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Theorem. Any isometry of R2 is a composition

of ≤ 3 reflections in lines.

Lemma. A plane isometry is determined by its restriction

to any three non-collinear points. �
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Theorem. Any isometry of R2 is a composition

of ≤ 3 reflections in lines.

Proof of Theorem. Given an isometry:
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Theorem. Any isometry of R2 is a composition

of ≤ 3 reflections in lines.

Proof of Theorem.
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Theorem. Any isometry of R2 is a composition

of ≤ 3 reflections in lines.

Proof of Theorem.

A

B

C R1(C)

f(C)

R2 ◦R1(C)

f(B)

f(A)

R1(B)

R2



Plane Isometries

2 / 27

Theorem. Any isometry of R2 is a composition

of ≤ 3 reflections in lines.

Proof of Theorem.

A

B

C

f(C)

R2 ◦R1(C)

f(B)
f(A)

R3
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Theorem. Any isometry of R2 is a composition

of ≤ 3 reflections in lines.

Proof of Theorem.

A

B

C

f(C)

f(B)

f(A)f

We are done.�
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is a translation

x Rm(x) Rl ◦Rm(x)

m l

The decomposition is not unique:

Rl ◦Rm = Rl′ ◦Rm′

iff l′,m′ can be obtained from l,m by a translation.
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is a translation

x Rl′ ◦Rm′(x)

m′ l′

Rm′(x)

The decomposition is not unique:

Rl ◦Rm = Rl′ ◦Rm′

iff l′,m′ can be obtained from l,m by a translation.
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is a rotation

α
α

β
β

x

Rm(x)

Rl ◦Rm(x)

m

l
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is a rotation

α
α

β
β

x

Rm(x)

Rl ◦Rm(x)

m

l

Decomposition of rotation is not unique:
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is a rotation

α
α

β
β

x

Rm(x)

Rl ◦Rm(x)

m

l

Decomposition of rotation is not unique:

Rl ◦Rm = Rl′ ◦Rm′

iff l′,m′ can be obtained from l,m by a rotation

about the intersection point m ∩ l .
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is a rotation

x

Rl′ ◦Rm′(x)

Rm′(x)

m′

l′

Decomposition of rotation is not unique:

Rl ◦Rm = Rl′ ◦Rm′

iff l′,m′ can be obtained from l,m by a rotation

about the intersection point m ∩ l .
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ∦ 2 and 3 ∦ 4 .

21 3 4
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ∦ 2 and 3 ∦ 4 .

3 4
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ∦ 2 and 3 ∦ 4 .

3

4

2
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ∦ 2 and 3 ∦ 4 .
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ∦ 4 .
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ∦ 4 .

3 421
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ∦ 4 .
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ∦ 4 .

3
41
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ∦ 4 .

3 = 2
41
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ∦ 4 .

41
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

1 2 3 4
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

1 4
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

1 4

2

3



Relations

5 / 27

Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

4
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

1

2
3

4
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

1

2

4

3=
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

1 4
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines. �
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Proof of Theorem. By Lemma, any relation can be reduced to a

relation of length ≤ 3 .
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Proof of Theorem. By Lemma, any relation can be reduced to a
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A composition of odd number of reflections reverses orientation

and cannot be id .
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

�

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines. �

Proof of Theorem. By Lemma, any relation can be reduced to a

relation of length ≤ 3 .

A composition of odd number of reflections reverses orientation

and cannot be id .

A composition of two different reflections is not identity. �
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

�

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines. �

Generalization of Lemma. In Rn ,

a composition of any n+ 2 reflections in hyperplanes

is a composition of n reflections in hyperplanes.
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Theorem. Any relation among reflections in lines follow from relations

R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

�

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines. �

Generalization of Lemma. In Rn ,

a composition of any n+ 2 reflections in hyperplanes

is a composition of n reflections in hyperplanes.

Generalization of Theorem. Any relation among reflections in

hyperplanes of Rn follow

from relations R2
l = 1 and Rl ◦Rm = Rl′ ◦Rm′ .
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Generalize reflections!

A flip is an isometry which is

an involution (i.e., has period 2) and

is determined by its fixed point set.

Flipper is the fixed point set of a flip.

Key example: R→ R : x 7→ 2a− x , the reflection of R in a point a .

a 7→ 2a− a = a
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Flips and flippers

6 / 27

Generalize reflections!

A flip is an isometry which is

an involution (i.e., has period 2) and

is determined by its fixed point set.

Flipper is the fixed point set of a flip.

Key example: R→ R : x 7→ 2a− x , the reflection of R in a point a .

