# Products of two symmetries of order two 

Oleg Viro

September 16, 2015

## Plane Isometries

Theorem. Any isometry of $\mathbb{R}^{2}$ is a composition of $\leq 3$ reflections in lines.

## Plane Isometries

Theorem. Any isometry of $\mathbb{R}^{2}$ is a composition of $\leq 3$ reflections in lines.

Lemma. A plane isometry is determined by its restriction to any three non-collinear points. $\square$

## Plane Isometries

Theorem. Any isometry of $\mathbb{R}^{2}$ is a composition of $\leq 3$ reflections in lines.
Proof of Theorem. Given an isometry:


## Plane Isometries

Theorem. Any isometry of $\mathbb{R}^{2}$ is a composition of $\leq 3$ reflections in lines.

## Proof of Theorem.



## Plane Isometries

Theorem. Any isometry of $\mathbb{R}^{2}$ is a composition of $\leq 3$ reflections in lines.

## Proof of Theorem.



## Plane Isometries

Theorem. Any isometry of $\mathbb{R}^{2}$ is a composition of $\leq 3$ reflections in lines.

## Proof of Theorem.



## Plane Isometries

Theorem. Any isometry of $\mathbb{R}^{2}$ is a composition of $\leq 3$ reflections in lines.

## Proof of Theorem.



## Compositions of reflections in parallel lines



## Compositions of reflections in parallel lines

is a translation


## Compositions of reflections in parallel lines

is a translation


## Compositions of reflections in parallel lines

is a translation


The decomposition is not unique:

## Compositions of reflections in parallel lines

is a translation


The decomposition is not unique:
$R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$
iff $l^{\prime}, m^{\prime}$ can be obtained from $l, m$ by a translation.

## Compositions of reflections in parallel lines

is a translation


The decomposition is not unique:
$R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$
iff $l^{\prime}, m^{\prime}$ can be obtained from $l, m$ by a translation.

## Compositions of reflections in intersecting lines



## Compositions of reflections in intersecting lines

is a rotation


## Compositions of reflections in intersecting lines

is a rotation


Decomposition of rotation is not unique:

## Compositions of reflections in intersecting lines

is a rotation


Decomposition of rotation is not unique:

$$
\begin{aligned}
& R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}} \\
& \\
& \text { iff } l^{\prime}, m^{\prime} \text { can be obtained from } l, m \text { by a rotation } \\
& \\
& \quad \text { about the intersection point } m \cap l .
\end{aligned}
$$

## Compositions of reflections in intersecting lines

is a rotation


Decomposition of rotation is not unique:

$$
\begin{aligned}
& R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}} \\
& \\
& \text { iff } l^{\prime}, m^{\prime} \text { can be obtained from } l, m \text { by a rotation } \\
& \\
& \quad \text { about the intersection point } m \cap l .
\end{aligned}
$$

## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.

## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1 \nmid 2$ and $3 \nmid 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1 \nmid 2$ and $3 \nmid 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1 \nmid 2$ and $3 \nmid 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1 \nmid 2$ and $3 \nmid 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1 \| 2$ and $3 \nmid 4$.

## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1 \| 2$ and $3 \nmid 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1 \| 2$ and $3 \nmid 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1 \| 2$ and $3 \nmid 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1 \| 2$ and $3 \nmid 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1 \| 2$ and $3 \nmid 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.

## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.


## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines. $\square$

## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines. $\square$

Proof of Theorem. By Lemma, any relation can be reduced to a relation of length $\leq 3$.

## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines. $\square$

Proof of Theorem. By Lemma, any relation can be reduced to a relation of length $\leq 3$.
A composition of odd number of reflections reverses orientation and cannot be id .

## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines. $\square$

Proof of Theorem. By Lemma, any relation can be reduced to a relation of length $\leq 3$.
A composition of odd number of reflections reverses orientation and cannot be id .
A composition of two different reflections is not identity.

## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines. $\square$

Generalization of Lemma. In $\mathbb{R}^{n}$,
a composition of any $n+2$ reflections in hyperplanes is a composition of $n$ reflections in hyperplanes.

## Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines. $\square$

Generalization of Lemma. In $\mathbb{R}^{n}$,
a composition of any $n+2$ reflections in hyperplanes is a composition of $n$ reflections in hyperplanes.

Generalization of Theorem. Any relation among reflections in hyperplanes of $\mathbb{R}^{n}$ follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$.

Flips and flippers
Generalize reflections!

