Twisted acyclicity of circle and link signatures

Oleg Viro

May 4, 2008

Twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system, a \mathbb{C}-bundle with a fixed flat connection,

Twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system, a \mathbb{C}-bundle with a fixed flat connection, that is an operation of parallel transport.

Twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system, a \mathbb{C}-bundle with a fixed flat connection, that is an operation of parallel transport.
It is defined by the monodromy representation $\pi_{1}(X) \rightarrow \mathbb{C}^{\times}$.

Twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
Simplicial model: chains are $\sum_{\sigma} a_{\sigma} \sigma$

Twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
Simplicial model: chains are $\sum_{\sigma} a_{\sigma} \sigma$, where σ are simplices and a_{σ} is a flat section over σ.

Twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
Simplicial model: chains are $\sum_{\sigma} a_{\sigma} \sigma$, where σ are simplices and a_{σ} is a flat section over σ.

Differential involves restrictions of the sections to the faces.

Twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
Cellular model: chains are $\sum_{\sigma} a_{\sigma} \sigma$

Twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
Cellular model: chains are $\sum_{\sigma} a_{\sigma} \sigma$,
σ are oriented cells and a_{σ} is a flat section over σ.

Twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
Cellular model: chains are $\sum_{\sigma} a_{\sigma} \sigma$, σ are oriented cells and a_{σ} is a flat section over σ.

Differential involves restrictions of the sections to the faces.

Twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
Singular model: chains are $\sum_{\sigma} a_{\sigma} \sigma$

Twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
Singular model: chains are $\sum_{\sigma} a_{\sigma} \sigma$,
σ are singular simplices and
a_{σ} is a flat section of the pull back of the coefficient bundle.

Twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
Singular model: chains are $\sum_{\sigma} a_{\sigma} \sigma$,
σ are singular simplices and
a_{σ} is a flat section of the pull back of the coefficient bundle.
Differential involves pull backs of the sections to the faces.

Twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
Theory is parallel to the untwisted homology theory.

Twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
Theory is parallel to the untwisted homology theory, but H_{0} may be trivial.

Twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
H_{0} may be trivial.
Example. $X=S^{1}$, with non-trivial monodromy
$\pi_{1}(X)=\mathbb{Z} \rightarrow \mathbb{C}^{\times}$, say $\mu: 1 \mapsto a \neq 1$.

Twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
H_{0} may be trivial.
Example. $X=S^{1}$, with non-trivial monodromy
$\pi_{1}(X)=\mathbb{Z} \rightarrow \mathbb{C}^{\times}$, say $\mu: 1 \mapsto a \neq 1$. Then $\partial \sigma_{1}=(a-1) \sigma_{0} \neq 0$

Twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
H_{0} may be trivial.
Example. $X=S^{1}$, with non-trivial monodromy
$\pi_{1}(X)=\mathbb{Z} \rightarrow \mathbb{C}^{\times}$, say $\mu: 1 \mapsto a \neq 1$. Then
$\partial \sigma_{1}=(a-1) \sigma_{0} \neq 0$, and $\mathbf{H}_{1}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=\mathbf{H}_{0}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=0$.

Twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
H_{0} may be trivial.
Example. $X=S^{1}$, with non-trivial monodromy
$\pi_{1}(X)=\mathbb{Z} \rightarrow \mathbb{C}^{\times}$, say $\mu: 1 \mapsto a \neq 1$. Then
$\partial \sigma_{1}=(a-1) \sigma_{0} \neq 0$, and $\mathbf{H}_{1}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=\mathbf{H}_{\mathbf{0}}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=0$.
Generalization. $\quad X=S^{1} \times Y, \pi_{1}(X)=\mathbb{Z} \times \pi_{1}(Y)$.

Twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
H_{0} may be trivial.
Example. $X=S^{1}$, with non-trivial monodromy
$\pi_{1}(X)=\mathbb{Z} \rightarrow \mathbb{C}^{\times}$, say $\mu: 1 \mapsto a \neq 1$. Then
$\partial \sigma_{1}=(a-1) \sigma_{0} \neq 0$, and $\mathbf{H}_{1}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=\mathbf{H}_{0}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=0$.
Generalization. $\quad X=S^{1} \times Y, \pi_{1}(X)=\mathbb{Z} \times \pi_{1}(Y)$.
The monodromy is $\varphi \times \psi: \mathbb{Z} \times \pi_{1}(Y) \rightarrow \mathbb{C}^{\times}$.

Twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
H_{0} may be trivial.
Example. $X=S^{1}$, with non-trivial monodromy
$\pi_{1}(X)=\mathbb{Z} \rightarrow \mathbb{C}^{\times}$, say $\mu: 1 \mapsto a \neq 1$. Then $\partial \sigma_{1}=(a-1) \sigma_{0} \neq 0$, and $\mathbf{H}_{1}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=\mathbf{H}_{0}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=0$.
Generalization. $\quad X=S^{1} \times Y, \pi_{1}(X)=\mathbb{Z} \times \pi_{1}(Y)$.
The monodromy is $\varphi \times \psi: \mathbb{Z} \times \pi_{1}(Y) \rightarrow \mathbb{C}^{\times}$.
Then $C_{*}\left(X ; \mathbb{C}_{\varphi \times \psi}\right)=C_{*}\left(S^{1} ; \mathbb{C}_{\varphi}\right) \otimes C_{*}\left(Y ; \mathbb{C}_{\psi}\right)$ and
$H_{*}\left(X ; \mathbb{C}_{\varphi \times \psi}\right)=H_{*}\left(S^{1} ; \mathbb{C}_{\phi}\right) \otimes H_{*}\left(Y ; \mathbb{C}_{\psi}\right)$

Twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
H_{0} may be trivial.
Example. $X=S^{1}$, with non-trivial monodromy
$\pi_{1}(X)=\mathbb{Z} \rightarrow \mathbb{C}^{\times}$, say $\mu: 1 \mapsto a \neq 1$. Then $\partial \sigma_{1}=(a-1) \sigma_{0} \neq 0$, and $\mathbf{H}_{1}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=\mathbf{H}_{0}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=0$.
Generalization. $\quad X=S^{1} \times Y, \pi_{1}(X)=\mathbb{Z} \times \pi_{1}(Y)$.
The monodromy is $\varphi \times \psi: \mathbb{Z} \times \pi_{1}(Y) \rightarrow \mathbb{C}^{\times}$.
Then $C_{*}\left(X ; \mathbb{C}_{\varphi \times \psi}\right)=C_{*}\left(S^{1} ; \mathbb{C}_{\varphi}\right) \otimes C_{*}\left(Y ; \mathbb{C}_{\psi}\right)$ and
$H_{*}\left(X ; \mathbb{C}_{\varphi \times \psi}\right)=0 \quad \otimes H_{*}\left(Y ; \mathbb{C}_{\psi}\right)$

Twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
H_{0} may be trivial.
Example. $X=S^{1}$, with non-trivial monodromy $\pi_{1}(X)=\mathbb{Z} \rightarrow \mathbb{C}^{\times}$, say $\mu: 1 \mapsto a \neq 1$. Then $\partial \sigma_{1}=(a-1) \sigma_{0} \neq 0$, and $\mathbf{H}_{1}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=\mathbf{H}_{0}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=0$.
Generalization. $\quad X=S^{1} \times Y, \pi_{1}(X)=\mathbb{Z} \times \pi_{1}(Y)$.
The monodromy is $\varphi \times \psi: \mathbb{Z} \times \pi_{1}(Y) \rightarrow \mathbb{C}^{\times}$.
Then $C_{*}\left(X ; \mathbb{C}_{\varphi \times \psi}\right)=C_{*}\left(S^{1} ; \mathbb{C}_{\varphi}\right) \otimes C_{*}\left(Y ; \mathbb{C}_{\psi}\right)$ and
$H_{*}\left(X ; \mathbb{C}_{\varphi \times \psi}\right)=0 \quad \otimes H_{*}\left(Y ; \mathbb{C}_{\psi}\right)=0$.

Twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
H_{0} may be trivial.
Example. $X=S^{1}$, with non-trivial monodromy
$\pi_{1}(X)=\mathbb{Z} \rightarrow \mathbb{C}^{\times}$, say $\mu: 1 \mapsto a \neq 1$. Then
$\partial \sigma_{1}=(a-1) \sigma_{0} \neq 0$, and $\mathbf{H}_{1}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=\mathbf{H}_{\mathbf{0}}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=0$.
Generalization. $\quad X=S^{1} \times Y, \pi_{1}(X)=\mathbb{Z} \times \pi_{1}(Y)$.
The monodromy is $\varphi \times \psi: \mathbb{Z} \times \pi_{1}(Y) \rightarrow \mathbb{C}^{\times}$.
Then $C_{*}\left(X ; \mathbb{C}_{\varphi \times \psi}\right)=C_{*}\left(S^{1} ; \mathbb{C}_{\varphi}\right) \otimes C_{*}\left(Y ; \mathbb{C}_{\psi}\right)$ and
$H_{*}\left(X ; \mathbb{C}_{\varphi \times \psi}\right)=0 \quad \otimes H_{*}\left(Y ; \mathbb{C}_{\psi}\right)=0$.
Furthermore, the same holds true for any locally trivial fibration with fiber S^{1} and non-trivial monodromy along the fiber.

Twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Homology with coefficients in local system.
H_{0} may be trivial.
Example. $X=S^{1}$, with non-trivial monodromy
$\pi_{1}(X)=\mathbb{Z} \rightarrow \mathbb{C}^{\times}$, say $\mu: 1 \mapsto a \neq 1$. Then
$\partial \sigma_{1}=(a-1) \sigma_{0} \neq 0$, and $\mathbf{H}_{1}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=\mathbf{H}_{0}\left(\mathbf{X} ; \mathbb{C}_{\mu}\right)=0$.
Generalization. $\quad X=S^{1} \times Y, \pi_{1}(X)=\mathbb{Z} \times \pi_{1}(Y)$.
The monodromy is $\varphi \times \psi: \mathbb{Z} \times \pi_{1}(Y) \rightarrow \mathbb{C}^{\times}$.
Then $C_{*}\left(X ; \mathbb{C}_{\varphi \times \psi}\right)=C_{*}\left(S^{1} ; \mathbb{C}_{\varphi}\right) \otimes C_{*}\left(Y ; \mathbb{C}_{\psi}\right)$ and
$H_{*}\left(X ; \mathbb{C}_{\varphi \times \psi}\right)=0 \quad \otimes H_{*}\left(Y ; \mathbb{C}_{\psi}\right)=0$.
Furthermore, the same holds true for any locally trivial fibration with fiber S^{1} and non-trivial monodromy along the fiber.
Pieces of a space of this kind are invisible for twisted homology.

Duality

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let X be a connected oriented compact manifold of $\operatorname{dim} n$.

Duality

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let X be a connected oriented compact manifold of $\operatorname{dim} n$. $H_{n}(X, \partial X)=\mathbb{Z}, H_{n}(X, \partial X ; \mathbb{C})=\mathbb{C}$, an orientation of $X=$ a generator of $H_{n}(X, \partial X)$.

Duality

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let X be a connected oriented compact manifold of $\operatorname{dim} n$.
$H_{n}(X, \partial X)=\mathbb{Z}, H_{n}(X, \partial X ; \mathbb{C})=\mathbb{C}$, an orientation of $X=$ a generator of $H_{n}(X, \partial X)$.
Poincaré duality isomorphisms:
$H^{p}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow H_{n-p}\left(X, \partial X ; \mathbb{C}_{\mu}\right)$ and
$H^{p}\left(X, \partial X ; \mathbb{C}_{\mu}\right) \rightarrow H_{n-p}\left(X ; \mathbb{C}_{\mu}\right)$.

