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Plane Isometries

Theorem. Any isometry of R? is a composition
of < 3 reflections in lines.
Proof of Theorem.

C

We are done. ]
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Compositions of reflections in parallel lines

IS a translation

>e
X Rm/ (ZIZ) Rl/ O Rm/ (ZC)

m [/
The decomposition is not unique:
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iff I’,m’ can be obtained from [, m by a translation.
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Compositions of reflections in intersecting lines

IS a rotation
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2
5

Qe

Decomposition of rotation is not unique:

}%ZC)}%WL:::}%V O ]%nﬂ
iff I’,m’ can be obtained from [, m by a rotation
about the intersection point m M 1.
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Compositions of reflections in intersecting lines

IS a rotation

Rl/ O Rm/ (CC)

Decomposition of rotation is not unique:

]%ZC)}%WL:: }ﬁ’c>}%nﬂ
iff I’,m’ can be obtained from [, m by a rotation
about the intersection point m M 1.
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Relations

Theorem. Any relation among reflections in lines follow from relations
R?=1 and R;o R,, = Ry o R, , where [,m,l’,m’ are as above.
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Theorem. Any relation among reflections in lines follow from relations
R?=1 and R;o R,, = Ry o R, , where [,m,l’,m’ are as above.
[]

Lemma. A composition of any 4 reflections in lines can be transformed
by these relations to a composition of 2 reflections in lines. [

Proof of Theorem. By Lemma, any relation can be reduced to a
relation of length < 3.
A composition of odd number of reflections reverses orientation

and cannot be id.
A composition of two different reflections is not identity. []
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Theorem. Any relation among reflections in lines follow from relations
R?=1 and R;o R,, = Ry o R, , where [,m,l’,m’ are as above.
[]

Lemma. A composition of any 4 reflections in lines can be transformed
by these relations to a composition of 2 reflections in lines. [

Generalization of Lemma. In R",

a composition of any n + 2 reflections in hyperplanes
Is a composition of n reflections in hyperplanes.

Generalization of Theorem. Any relation among reflections in
hyperplanes of R" follow
from relations R? = 1 and R; o R,, = Ry o R,.
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Flips and flippers

Generalize reflections!

A flip is an isometry which is
an involution (i.e., has period 2) and
Is determined by its fixed point set.

Flipper is the fixed point set of a flip.
Key example: R — R : x — 2a — x, the reflection of R in a point a.
Generalization: a symmetry of R in a k -subspace.

Further examples in hyperbolic spaces, spheres, projective spaces
and other symmetric spaces.

Correspondence Flipper S «+— Flipin .S is
the shortest connection between

simple static geometric objects - flippers - and isometries.
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Symmetry about a point

is a flip.
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Symmetry about a point

is a flip. Composition of flips in points is a translation:

X Rp(Ra(X))

Ra(X)

AB = 1X Rp(Ra(X)
1@ is half the arrow representing Rg o R 4.
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Head to tail

Isometries presented as compositions of flips
are easy to compose sometimes.
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Head to tail

Isometries presented as compositions of flips
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Head to tail

Isometries presented as compositions of flips
are easy to compose sometimes.

(RCORB)O(RBORA):RCOR%ORA:RCORA.

Compare to the head to tail addition

AB + BC = AC.
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Flip-flop decomposition

Which isometries are compositions of two flips?

Any isometry of R".

Wonenburger Theorem. Any isometry of a non-degenerate inner
product vector space over any field of characteristic # 2 can be
presented as a composition of two linear involutions isometries.
(Transformations Which are Products of Two Involutions,

J. Math. Mech., 16:4 (1966), 327-338.)

Corollary. Any isometry of an affine space over a field of characteristic
=+ 2 with a non-degenerate bilinear symmetric or skew-symmetric form
can be presented as a composition of two flips.

Corollary. Any isometry of a hyperbolic space, sphere, projective space,
etc. is a composition of two flips.

A flip-flop decomposition.
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if it has order two: a® = 1.
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Involutions

An element « of a group G is called an involution,
if it has order two: o? = 1.

