Tritangent circles to a generic curve

September 22, 2015

For a circle generically immersed to the plane

For a circle generically immersed to the plane

$$\#(\checkmark) - \#(\checkmark) = \#(\checkmark) + \frac{1}{2}\#(\checkmark)$$

For a circle generically immersed to the plane

$$\#(\checkmark) - \#(\checkmark) = \#(\checkmark) + \frac{1}{2}\#(\checkmark)$$

Fabricius-Bjerre formula (1962):

$$e - i = n + \frac{1}{2}f$$

For a circle generically immersed to the plane

$$\#(\checkmark) - \#(\checkmark) = \#(\checkmark) + \frac{1}{2}\#(\checkmark)$$

Fabricius-Bjerre formula (1962):

$$e - i = n + \frac{1}{2}f$$

Ferrand splitted this formula (1997):

$$e^{+} - i^{+} = J^{+} + w^{2} - 1 + \frac{1}{2}f$$
$$e^{-} - i^{-} = -J^{-} - w^{2} + 1,$$

where w is the Whitney number and J^{\pm} are the Arnold invariants.

For a circle generically immersed to the plane

$$\#(\checkmark) - \#(\checkmark) = \#(\checkmark) + \frac{1}{2}\#(\checkmark)$$

Fabricius-Bjerre formula (1962):

$$e - i = n + \frac{1}{2}f$$

Ferrand splitted this formula (1997):

$$e^{+} - i^{+} = J^{+} + w^{2} - 1 + \frac{1}{2}f$$
$$e^{-} - i^{-} = -J^{-} - w^{2} + 1,$$

where w is the Whitney number and J^{\pm} are the Arnold invariants. In pictograms:

$$\#(\checkmark) - \#(\checkmark) - \#(\checkmark) = J^{+} + w^{2} - 1 + \frac{1}{2} \#(\checkmark)$$

$$(\checkmark) - \#(\checkmark) + \#(\checkmark) - \#(\checkmark) = -J^{-} - w^{2} + 1$$

#

1

Winding numbers of faces: $f \mapsto i_f \in \mathbb{Z}$

Winding numbers of faces: $f \mapsto i_f \in \mathbb{Z}$

Winding numbers of faces: $f \mapsto i_f \in \mathbb{Z}$

Winding numbers of faces: $f \mapsto i_f \in \mathbb{Z}$

$$\begin{array}{c}a\\\frac{a+b}{2}\\b\end{array}$$

$$\begin{array}{c}b\\\frac{b+d}{2}\\\frac{b+d}{2}\end{array}$$

Winding numbers of faces: $f \mapsto i_f \in \mathbb{Z}$

$$\begin{array}{c}a\\\frac{a+b}{2}\\b\end{array}$$

$$\begin{array}{c}\frac{a+c}{2}\\c\\\frac{a+b+c+d}{4}\\\frac{c+d}{2}\\\frac{b+d}{2}\\d\end{array}$$

Winding numbers of faces: $f \mapsto i_f \in \mathbb{Z}$

The harmonic extension for a function of faces.

$$\begin{array}{c}a\\\frac{a+b}{2}\\b\end{array}$$

$$\begin{array}{c}\frac{a+c}{2}\\c\\\frac{a+b+c+d}{4}\\\frac{c+d}{2}\\b\\\frac{b+d}{2}\\d\end{array}$$

Denote by i_v the value on a vertex v

of the harmonic extension of the winding number.

Winding numbers of faces: $f \mapsto i_f \in \mathbb{Z}$

The harmonic extension for a function of faces.

$$j+1 \qquad j$$

$$i_f = j \qquad j-1$$

Denote by i_v the value on a vertex v

of the harmonic extension of the winding number.