Duality

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let X be a connected oriented compact manifold of $\operatorname{dim} n$.
$H_{n}(X, \partial X)=\mathbb{Z}, H_{n}(X, \partial X ; \mathbb{C})=\mathbb{C}$, an orientation of $X=$ a generator of $H_{n}(X, \partial X)$.
Poincaré duality isomorphisms:
$H^{p}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow H_{n-p}\left(X, \partial X ; \mathbb{C}_{\mu}\right)$ and
$H^{p}\left(X, \partial X ; \mathbb{C}_{\mu}\right) \rightarrow H_{n-p}\left(X ; \mathbb{C}_{\mu}\right)$.
Pairings of local coefficient systems: $\mathbb{C}_{\mu} \otimes \mathbb{C}_{\mu^{-1}}=\mathbb{C}$.

Duality

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let X be a connected oriented compact manifold of $\operatorname{dim} n$.
$H_{n}(X, \partial X)=\mathbb{Z}, H_{n}(X, \partial X ; \mathbb{C})=\mathbb{C}$, an orientation of $X=$ a generator of $H_{n}(X, \partial X)$.
Poincaré duality isomorphisms:
$H^{p}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow H_{n-p}\left(X, \partial X ; \mathbb{C}_{\mu}\right)$ and
$H^{p}\left(X, \partial X ; \mathbb{C}_{\mu}\right) \rightarrow H_{n-p}\left(X ; \mathbb{C}_{\mu}\right)$.
Pairings of local coefficient systems: $\mathbb{C}_{\mu} \otimes \mathbb{C}_{\mu^{-1}}=\mathbb{C}$ induces a non-singular bilinear intersection pairing

$$
H_{p}\left(X, \partial X ; \mathbb{C}_{\mu}\right) \otimes H_{n-p}\left(X ; \mathbb{C}_{\mu^{-1}}\right) \rightarrow \mathbb{C} .
$$

Unitary local coefficients

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher
dim links.
- Estimates of twisted
homology
- Span inequalities
- Slice inequalities

Unitary local coefficients

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

$$
\text { Representation } \mu: \pi_{1}(X) \rightarrow \mathbb{C}^{\times} \text {is unitary if } \mu^{-1}=\bar{\mu}
$$

Unitary local coefficients

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Representation $\mu: \pi_{1}(X) \rightarrow \mathbb{C}^{\times}$is unitary if $\mu^{-1}=\bar{\mu}$. pointwise: $(\mu(\alpha))^{-1}=\overline{\mu(\alpha)}$ for any $\alpha \in \pi_{1}(X)$.

Unitary local coefficients

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Representation $\mu: \pi_{1}(X) \rightarrow \mathbb{C}^{\times}$is unitary if $\mu^{-1}=\bar{\mu}$.
If μ is unitary, then the conjugation induces a semilinear bijection

$$
H_{q}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow H_{q}\left(X ; \mathbb{C}_{\bar{\mu}}\right)=H_{q}\left(X ; \mathbb{C}_{\mu^{-1}}\right)
$$

Unitary local coefficients

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Representation $\mu: \pi_{1}(X) \rightarrow \mathbb{C}^{\times}$is unitary if $\mu^{-1}=\bar{\mu}$.
If μ is unitary, then the conjugation induces a semilinear bijection $H_{q}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow H_{q}\left(X ; \mathbb{C}_{\bar{\mu}}\right)=H_{q}\left(X ; \mathbb{C}_{\mu^{-1}}\right)$.
In the case of oriented compact n-dimensional manifold, it turns a non-singular bilinear intersection pairing

$$
H_{p}\left(X, \partial X ; \mathbb{C}_{\mu}\right) \otimes H_{n-p}\left(X ; \mathbb{C}_{\mu^{-1}}\right) \rightarrow \mathbb{C}
$$

into a non-singular sesqui-linear intersection pairing

$$
H_{p}\left(X, \partial X ; \mathbb{C}_{\mu}\right) \otimes H_{n-p}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow \mathbb{C} .
$$