There are groups without non-trivial involutions.
but any group can be embedded into a group,
in which each element is a product of two involutions.

Because this is so in the symmetric group.
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f € (G is strongly reversible if
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Ja,8€G o> =6*=1and f=af5.

f € G is called reversible if f~! is conjugate to f:

Sh: fl=h"lfh

The set of all involutions involved into presentations f = af3

is the involution pool of f.

if f=af, then f =af = afaa = (afa)a = vya. ]
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Strongly Reversible

f € (G is strongly reversible if
Jo,8€G a*=5*=1and f = af.

f € G is called reversible if f~! is conjugate to f:
3 f=hol

The set of all involutions involved into presentations f = af3
is the involution pool of f.

Strongly reversible elements with intersecting involution pools
are easy to multiply:

If f =af and g = Bv,then fg=aBBy = ar.

They form a group.

f € G is strongly reversible iff
3 aninvolution a € GG such that fa is an involution.
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an analogue for an arrow representing a translation.
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Biflippers

An ordered pair of flippers (A, B) is a biflipper,

an analogue for an arrow representing a translation.

If AN B = &, then we connect A and B with the shortest arrow.

A\\\ g/B
g

To what extent are the representations non-unique?

Equivalence relation:
(A, B) ~ (A/, B/) if RB o RA — RB/ o RA/.

f ANB + &,

Problem. Find an explicit description for the equivalence.
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Head to tail for rotations

For rotations by opposite angles:

This is a translation.
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Composing reflections in line and point

—— —

B e

This is a glide reflection!
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Composing reflections in line and point

Indeed!

z R, (x) Ri(R.(x))
m
Ro(Rm(x))
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Biflippers for a glide reflection

z R, (x) Ri(R.(x))
— o 7
Ro(Ry (1))
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Biflippers for a glide reflection
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Head to tail for glide reflections

Given two glide reflections, present them by biflippers.

This is a rotation!
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Head to tail for glide reflections

Given two glide reflections, present them by biflippers.

n

Exercise. Find head to tail rules for rotation o glide reflection .
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For any isometries S : RP — RP and 71" : R? — R?, the direct product
SXT :RPXxRI = RP xR?: (z,y) — (S(x), T(y))
is an isometry of RPT? = RP x RY.
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For any isometries S : RP — RP and 71" : R? — R?, the direct product
SXT :RPXxRI = RP xR?: (z,y) — (S(x), T(y))
is an isometry of RPT? = RP x RY.

If S and T are flips in flippers A and B,
then S x T is the flip in the flipper A x B C RPT7,

If S and T" are isometries, defined by biflippers (A, A’) and (B, B'),
then S x T is defined by biflipper (A x B, A’ x B').

Any isometry of R™ is a direct product of isometries of R? and R' .
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On line:
*——o —Q— —L £ Q
translation reflections in points the identity
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Biflippers on line and plane

On line:
*——o _Q_ _L £ Q
translation reflections in points the identity
On the plane:
translations rotation glide reflections reflection:
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In 3D

Screw motion: w\\ < / — &
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In 3D

Screw motion: \ < / —
N

Rotary reflection: \ % = BN
e ox = ANy
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In 3D

— H L M

translations rotations
central symmetries symmetries about a line (half-turns)
reflections glide symmetries about a line
N 7
glide reflections screw . rotary reflections
motion
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Biflippers:
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Rotations of 2-sphere

Biflippers:

Head to tail for rotations:

Biflipper vs. angular displacement vector vs. unit quaternion.
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Rotations of 2-sphere

Biflippers:

Head to tail for rotations:

Biflipper vs. angular displacement vector vs. unit quaternion.
The rotation encoded by bilipper wd is defined by quaternion
VW =VXW—UV-W.
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All biflippers on 2-sphere

Qol®olle®

rotations rotary reflections reflections

24/27 '



On the hyperbolic plane
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On the hyperbolic plane

QLY OI®®

rotation  parallel translation glide reflections reflections
motion
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In hyperbolic 3-space

OISl SIS

rotation parallel motion translation screw
motion

©I® OO

rotary reflections parallel reflections glide reflections
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