## Flips and flippers

## Generalize reflections!

A flip is an isometry which is
an involution (i.e., has period 2 ) and is determined by its fixed point set.

## Flips and flippers

## Generalize reflections!

A flip is an isometry which is
an involution (i.e., has period 2 ) and is determined by its fixed point set.

Flipper is the fixed point set of a flip.

## Flips and flippers

Generalize reflections!
A flip is an isometry which is
an involution (i.e., has period 2 ) and is determined by its fixed point set.

Flipper is the fixed point set of a flip.
Key example: $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto 2 a-x$, the reflection of $\mathbb{R}$ in a point $a$.

## Flips and flippers

## Generalize reflections!

A flip is an isometry which is
an involution (i.e., has period 2 ) and is determined by its fixed point set.

Flipper is the fixed point set of a flip.
Key example: $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto 2 a-x$, the reflection of $\mathbb{R}$ in a point $a$. $a \mapsto 2 a-a=a$

## Flips and flippers

## Generalize reflections!

A flip is an isometry which is
an involution (i.e., has period 2 ) and is determined by its fixed point set.

Flipper is the fixed point set of a flip.
Key example: $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto 2 a-x$, the reflection of $\mathbb{R}$ in a point $a$.
Generalization: a symmetry of $\mathbb{R}^{n}$ in a $k$-subspace.

## Flips and flippers

Generalize reflections!
A flip is an isometry which is
an involution (i.e., has period 2 ) and is determined by its fixed point set.

Flipper is the fixed point set of a flip.
Key example: $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto 2 a-x$, the reflection of $\mathbb{R}$ in a point $a$.
Generalization: a symmetry of $\mathbb{R}^{n}$ in a $k$-subspace.
Further examples in hyperbolic spaces, spheres, projective spaces and other symmetric spaces.

## Flips and flippers

Generalize reflections!
A flip is an isometry which is
an involution (i.e., has period 2 ) and is determined by its fixed point set.

Flipper is the fixed point set of a flip.
Key example: $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto 2 a-x$, the reflection of $\mathbb{R}$ in a point $a$.
Generalization: a symmetry of $\mathbb{R}^{n}$ in a $k$-subspace.
Further examples in hyperbolic spaces, spheres, projective spaces and other symmetric spaces.

Correspondence Flipper $S \longleftrightarrow$ Flip in $S$ is
the shortest connection between
simple static geometric objects - flippers - and isometries.

## Symmetry about a point

is a flip.

## Symmetry about a point

is a flip. Composition of flips in points


$$
A{ }^{\bullet} B
$$

## Symmetry about a point

is a flip. Composition of flips in points


## Symmetry about a point

is a flip. Composition of flips in points


## Symmetry about a point

is a flip. Composition of flips in points


## Symmetry about a point

is a flip. Composition of flips in points is a translation:


## Symmetry about a point

is a flip. Composition of flips in points is a translation:


$$
\overrightarrow{A B}=\frac{1}{2} \overrightarrow{X R_{B}\left(R_{A}(X)\right.}
$$

## Symmetry about a point

is a flip. Composition of flips in points is a translation:


$$
\overrightarrow{A B}=\frac{1}{2} \widehat{X} R_{B}\left(R_{A}(X)\right.
$$

$\overrightarrow{A B}$ is half the arrow representing $R_{B} \circ R_{A}$.

## Head to tail

Isometries presented as compositions of flips
are easy to compose sometimes.

## Head to tail

Isometries presented as compositions of flips are easy to compose sometimes.
$\left(R_{C} \circ R_{B}\right) \circ\left(R_{B} \circ R_{A}\right)=$

## Head to tail

Isometries presented as compositions of flips
are easy to compose sometimes.
$\left(R_{C} \circ R_{B}\right) \circ\left(R_{B} \circ R_{A}\right)=R_{C} \circ R_{B}^{2} \circ R_{A}=R_{C} \circ R_{A}$.

## Head to tail

Isometries presented as compositions of flips
are easy to compose sometimes.
$\left(R_{C} \circ R_{B}\right) \circ\left(R_{B} \circ R_{A}\right)=R_{C} \circ R_{B}^{2} \circ R_{A}=R_{C} \circ R_{A}$.

Compare to the head to tail addition

$$
\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}
$$

## Flip-flop decomposition

Which isometries are compositions of two flips?

## Flip-flop decomposition

Which isometries are compositions of two flips?
Any isometry of $\mathbb{R}^{n}$.