Winding numbers of faces: $f \mapsto i_f \in \mathbb{Z}$

The harmonic extension for a function of faces.

$$j+1$$

$$i_{v} = j$$

$$i_{f} = j$$

$$j-1$$

Denote by i_v the value on a vertex v

of the harmonic extension of the winding number.

$$J^- = 1 - \sum_f i_f^2 + \sum_v i_v^2$$

$$J^{-} = 1 - \sum_{f} i_{f}^{2} + \sum_{v} i_{v}^{2}$$
$$J^{+} = 1 + n - \sum_{f} i_{f}^{2} + \sum_{v} i_{v}^{2}$$

$$J^{-} = 1 - \sum_{f} i_{f}^{2} + \sum_{v} i_{v}^{2}$$
$$J^{+} = 1 + n - \sum_{f} i_{f}^{2} + \sum_{v} i_{v}^{2} = 1 - \sum_{f} i_{f}^{2} + \sum_{v} (1 + i_{v}^{2})$$

$$J^{-} = 1 - \sum_{f} i_{f}^{2} + \sum_{v} i_{v}^{2}$$
$$J^{+} = 1 + n - \sum_{f} i_{f}^{2} + \sum_{v} i_{v}^{2} = 1 - \sum_{f} i_{f}^{2} + \sum_{v} (1 + i_{v}^{2})$$
$$w = \sum_{f} i_{f} - \sum_{v} i_{v}$$

$$J^{-} = 1 - \sum_{f} i_{f}^{2} + \sum_{v} i_{v}^{2}$$

$$J^{+} = 1 + n - \sum_{f} i_{f}^{2} + \sum_{v} i_{v}^{2} = 1 - \sum_{f} i_{f}^{2} + \sum_{v} (1 + i_{v}^{2})$$

$$w = \sum_{f} i_{f} - \sum_{v} i_{v}$$

$$e^{+} - i^{+} = \sum_{f} i_{f}^{2} - \sum_{v} (1 + i_{v}^{2}) + w^{2} + \frac{1}{2}f$$

$$e^{-} - i^{-} = \sum_{v} i_{v}^{2} - \sum_{f} i_{f}^{2} - w^{2}$$

$$J^{-} = 1 - \sum_{f} i_{f}^{2} + \sum_{v} i_{v}^{2}$$

$$J^{+} = 1 + n - \sum_{f} i_{f}^{2} + \sum_{v} i_{v}^{2} = 1 - \sum_{f} i_{f}^{2} + \sum_{v} (1 + i_{v}^{2})$$

$$w = \sum_{f} i_{f} - \sum_{v} i_{v}$$

$$e^{+} - i^{+} = \sum_{f} i_{f}^{2} - \sum_{v} (1 + i_{v}^{2}) + w^{2} + \frac{1}{2}f$$

$$e^{-} - i^{-} = \sum_{v} i_{v}^{2} - \sum_{f} i_{f}^{2} - w^{2}$$

Extra splitting of e^{\pm} , i^{\pm} , J^{\pm} and n.

.

The space of circles on \mathbb{R}^2

{The space of circles on \mathbb{R}^2 } = $\mathbb{R}^3_{>0} = \{(x, y, z) \in \mathbb{R}^3 \mid z > 0\}.$

{The space of circles on \mathbb{R}^2 } = $\mathbb{R}^3_{>0}$ = { $(x, y, z) \in \mathbb{R}^3 \mid z > 0$ }.

{The space of circles on \mathbb{R}^2 } = $\mathbb{R}^3_{>0}$ = { $(x, y, z) \in \mathbb{R}^3 \mid z > 0$ }.

Circles tangent to a fixed line at a fixed point form two rays:

{The space of circles on \mathbb{R}^2 } = $\mathbb{R}^3_{>0}$ = { $(x, y, z) \in \mathbb{R}^3 \mid z > 0$ }.

Circles tangent to a fixed line at a fixed point form two rays:

Circles tangent to a curve form a surface:

Let γ be a generic immersion of S^1 to \mathbb{R}^2 or S^2 .

Let γ be a generic immersion of S^1 to \mathbb{R}^2 or S^2 .

The surface T_1 of all circles tangent to γ , a big wave front in $\mathbb{R}^3_{>0}$.

Let γ be a generic immersion of S^1 to \mathbb{R}^2 or S^2 .