Generalization: a symmetry of Rn in a k -subspace.

Further examples in hyperbolic spaces, spheres, projective spaces

and other symmetric spaces.

Correspondence Flipper S←→ Flip in S is

the shortest connection between

simple static geometric objects - flippers - and isometries.
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is a flip. Composition of flips in points is a translation:

RB(RA(X))

RA(X)

X

BA

−→
AB = 1

2

−−−−−−−−−→
X RB(RA(X)



Symmetry about a point
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is a flip. Composition of flips in points is a translation:

RB(RA(X))

RA(X)

X

BA

−→
AB = 1

2

−−−−−−−−−→
X RB(RA(X)

−→
AB is half the arrow representing RB ◦RA .
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Isometries presented as compositions of flips

are easy to compose sometimes.

(RC ◦RB) ◦ (RB ◦RA) =
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Isometries presented as compositions of flips

are easy to compose sometimes.

(RC ◦RB) ◦ (RB ◦RA) = RC ◦R
2
B ◦RA = RC ◦RA .



Head to tail
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Isometries presented as compositions of flips

are easy to compose sometimes.

(RC ◦RB) ◦ (RB ◦RA) = RC ◦R
2
B ◦RA = RC ◦RA .

Compare to the head to tail addition

−→
AB +

−−→
BC =

−→
AC.



Flip-flop decomposition

9 / 27

Which isometries are compositions of two flips?



Flip-flop decomposition

9 / 27

Which isometries are compositions of two flips?

Any isometry of Rn .



Flip-flop decomposition

9 / 27

Which isometries are compositions of two flips?

Any isometry of Rn .

Wonenburger Theorem. Any isometry of a non-degenerate inner

product vector space over any field of characteristic 6= 2 can be
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(Transformations Which are Products of Two Involutions,

J. Math. Mech., 16:4 (1966), 327-338.)
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Which isometries are compositions of two flips?

Any isometry of Rn .

Wonenburger Theorem. Any isometry of a non-degenerate inner

product vector space over any field of characteristic 6= 2 can be

presented as a composition of two linear involutions isometries.

(Transformations Which are Products of Two Involutions,

J. Math. Mech., 16:4 (1966), 327-338.)

Corollary. Any isometry of an affine space over a field of characteristic

6= 2 with a non-degenerate bilinear symmetric or skew-symmetric form

can be presented as a composition of two flips.



Flip-flop decomposition
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Which isometries are compositions of two flips?

Any isometry of Rn .

Wonenburger Theorem. Any isometry of a non-degenerate inner

product vector space over any field of characteristic 6= 2 can be

presented as a composition of two linear involutions isometries.

(Transformations Which are Products of Two Involutions,

J. Math. Mech., 16:4 (1966), 327-338.)

Corollary. Any isometry of an affine space over a field of characteristic

6= 2 with a non-degenerate bilinear symmetric or skew-symmetric form

can be presented as a composition of two flips.

Corollary. Any isometry of a hyperbolic space, sphere, projective space,

etc. is a composition of two flips.

A flip-flop decomposition.
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An element α of a group G is called an involution,

if it has order two: α2 = 1.

There are groups without non-trivial involutions.

but any group can be embedded into a group,

in which each element is a product of two involutions.

Because this is so in the symmetric group.
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f ∈ G is strongly reversible if

∃α, β ∈ G α2 = β2 = 1 and f = αβ .

f ∈ G is called reversible if f−1 is conjugate to f :

∃h : f−1 = h−1fh .

Strongly reversible =⇒ reversible

f−1 = (αβ)−1 = β−1α−1 = βα = α−1αβα = α−1fα . �
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f ∈ G is strongly reversible if

∃α, β ∈ G α2 = β2 = 1 and f = αβ .

f ∈ G is called reversible if f−1 is conjugate to f :

∃h : f−1 = h−1fh .

The set of all involutions involved into presentations f = αβ

is the involution pool of f .

If f = αβ , then f = αβ = αβαα = (αβα)α = γα . �
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f ∈ G is strongly reversible if

∃α, β ∈ G α2 = β2 = 1 and f = αβ .

f ∈ G is called reversible if f−1 is conjugate to f :

∃h : f−1 = h−1fh .

The set of all involutions involved into presentations f = αβ

is the involution pool of f .

Strongly reversible elements with intersecting involution pools

are easy to multiply:

If f = αβ and g = βγ , then fg = αββγ = αγ .

