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3D Lie group, Card=c.

Examples of plane isometries:

Reflection in line, Translation, Rotation, Glide reflection.

Theorem. Any plane isometry is a composition

of at most three reflections.

Lemma. A plane isometry is recovered from its restriction

to any three non-collinear points.
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3D Lie group, Card=c.

Examples of plane isometries:

Reflection in line, Translation, Rotation, Glide reflection.

Theorem. Any plane isometry is a composition
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3D Lie group, Card=c.

Examples of plane isometries:

Reflection in line, Translation, Rotation, Glide reflection.

Theorem. Any plane isometry is a composition

of at most three reflections.

A

B

C

f(C)

R2 ○R1(C)

f(B)
f(A)

R3
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translation

x Rm(x) Rl ○Rm(x)

m l

rotation

α
α

β
β

m

x

Rm(x)

Rl ○Rm(x)

l

Presentations are not unique: Rm ○Rl = Rm′ ○Rl′
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Theorem. Any relation among reflections in lines follow from R2

l
= 1

and Rm ○Rl = Rm′ ○Rl′ .

Lemma. A composition of any 4 reflections by these relations can be

transformed to a composition of 2 reflections.

k m nl

l′ m′

k m nl

n′ n′k′k′

m′l′

In Rn : a composition of any n + 2 reflections is a composition of n

reflections.

A composition of odd number of reflections reverses orientation and

cannot be id .
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In the isometry group of the Lobachevsky plane the same is true.

Theorem. Any relation among reflections in lines follow from R2

l
= 1

and Rm ○Rl = Rm′ ○Rl′ .

How can this be? The groups are not isomorphic?

How does curvature work?

On sphere everything holds true.

On the projective plane a reflection in line has extra fixed point.

One more relation...
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Group G generated by the set of involutions S.

Four axioms.

Involutions from S = reflections in lines = lines.

Lines are perpendicular iff the reflections commute.

A point is a composition of commuting reflections.

A point belongs to a line iff the reflections commute.

Three lines are concurrent or parallel

iff the composition of the reflections is a reflection.
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The composition of 2 reflections in planes

= the composition of 2 reflections in lines.

Reflections in scew lines is a screw displacement.

Rm′(Rl(x))

Rm(Rl(x))

Rl(x)
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The composition of 2 reflections in planes

= the composition of 2 reflections in lines.

Reflections in scew lines is a screw displacement.

Theorem. Any isometry of the 3-space preserving orientation

is a composition of reflections in lines.
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Angular displacement vectors are not vectors.

What are vectors? Translations and arrows.

Another relation between arrows and translations.

Vectors on 2-sphere and rotations.

l

b

a
B

−B

A
α

2α
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