The surface T_1 of all circles tangent to γ , a big wave front in $\mathbb{R}^3_{>0}$.

Osculating circles form the caustic T_2 , a cuspidal edge of T_1 .

Let γ be a generic immersion of S^1 to \mathbb{R}^2 or S^2 .

The surface T_1 of all circles tangent to γ , a big wave front in $\mathbb{R}^3_{>0}$.

Osculating circles form the caustic T_2 , a cuspidal edge of T_1 .

Bi-tangent circles form the self-intersection curve $T_{1,1}$ of T.

Let γ be a generic immersion of S^1 to \mathbb{R}^2 or S^2 .

The surface T_1 of all circles tangent to γ , a big wave front in $\mathbb{R}^3_{>0}$.

Osculating circles form the caustic T_2 , a cuspidal edge of T_1 .

Bi-tangent circles form the self-intersection curve $T_{1,1}$ of T.

Tri-tangent circles form a finite set $T_{1,1,1}$

of triple transversal self-intersections points.

Let γ be a generic immersion of S^1 to \mathbb{R}^2 or S^2 . The surface T_1 of all circles tangent to γ , a big wave front in $\mathbb{R}^3_{>0}$. Osculating circles form the caustic T_2 , a cuspidal edge of T_1 . Bi-tangent circles form the self-intersection curve $T_{1,1}$ of T. Tri-tangent circles form a finite set $T_{1,1,1}$ of triple transversal self-intersections points. Osculating circles that are tangent γ at another point form a finite set $T_{2,1}$.

Let γ be a generic immersion of S^1 to \mathbb{R}^2 or S^2 . The surface T_1 of all circles tangent to γ , a big wave front in $\mathbb{R}^3_{>0}$. Osculating circles form the caustic T_2 , a cuspidal edge of T_1 . Bi-tangent circles form the self-intersection curve $T_{1,1}$ of T. Tri-tangent circles form a finite set $T_{1,1,1}$ of triple transversal self-intersections points. Osculating circles that are tangent γ at another point form a finite set $T_{2,1}$. Osculating circles at extremal points of the curvature of γ form a finite set T_3 of swallow tail singularities.

Let γ be a generic immersion of S^1 to \mathbb{R}^2 or S^2 . The surface T_1 of all circles tangent to γ , a big wave front in $\mathbb{R}^3_{>0}$. Osculating circles form the caustic T_2 , a cuspidal edge of T_1 . Bi-tangent circles form the self-intersection curve $T_{1,1}$ of T. Tri-tangent circles form a finite set $T_{1,1,1}$ of triple transversal self-intersections points. Osculating circles that are tangent γ at another point form a finite set $T_{2,1}$. Osculating circles at extremal points of the curvature of γ form a finite set T_3 of swallow tail singularities.

Resolution of its multi-singularities

 $S = \{(c, p) \mid p \in S^1, c \text{ is tangent to } \gamma \text{ at } \gamma(p)\}$

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.

Cyclic order of tangency points on γ defines

the orientation of a tritangent circle $C \in T_{1,1,1}$.

Cyclic order of tangency points on γ defines

the orientation of a tritangent circle $C \in T_{1,1,1}$.

Cyclic order of tangency points on γ defines

the orientation of a tritangent circle $C \in T_{1,1,1}$.

Cyclic order of tangency points on γ defines

the orientation of a tritangent circle $C \in T_{1,1,1}$.

At an ordinary tangency point, a curve is

either on the right, or on the left side of the circle.

Cyclic order of tangency points on γ defines

the orientation of a tritangent circle $C \in T_{1,1,1}$.

At an ordinary tangency point, a curve is

either on the right, or on the left side of the circle.

Cyclic order of tangency points on γ defines

the orientation of a tritangent circle $C \in T_{1,1,1}$.

At an ordinary tangency point, a curve is

either on the right, or on the left side of the circle.

The sign $\sigma(C)$ of the circle *C* is negative if the curve is on the right of the circle at odd number of points (1 or 3).