## Flip-flop decomposition

Which isometries are compositions of two flips?
Any isometry of $\mathbb{R}^{n}$.
Wonenburger Theorem. Any isometry of a non-degenerate inner product vector space over any field of characteristic $\neq 2$ can be presented as a composition of two linear involutions isometries. (Transformations Which are Products of Two Involutions,
J. Math. Mech., 16:4 (1966), 327-338.)

## Flip-flop decomposition

Which isometries are compositions of two flips?
Any isometry of $\mathbb{R}^{n}$.
Wonenburger Theorem. Any isometry of a non-degenerate inner product vector space over any field of characteristic $\neq 2$ can be presented as a composition of two linear involutions isometries. (Transformations Which are Products of Two Involutions, J. Math. Mech., 16:4 (1966), 327-338.)

Corollary. Any isometry of an affine space over a field of characteristic $\neq 2$ with a non-degenerate bilinear symmetric or skew-symmetric form can be presented as a composition of two flips.

## Flip-flop decomposition

Which isometries are compositions of two flips?
Any isometry of $\mathbb{R}^{n}$.
Wonenburger Theorem. Any isometry of a non-degenerate inner product vector space over any field of characteristic $\neq 2$ can be presented as a composition of two linear involutions isometries. (Transformations Which are Products of Two Involutions, J. Math. Mech., 16:4 (1966), 327-338.)

Corollary. Any isometry of an affine space over a field of characteristic $\neq 2$ with a non-degenerate bilinear symmetric or skew-symmetric form can be presented as a composition of two flips.

Corollary. Any isometry of a hyperbolic space, sphere, projective space, etc. is a composition of two flips.

## A flip-flop decomposition.

## Involutions

An element $\alpha$ of a group $G$ is called an involution,
if it has order two: $\alpha^{2}=1$.

## Involutions

An element $\alpha$ of a group $G$ is called an involution, if it has order two: $\alpha^{2}=1$.

There are groups without non-trivial involutions.
but any group can be embedded into a group,
in which each element is a product of two involutions.

## Involutions

An element $\alpha$ of a group $G$ is called an involution, if it has order two: $\alpha^{2}=1$.

There are groups without non-trivial involutions.
but any group can be embedded into a group,
in which each element is a product of two involutions.
Because this is so in the symmetric group.

## Strongly Reversible

$f \in G$ is strongly reversible if

$$
\exists \alpha, \beta \in G \alpha^{2}=\beta^{2}=1 \text { and } f=\alpha \beta .
$$

## Strongly Reversible

$f \in G$ is strongly reversible if

$$
\exists \alpha, \beta \in G \alpha^{2}=\beta^{2}=1 \text { and } f=\alpha \beta .
$$

$f \in G$ is called reversible if $f^{-1}$ is conjugate to $f$ :

$$
\exists h: f^{-1}=h^{-1} f h
$$

## Strongly Reversible

$f \in G$ is strongly reversible if

$$
\exists \alpha, \beta \in G \alpha^{2}=\beta^{2}=1 \text { and } f=\alpha \beta .
$$

$f \in G$ is called reversible if $f^{-1}$ is conjugate to $f$ :

$$
\exists h: f^{-1}=h^{-1} f h
$$

Strongly reversible $\Longrightarrow$ reversible

$$
f^{-1}=(\alpha \beta)^{-1}=\beta^{-1} \alpha^{-1}=\beta \alpha=\alpha^{-1} \alpha \beta \alpha=\alpha^{-1} f \alpha .
$$

$\square$

## Strongly Reversible

$f \in G$ is strongly reversible if

$$
\exists \alpha, \beta \in G \alpha^{2}=\beta^{2}=1 \text { and } f=\alpha \beta .
$$

$f \in G$ is called reversible if $f^{-1}$ is conjugate to $f$ :

$$
\exists h: f^{-1}=h^{-1} f h
$$

The set of all involutions involved into presentations $f=\alpha \beta$
is the involution pool of $f$.

## Strongly Reversible

$f \in G$ is strongly reversible if

$$
\exists \alpha, \beta \in G \alpha^{2}=\beta^{2}=1 \text { and } f=\alpha \beta .
$$

$f \in G$ is called reversible if $f^{-1}$ is conjugate to $f$ :

$$
\exists h: f^{-1}=h^{-1} f h
$$

The set of all involutions involved into presentations $f=\alpha \beta$
is the involution pool of $f$.
If $f=\alpha \beta$, then $f=\alpha \beta=\alpha \beta \alpha \alpha=(\alpha \beta \alpha) \alpha=\gamma \alpha$.

