}{3} F+\frac{2}{3} E-V$ and $t^{1}=-\tau^{2}=F-\frac{2}{3} E+\frac{1}{3} V$