Cyclic order of tangency points on γ defines

the orientation of a tritangent circle $C \in T_{1,1,1}$.

At an ordinary tangency point, a curve is

either on the right, or on the left side of the circle.

The sign $\sigma(C)$ of the circle *C* is negative if the curve is on the right of the circle at odd number of points (1 or 3). On the picture, $\sigma = -1$.

Cyclic order of tangency points on γ defines

the orientation of a tritangent circle $C \in T_{1,1,1}$.

A coherency of C is the number of tangency points,

where the orientations of C and γ agree.

Cyclic order of tangency points on γ defines

the orientation of a tritangent circle $C \in T_{1,1,1}$.

A coherency of C is the number of tangency points, where the orientations of C and γ agree. On the picture, the coherency is two.

Cyclic order of tangency points on γ defines

the orientation of a tritangent circle $C \in T_{1,1,1}$.

A coherency of C is the number of tangency points,

where the orientations of C and γ agree.

On the picture, the coherency is two.

Denote by T^i the set of tritangent circles with coherency i and put $t^i = \sum_{C \in T^i} \sigma(C)$.

Orientation of γ at point of osculating tangency defines the orientation of osculating tritangent circle $C \in T_{2,1}$.

The sign $\sigma(C)$ is negative

if the curve at the non-osculating tangency point is on the left.

Orientation of γ at point of osculating tangency defines the orientation of osculating tritangent circle $C \in T_{2,1}$.

The sign $\sigma(C)$ is negative

if the curve at the non-osculating tangency point is on the left.

Denote the set of osculating tritangent circles with coherent/incoherent tangency at non-osculating point by S^+/S^- , respectively.

Orientation of γ at point of osculating tangency defines the orientation of osculating tritangent circle $C \in T_{2,1}$.

The sign $\sigma(C)$ is negative

if the curve at the non-osculating tangency point is on the left.

Denote the set of osculating tritangent circles with coherent/incoherent tangency at non-osculating point by S^+ / S^- , respectively. Let $s^{\pm} = \sum_{C \in S^{\pm}} \sigma(C)$.

The main formulations

The main formulations

Theorem (Yu. Sobolev). The numbers t^0 , t^1 , $\tau^2 = t^2 + \frac{s^2}{2}$ and

 $\tau^3 = t^3 + \frac{s^+}{2}$ are diffeomorphism invariants of γ . They change under the moves (perestroikas) of *C* as follows:

The main formulations

Theorem (Yu. Sobolev). The numbers t^0 , t^1 , $\tau^2 = t^2 + \frac{s^2}{2}$ and

 $\tau^3 = t^3 + \frac{s^+}{2}$ are diffeomorphism invariants of γ . They change under the moves (perestroikas) of *C* as follows:

	$\Delta(t^0)$	$\Delta(t^1)$	$\Delta(au^2)$	$\Delta(au^3)$
Triple point proper strong	-1	-3	3	1
Triple point reflected strong	1	3	-3	-1
Triple point proper weak	1	-1	1	-1
Triple point reflected weak	-1	1	-1	1
Direct self-tangency	$2 \mathrm{ind}$	-2 ind	$2\mathrm{ind}$	-2 ind
Indirect left self-tangency	0	$4 \operatorname{ind} -4$	-4 ind $+4$	0
Indirect right self-tangency	0	$4 \operatorname{ind} + 4$	-4 ind -4	0

Formulas

⊢

Formulas

Let $F = \sum_{f} \operatorname{ind}(f)^3$, $E = \sum_{e} \operatorname{ind}(e)^3$, $V = \sum_{v} \operatorname{ind}(v)^3$

Formulas

Let $F = \sum_{f} \operatorname{ind}(f)^{3}$, $E = \sum_{e} \operatorname{ind}(e)^{3}$, $V = \sum_{v} \operatorname{ind}(v)^{3}$ $t^{0} = -\tau^{3} = -\frac{1}{3}F + \frac{2}{3}E - V$ and $t^{1} = -\tau^{2} = F - \frac{2}{3}E + \frac{1}{3}V$