## Strongly Reversible

$f \in G$ is strongly reversible if

$$
\exists \alpha, \beta \in G \alpha^{2}=\beta^{2}=1 \text { and } f=\alpha \beta .
$$

$f \in G$ is called reversible if $f^{-1}$ is conjugate to $f$ :

$$
\exists h: f^{-1}=h^{-1} f h
$$

The set of all involutions involved into presentations $f=\alpha \beta$
is the involution pool of $f$.
Strongly reversible elements with intersecting involution pools are easy to multiply:
If $f=\alpha \beta$ and $g=\beta \gamma$, then $f g=\alpha \beta \beta \gamma=\alpha \gamma$.

## Strongly Reversible

$f \in G$ is strongly reversible if

$$
\exists \alpha, \beta \in G \alpha^{2}=\beta^{2}=1 \text { and } f=\alpha \beta .
$$

$f \in G$ is called reversible if $f^{-1}$ is conjugate to $f$ :

$$
\exists h: f^{-1}=h^{-1} f h
$$

The set of all involutions involved into presentations $f=\alpha \beta$
is the involution pool of $f$.
Strongly reversible elements with intersecting involution pools are easy to multiply:
If $f=\alpha \beta$ and $g=\beta \gamma$, then $f g=\alpha \beta \beta \gamma=\alpha \gamma$.
They form a group.

## Strongly Reversible

$f \in G$ is strongly reversible if

$$
\exists \alpha, \beta \in G \alpha^{2}=\beta^{2}=1 \text { and } f=\alpha \beta .
$$

$f \in G$ is called reversible if $f^{-1}$ is conjugate to $f$ :

$$
\exists h: f^{-1}=h^{-1} f h
$$

The set of all involutions involved into presentations $f=\alpha \beta$
is the involution pool of $f$.
Strongly reversible elements with intersecting involution pools are easy to multiply:
If $f=\alpha \beta$ and $g=\beta \gamma$, then $f g=\alpha \beta \beta \gamma=\alpha \gamma$.
They form a group.
$f \in G$ is strongly reversible iff
$\exists$ an involution $\alpha \in G$ such that $f \alpha$ is an involution.

## Biflippers

An ordered pair of flippers $(A, B)$ is a biflipper, an analogue for an arrow representing a translation.

## Biflippers

An ordered pair of flippers $(A, B)$ is a biflipper, an analogue for an arrow representing a translation.
If $A \cap B=\varnothing$, then we connect $A$ and $B$ with the shortest arrow.

## Biflippers

An ordered pair of flippers $(A, B)$ is a biflipper, an analogue for an arrow representing a translation.
If $A \cap B=\varnothing$, then we connect $A$ and $B$ with the shortest arrow.


## Biflippers

An ordered pair of flippers $(A, B)$ is a biflipper, an analogue for an arrow representing a translation.
If $A \cap B=\varnothing$, then we connect $A$ and $B$ with the shortest arrow.


If $A \cap B \neq \varnothing$,


## Biflippers

An ordered pair of flippers $(A, B)$ is a biflipper, an analogue for an arrow representing a translation.
If $A \cap B=\varnothing$, then we connect $A$ and $B$ with the shortest arrow.


If $A \cap B \neq \varnothing$,


To what extent are the representations non-unique?

## Biflippers

An ordered pair of flippers $(A, B)$ is a biflipper, an analogue for an arrow representing a translation.
If $A \cap B=\varnothing$, then we connect $A$ and $B$ with the shortest arrow.


If $A \cap B \neq \varnothing$,


To what extent are the representations non-unique?

## Equivalence relation:

$$
(A, B) \sim\left(A^{\prime}, B^{\prime}\right) \quad \text { if } \quad R_{B} \circ R_{A}=R_{B^{\prime}} \circ R_{A^{\prime}}
$$

## Biflippers

An ordered pair of flippers $(A, B)$ is a biflipper, an analogue for an arrow representing a translation.
If $A \cap B=\varnothing$, then we connect $A$ and $B$ with the shortest arrow.


If $A \cap B \neq \varnothing$,


To what extent are the representations non-unique?

## Equivalence relation:

$$
(A, B) \sim\left(A^{\prime}, B^{\prime}\right) \quad \text { if } \quad R_{B} \circ R_{A}=R_{B^{\prime}} \circ R_{A^{\prime}}
$$

Problem. Find an explicit description for the equivalence.