Unitary local coefficients

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Representation $\mu: \pi_{1}(X) \rightarrow \mathbb{C}^{\times}$is unitary if $\mu^{-1}=\bar{\mu}$.
If μ is unitary, then the conjugation induces a semilinear bijection $H_{q}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow H_{q}\left(X ; \mathbb{C}_{\bar{\mu}}\right)=H_{q}\left(X ; \mathbb{C}_{\mu^{-1}}\right)$.
In the case of oriented compact n-dimensional manifold, it turns a non-singular bilinear intersection pairing

$$
H_{p}\left(X, \partial X ; \mathbb{C}_{\mu}\right) \otimes H_{n-p}\left(X ; \mathbb{C}_{\mu^{-1}}\right) \rightarrow \mathbb{C}
$$

into a non-singular sesqui-linear intersection pairing

$$
H_{p}\left(X, \partial X ; \mathbb{C}_{\mu}\right) \otimes H_{n-p}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow \mathbb{C},
$$

composed with relativization, it gives

$$
H_{p}\left(X ; \mathbb{C}_{\mu}\right) \otimes H_{n-p}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow \mathbb{C}
$$

Unitary local coefficients

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Representation $\mu: \pi_{1}(X) \rightarrow \mathbb{C}^{\times}$is unitary if $\mu^{-1}=\bar{\mu}$.
If μ is unitary, then the conjugation induces a semilinear bijection $H_{q}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow H_{q}\left(X ; \mathbb{C}_{\bar{\mu}}\right)=H_{q}\left(X ; \mathbb{C}_{\mu^{-1}}\right)$.
In the case of oriented compact n-dimensional manifold, it turns a non-singular bilinear intersection pairing

$$
H_{p}\left(X, \partial X ; \mathbb{C}_{\mu}\right) \otimes H_{n-p}\left(X ; \mathbb{C}_{\mu^{-1}}\right) \rightarrow \mathbb{C}
$$

into a non-singular sesqui-linear intersection pairing

$$
H_{p}\left(X, \partial X ; \mathbb{C}_{\mu}\right) \otimes H_{n-p}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow \mathbb{C},
$$

composed with relativization, it gives
$H_{p}\left(X ; \mathbb{C}_{\mu}\right) \otimes H_{n-p}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow \mathbb{C}$.
In the middle dimension this is
a Hermitian or skew-Hermitian form.

Unitary local coefficients

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Representation $\mu: \pi_{1}(X) \rightarrow \mathbb{C}^{\times}$is unitary if $\mu^{-1}=\bar{\mu}$.
If μ is unitary, then the conjugation induces a semilinear bijection $H_{q}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow H_{q}\left(X ; \mathbb{C}_{\bar{\mu}}\right)=H_{q}\left(X ; \mathbb{C}_{\mu^{-1}}\right)$.
In the case of oriented compact n-dimensional manifold, it turns a non-singular bilinear intersection pairing
$H_{p}\left(X, \partial X ; \mathbb{C}_{\mu}\right) \otimes H_{n-p}\left(X ; \mathbb{C}_{\mu^{-1}}\right) \rightarrow \mathbb{C}$
into a non-singular sesqui-linear intersection pairing
$H_{p}\left(X, \partial X ; \mathbb{C}_{\mu}\right) \otimes H_{n-p}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow \mathbb{C}$,
composed with relativization, it gives
$H_{p}\left(X ; \mathbb{C}_{\mu}\right) \otimes H_{n-p}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow \mathbb{C}$.
In the middle dimension this is
a Hermitian or skew-Hermitian form.
If $\partial X=\varnothing$,
then the intersection pairing is non-singular.