They form a group.

f ∈ G is strongly reversible iff

∃ an involution α ∈ G such that fα is an involution.
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An ordered pair of flippers (A,B) is a biflipper,

an analogue for an arrow representing a translation.

If A ∩B = ∅ , then we connect A and B with the shortest arrow.

A B

If A ∩B 6= ∅ ,

A
B

To what extent are the representations non-unique?

Equivalence relation:

(A,B) ∼ (A′, B′) if RB ◦RA = RB′ ◦RA′ .

Problem. Find an explicit description for the equivalence.
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an ordered pair of lines.

The lines intersect at the center of rotation.

The angle between the lines is half the rotation angle.

α
α

β
β

x

Rm(x)

Rl ◦Rm(x)

m

l
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an ordered pair of lines.

The lines intersect at the center of rotation.

The angle between the lines is half the rotation angle.

On a picture the order of lines is shown by an oriented arc.

Equivalent biflippers are obtained by rotations about the vertex.
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A B
l1

m1

m2

n2
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Given two rotations, present them by biflippers.

l n

C

This is rotation.
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For rotations by opposite angles:

This is a translation.
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Given two translations, present them by biflippers made of points.
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m

O

This is a glide reflection!
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Indeed!

x Rm(x)

RO(Rm(x))

m

O

l

Rl(Rm(x))
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x Rm(x)

RO(Rm(x))

m

O

l

Rl(Rm(x))

O′

RO′(x)
= Rl(RO′(x))
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x

l

O′

RO′(x) Rl(RO′(x))



Biflippers for a glide reflection

17 / 27

l

O′



Biflippers for a glide reflection

17 / 27

m

O



Biflippers for a glide reflection

17 / 27

m

O

A biflipper for a glide reflection may glide along itself.



Biflippers for a glide reflection

17 / 27

x Rm(x)

RO(Rm(x))

m

O

A biflipper for a glide reflection may glide along itself.



Biflippers for a glide reflection

17 / 27

x

RO(Rm(x))

O

Rm(x)

m

A biflipper for a glide reflection may glide along itself.
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Given two glide reflections, present them by biflippers.

l

n

This is a rotation!
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Given two glide reflections, present them by biflippers.

l

n

Exercise. Find head to tail rules for rotation ◦ glide reflection .
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For any isometries S : Rp → Rp and T : Rq → Rq , the direct product

S × T : Rp × Rq → Rp × Rq : (x, y) 7→ (S(x), T (y))
is an isometry of Rp+q = Rp × Rq .

If S and T are flips in flippers A and B ,

then S × T is the flip in the flipper A×B ⊂ Rp+q .

If S and T are isometries, defined by biflippers (A,A′) and (B,B′) ,

then S × T is defined by biflipper (A×B,A′ ×B′) .

Any isometry of Rn is a direct product of isometries of R2 and R1 .
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On line:

translation reflections  in  points the identity

On the plane:

translations rotation glide  reflections reflections
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Screw motion:

Rotary reflection:



In 3D
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rotationstranslations

central symmetries symmetries about a line (half−turns)

reflections glide symmetries about a line

glide reflections screw
motion

rotary reflections
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A
α
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Biflippers:

Head to tail for rotations:

Biflipper vs. angular displacement vector vs. unit quaternion.

The rotation encoded by bilipper
−→wv is defined by quaternion

vw = v × w − v · w .
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rotations reflectionsrotary reflections
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reflectionstranslation glide  reflectionsrotation parallel
motion
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translationrotation parallel motion screw
motion

parallel reflections glide reflectionsrotary reflections



Last page

27 / 27



Last page

27 / 27



Last page

27 / 27



Last page

27 / 27



Last page

27 / 27



Last page

27 / 27



Last page

27 / 27

Thank  you  for  your  attention!



Last page

27 / 27

Thank  you  for  your  attention!



Last page

27 / 27

Thank  you  for  your  attention!



Last page

27 / 27

Thank  you  for  your  attention!


	Plane Isometries
	Compositions of reflections in parallel lines
	Compositions of reflections in intersecting lines
	Relations
	Flips and flippers
	Symmetry about a point
	Head to tail
	Flip-flop decomposition
	Involutions
	Strongly Reversible
	Biflippers
	Biflippers for a rotation
	Head to tail for rotations
	Head to tail for translations
	Composing reflections in line and point
	Biflippers for a glide reflection
	Head to tail for glide reflections
	Direct product of biflippers
	Biflippers on line and plane
	In 3D
	Head to tail for screws
	Rotations of 2-sphere
	All biflippers on 2-sphere
	On the hyperbolic plane
	In hyperbolic 3-space
	Last page