## Biflippers for a rotation

## Biflippers for a rotation

an ordered pair of lines.


## Biflippers for a rotation

an ordered pair of lines.
The lines intersect at the center of rotation.


## Biflippers for a rotation

an ordered pair of lines.
The lines intersect at the center of rotation.
The angle between the lines is half the rotation angle.


## Biflippers for a rotation

an ordered pair of lines.
The lines intersect at the center of rotation.
The angle between the lines is half the rotation angle.


## Biflippers for a rotation

an ordered pair of lines.
The lines intersect at the center of rotation.
The angle between the lines is half the rotation angle.
On a picture the order of lines is shown by an oriented arc.


## Biflippers for a rotation

an ordered pair of lines.
The lines intersect at the center of rotation.
The angle between the lines is half the rotation angle.
On a picture the order of lines is shown by an oriented arc.
Equivalent biflippers are obtained by rotations about the vertex.


## Biflippers for a rotation

an ordered pair of lines.
The lines intersect at the center of rotation.
The angle between the lines is half the rotation angle.
On a picture the order of lines is shown by an oriented arc.
Equivalent biflippers are obtained by rotations about the vertex.


## Biflippers for a rotation

an ordered pair of lines.
The lines intersect at the center of rotation.
The angle between the lines is half the rotation angle.
On a picture the order of lines is shown by an oriented arc.
Equivalent biflippers are obtained by rotations about the vertex.


## Biflippers for a rotation

an ordered pair of lines.
The lines intersect at the center of rotation.
The angle between the lines is half the rotation angle.
On a picture the order of lines is shown by an oriented arc.
Equivalent biflippers are obtained by rotations about the vertex.


Head to tail for rotations

## Head to tail for rotations

Given two rotations, present them by biflippers.


## Head to tail for rotations

Given two rotations, present them by biflippers.


## Head to tail for rotations

Given two rotations, present them by biflippers.


## Head to tail for rotations

Given two rotations, present them by biflippers.


This is rotation.

## Head to tail for rotations

For rotations by opposite angles:


## Head to tail for rotations

For rotations by opposite angles:


## Head to tail for rotations

For rotations by opposite angles:


## Head to tail for rotations

For rotations by opposite angles:


## Head to tail for rotations

For rotations by opposite angles:


This is a translation.

Head to tail for translations

## Head to tail for translations

Given two translations, present them by biflippers made of points.

## Head to tail for translations

Given two translations, present them by biflippers made of points.


## Head to tail for translations

Given two translations, present them by biflippers made of points.


## Head to tail for translations

Given two translations, present them by biflippers made of points.


## Head to tail for translations

Given two translations, present them by biflippers made of points.


## Composing reflections in line and point



This is a glide reflection!

## Composing reflections in line and point

Indeed!


## Composing reflections in line and point

Indeed!


## Composing reflections in line and point

Indeed!


## Biflippers for a glide reflection



A biflipper for a glide reflection may glide along itself.

## Biflippers for a glide reflection



A biflipper for a glide reflection may glide along itself.

## Biflippers for a glide reflection



A biflipper for a glide reflection may glide along itself.

Head to tail for glide reflections

## Head to tail for glide reflections

Given two glide reflections, present them by biflippers.

## Head to tail for glide reflections

Given two glide reflections, present them by biflippers.


## Head to tail for glide reflections

Given two glide reflections, present them by biflippers.


## Head to tail for glide reflections

Given two glide reflections, present them by biflippers.


## Head to tail for glide reflections

Given two glide reflections, present them by biflippers.


## Head to tail for glide reflections

Given two glide reflections, present them by biflippers.


## Head to tail for glide reflections

Given two glide reflections, present them by biflippers.


This is a rotation!

## Head to tail for glide reflections

Given two glide reflections, present them by biflippers.


Exercise. Find head to tail rules for rotation o glide reflection.

## Direct product of biflippers

## Direct product of biflippers

For any isometries $S: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ and $T: \mathbb{R}^{q} \rightarrow \mathbb{R}^{q}$, the direct product
$S \times T: \mathbb{R}^{p} \times \mathbb{R}^{q} \rightarrow \mathbb{R}^{p} \times \mathbb{R}^{q}:(x, y) \mapsto(S(x), T(y))$ is an isometry of $\mathbb{R}^{p+q}=\mathbb{R}^{p} \times \mathbb{R}^{q}$.