Unitary local coefficients

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Representation $\mu: \pi_{1}(X) \rightarrow \mathbb{C}^{\times}$is unitary if $\mu^{-1}=\bar{\mu}$.
If μ is unitary, then the conjugation induces a semilinear bijection $H_{q}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow H_{q}\left(X ; \mathbb{C}_{\bar{\mu}}\right)=H_{q}\left(X ; \mathbb{C}_{\mu^{-1}}\right)$.
In the case of oriented compact n-dimensional manifold,
it turns a non-singular bilinear intersection pairing
$H_{p}\left(X, \partial X ; \mathbb{C}_{\mu}\right) \otimes H_{n-p}\left(X ; \mathbb{C}_{\mu^{-1}}\right) \rightarrow \mathbb{C}$
into a non-singular sesqui-linear intersection pairing
$H_{p}\left(X, \partial X ; \mathbb{C}_{\mu}\right) \otimes H_{n-p}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow \mathbb{C}$,
composed with relativization, it gives
$H_{p}\left(X ; \mathbb{C}_{\mu}\right) \otimes H_{n-p}\left(X ; \mathbb{C}_{\mu}\right) \rightarrow \mathbb{C}$.
In the middle dimension this is
a Hermitian or skew-Hermitian form.
If $\partial X=\varnothing$, or ∂X is fibered with fibre S^{1},
then the intersection pairing is non-singular.

Signatures

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let M be a compact oriented $2 n$-dimensional manifold

Signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let M be a compact oriented $2 n$-dimensional manifold, L_{1}, \ldots, L_{k} its oriented compact ($2 n-2$) -dimensional submanifolds transversal to each other with $\partial L_{i}=L_{i} \cap \partial M$, let $L=\cup_{i} L_{i}$.

$\underline{\text { Signatures }}$

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let M be a compact oriented $2 n$-dimensional manifold, L_{1}, \ldots, L_{k} its oriented compact $(2 n-2)$-dimensional submanifolds transversal to each other with $\partial L_{i}=L_{i} \cap \partial M$, let $L=\cup_{i} L_{i}$. Let $\mu \in \operatorname{Hom}\left(H_{1}(M \backslash L), \mathbb{C}^{\times}\right)$, and \mathbb{C}_{μ} be the corresponding local coefficient system on $M \backslash L$.

Signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher
dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let M be a compact oriented $2 n$-dimensional manifold, L_{1}, \ldots, L_{k} its oriented compact $(2 n-2)$-dimensional submanifolds transversal to each other with $\partial L_{i}=L_{i} \cap \partial M$, let $L=\cup_{i} L_{i}$.
Let $\mu \in \operatorname{Hom}\left(H_{1}(M \backslash L), \mathbb{C}^{\times}\right)$, and \mathbb{C}_{μ} be the corresponding local coefficient system on $M \backslash L$.

If n is even, then denote by $\sigma_{\mu}(M \backslash L)$ the signature of the Hermitian intersection form in $H_{n}\left(M \backslash L ; \mathbb{C}_{\mu}\right)$.

Signatures

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher
dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let M be a compact oriented $2 n$-dimensional manifold,
L_{1}, \ldots, L_{k} its oriented compact $(2 n-2)$-dimensional submanifolds transversal to each other with $\partial L_{i}=L_{i} \cap \partial M$, let $L=\cup_{i} L_{i}$.
Let $\mu \in \operatorname{Hom}\left(H_{1}(M \backslash L), \mathbb{C}^{\times}\right)$, and \mathbb{C}_{μ} be the corresponding local coefficient system on $M \backslash L$.

If n is even, then denote by $\sigma_{\mu}(M \backslash L)$ the signature of the Hermitian intersection form in $H_{n}\left(M \backslash L ; \mathbb{C}_{\mu}\right)$.
If n is odd, then denote by $\sigma_{\mu}(M \backslash L)$ the signature of the Hermitian form obtained from the skew-Hermitian intersection form in $H_{n}\left(M \backslash L ; \mathbb{C}_{\mu}\right)$ multiplied by $\sqrt{-1}$.

Signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let M be a compact oriented $2 n$-dimensional manifold, L_{1}, \ldots, L_{k} its oriented compact $(2 n-2)$-dimensional submanifolds transversal to each other with $\partial L_{i}=L_{i} \cap \partial M$, let $L=\cup_{i} L_{i}$.
Let $\mu \in \operatorname{Hom}\left(H_{1}(M \backslash L), \mathbb{C}^{\times}\right)$, and \mathbb{C}_{μ} be the corresponding local coefficient system on $M \backslash L$.