## Direct product of biflippers

For any isometries $S: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ and $T: \mathbb{R}^{q} \rightarrow \mathbb{R}^{q}$, the direct product
$S \times T: \mathbb{R}^{p} \times \mathbb{R}^{q} \rightarrow \mathbb{R}^{p} \times \mathbb{R}^{q}:(x, y) \mapsto(S(x), T(y))$ is an isometry of $\mathbb{R}^{p+q}=\mathbb{R}^{p} \times \mathbb{R}^{q}$.

If $S$ and $T$ are flips in flippers $A$ and $B$, then $S \times T$ is the flip in the flipper $A \times B \subset \mathbb{R}^{p+q}$.

## Direct product of biflippers

For any isometries $S: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ and $T: \mathbb{R}^{q} \rightarrow \mathbb{R}^{q}$, the direct product
$S \times T: \mathbb{R}^{p} \times \mathbb{R}^{q} \rightarrow \mathbb{R}^{p} \times \mathbb{R}^{q}:(x, y) \mapsto(S(x), T(y))$ is an isometry of $\mathbb{R}^{p+q}=\mathbb{R}^{p} \times \mathbb{R}^{q}$.

If $S$ and $T$ are flips in flippers $A$ and $B$, then $S \times T$ is the flip in the flipper $A \times B \subset \mathbb{R}^{p+q}$.
If $S$ and $T$ are isometries, defined by biflippers $\left(A, A^{\prime}\right)$ and $\left(B, B^{\prime}\right)$, then $S \times T$ is defined by biflipper $\left(A \times B, A^{\prime} \times B^{\prime}\right)$.

## Direct product of biflippers

For any isometries $S: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ and $T: \mathbb{R}^{q} \rightarrow \mathbb{R}^{q}$, the direct product
$S \times T: \mathbb{R}^{p} \times \mathbb{R}^{q} \rightarrow \mathbb{R}^{p} \times \mathbb{R}^{q}:(x, y) \mapsto(S(x), T(y))$ is an isometry of $\mathbb{R}^{p+q}=\mathbb{R}^{p} \times \mathbb{R}^{q}$.

If $S$ and $T$ are flips in flippers $A$ and $B$, then $S \times T$ is the flip in the flipper $A \times B \subset \mathbb{R}^{p+q}$.

If $S$ and $T$ are isometries, defined by biflippers $\left(A, A^{\prime}\right)$ and $\left(B, B^{\prime}\right)$, then $S \times T$ is defined by biflipper $\left(A \times B, A^{\prime} \times B^{\prime}\right)$.

Any isometry of $\mathbb{R}^{n}$ is a direct product of isometries of $\mathbb{R}^{2}$ and $\mathbb{R}^{1}$.

## Biflippers on line and plane

On line:


## Biflippers on line and plane

On line:


On the plane:

translations

rotation

glide reflections


In 3D

## In 3D

Screw motion:


## In 3D



| ${ }^{\text {max }}$ |
| :---: |
|  |
| 中両中＋pp |
|  |
| H－H HHEX |

Head to tail for screws

Head to tail for screws


Head to tail for screws


Head to tail for screws


Head to tail for screws


Head to tail for screws


Rotations of 2-sphere


Rotations of 2-sphere

## Biflippers:



## Rotations of 2-sphere

Biflippers:


Head to tail for rotations:


## Rotations of 2-sphere

Biflippers:


Head to tail for rotations:


## Rotations of 2-sphere

Biflippers:


Head to tail for rotations:


## Rotations of 2-sphere

Biflippers:


Head to tail for rotations:


## Rotations of 2-sphere

Biflippers:


Head to tail for rotations:


Biflipper vs. angular displacement vector vs. unit quaternion.

## Rotations of 2-sphere

Biflippers:


Head to tail for rotations:


Biflipper vs. angular displacement vector vs. unit quaternion.
The rotation encoded by bilipper $\overrightarrow{w v}$ is defined by quaternion
$v w=v \times w-v \cdot w$.

## All biflippers on 2-sphere

## All biflippers on 2-sphere


rotations


## On the hyperbolic plane

## On the hyperbolic plane


rotation

parallel motion

translation

glide reflections

reflections

## In hyperbolic 3-space


rotation

parallel motion

translation

screw motion

rotary reflections

parallel reflections

glide reflections

Last page


## Last page



## Last page



```
Last page
```



## Last page



```
Last page
```



## Last page



Thank you for your attention!

## Last page

Thank you for your attention!

## Last page

固

Thank you for your attention!

## Last page

Thank you for your attention!