Properties of signatures

1. If W is an oriented compact manifold, $M=\partial W$,

Signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher
dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let M be a compact oriented $2 n$-dimensional manifold, L_{1}, \ldots, L_{k} its oriented compact $(2 n-2)$-dimensional submanifolds transversal to each other with $\partial L_{i}=L_{i} \cap \partial M$, let $L=\cup_{i} L_{i}$.
Let $\mu \in \operatorname{Hom}\left(H_{1}(M \backslash L), \mathbb{C}^{\times}\right)$, and \mathbb{C}_{μ} be the corresponding local coefficient system on $M \backslash L$.

Properties of signatures

1. If W is an oriented compact manifold, $M=\partial W$,

In particular, $\partial M=\varnothing$ and $\partial L_{i}=\varnothing$

Signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher
dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let M be a compact oriented $2 n$-dimensional manifold, L_{1}, \ldots, L_{k} its oriented compact $(2 n-2)$-dimensional submanifolds transversal to each other with $\partial L_{i}=L_{i} \cap \partial M$, let $L=\cup_{i} L_{i}$.
Let $\mu \in \operatorname{Hom}\left(H_{1}(M \backslash L), \mathbb{C}^{\times}\right)$, and \mathbb{C}_{μ} be the corresponding local coefficient system on $M \backslash L$.

Properties of signatures

1. If W is an oriented compact manifold, $M=\partial W$, and
$F_{i} \subset W$ are compact oriented transversal to each other,
$L_{i}=\partial F_{i}$

Signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher
dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let M be a compact oriented $2 n$-dimensional manifold, L_{1}, \ldots, L_{k} its oriented compact $(2 n-2)$-dimensional submanifolds transversal to each other with $\partial L_{i}=L_{i} \cap \partial M$, let $L=\cup_{i} L_{i}$.
Let $\mu \in \operatorname{Hom}\left(H_{1}(M \backslash L), \mathbb{C}^{\times}\right)$, and \mathbb{C}_{μ} be the corresponding local coefficient system on $M \backslash L$.

Properties of signatures

1. If W is an oriented compact manifold, $M=\partial W$, and
$F_{i} \subset W$ are compact oriented transversal to each other,
$L_{i}=\partial F_{i}$, then $\sigma_{\mu}(M \backslash L)=0$.

Signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

2. Let M^{\prime} be another compact oriented $2 n$-dimensional manifold, $L_{1}^{\prime}, \ldots, L_{k}^{\prime}$ its oriented compact
$(2 n-2)$-dimensional submanifolds transversal to each other with $\partial L_{i}^{\prime}=L_{i}^{\prime} \cap \partial M^{\prime}$, and $L^{\prime}=\cup_{i} L_{i}^{\prime}$.

$\underline{\text { Signatures }}$

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

2. Let M^{\prime} be another compact oriented $2 n$-dimensional manifold, $L_{1}^{\prime}, \ldots, L_{k}^{\prime}$ its oriented compact
$(2 n-2)$-dimensional submanifolds transversal to each other with $\partial L_{i}^{\prime}=L_{i}^{\prime} \cap \partial M^{\prime}$, and $L^{\prime}=\cup_{i} L_{i}^{\prime}$. Let
$M \cap M^{\prime}=\partial M \cap \partial M^{\prime}$ be a compact manifold of dimension $2 n-1$ and the orientations induced on $M \cap M^{\prime}$ from M and M^{\prime} are opposite to each other.

Signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

2. Let M^{\prime} be another compact oriented $2 n$-dimensional manifold, $L_{1}^{\prime}, \ldots, L_{k}^{\prime}$ its oriented compact
$(2 n-2)$-dimensional submanifolds transversal to each other with $\partial L_{i}^{\prime}=L_{i}^{\prime} \cap \partial M^{\prime}$, and $L^{\prime}=\cup_{i} L_{i}^{\prime}$. Let
$M \cap M^{\prime}=\partial M \cap \partial M^{\prime}$ be a compact manifold of dimension
$2 n-1$ and the orientations induced on $M \cap M^{\prime}$ from M and M^{\prime} are opposite to each other.
Let $\mu^{\prime} \in \operatorname{Hom}\left(H_{1}\left(M^{\prime} \backslash L^{\prime}\right), \mathbb{C}^{\times}\right)$, and $\mathbb{C}_{\mu^{\prime}}$ be the corresponding local coefficient system on $M^{\prime} \backslash L^{\prime}$ and $\left.\mathbb{C}_{\mu}\right|_{M \cap M^{\prime}}=\left.\mathbb{C}_{\mu^{\prime}}\right|_{M \cap M^{\prime}}$.

Signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

2. Let M^{\prime} be another compact oriented $2 n$-dimensional manifold, $L_{1}^{\prime}, \ldots, L_{k}^{\prime}$ its oriented compact
$(2 n-2)$-dimensional submanifolds transversal to each other with $\partial L_{i}^{\prime}=L_{i}^{\prime} \cap \partial M^{\prime}$, and $L^{\prime}=\cup_{i} L_{i}^{\prime}$. Let
$M \cap M^{\prime}=\partial M \cap \partial M^{\prime}$ be a compact manifold of dimension $2 n-1$ and the orientations induced on $M \cap M^{\prime}$ from M and M^{\prime} are opposite to each other.
Let $\mu^{\prime} \in \operatorname{Hom}\left(H_{1}\left(M^{\prime} \backslash L^{\prime}\right), \mathbb{C}^{\times}\right)$, and $\mathbb{C}_{\mu^{\prime}}$ be the corresponding local coefficient system on $M^{\prime} \backslash L^{\prime}$ and $\left.\mathbb{C}_{\mu}\right|_{M \cap M^{\prime}}=\left.\mathbb{C}_{\mu^{\prime}}\right|_{M \cap M^{\prime}}$. Assume that $\partial\left(M \cap M^{\prime}\right)$ is fibered with fibers circles on which μ is non-trivial.

Signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

2. Let M^{\prime} be another compact oriented $2 n$-dimensional manifold, $L_{1}^{\prime}, \ldots, L_{k}^{\prime}$ its oriented compact
$(2 n-2)$-dimensional submanifolds transversal to each other with $\partial L_{i}^{\prime}=L_{i}^{\prime} \cap \partial M^{\prime}$, and $L^{\prime}=\cup_{i} L_{i}^{\prime}$. Let
$M \cap M^{\prime}=\partial M \cap \partial M^{\prime}$ be a compact manifold of dimension $2 n-1$ and the orientations induced on $M \cap M^{\prime}$ from M and M^{\prime} are opposite to each other.
Let $\mu^{\prime} \in \operatorname{Hom}\left(H_{1}\left(M^{\prime} \backslash L^{\prime}\right), \mathbb{C}^{\times}\right)$, and $\mathbb{C}_{\mu^{\prime}}$ be the corresponding local coefficient system on $M^{\prime} \backslash L^{\prime}$ and $\left.\mathbb{C}_{\mu}\right|_{M \cap M^{\prime}}=\left.\mathbb{C}_{\mu^{\prime}}\right|_{M \cap M^{\prime}}$. Assume that $\partial\left(M \cap M^{\prime}\right)$ is fibered with fibers circles on which μ is non-trivial. Then
$\sigma_{\mu \cup \mu^{\prime}}\left(\left(M \cup M^{\prime}\right) \backslash\left(L \cup L^{\prime}\right)\right)=\sigma_{\mu}(M \backslash L)+\sigma_{\mu^{\prime}}\left(M^{\prime} \backslash L^{\prime}\right)$.

Signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Corollary. $\quad \sigma_{\mu}(M \backslash L)$ is invariant with respect to cobordisms of $\left(M ; L_{1}, \ldots, L_{k} ; \mu\right)$.

Link signatures

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L=L_{1} \cup \cdots \cup L_{m} \subset S^{3}$ be a classical link.

Link signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L=L_{1} \cup \cdots \cup L_{m} \subset S^{3}$ be a classical link. $\zeta_{i} \in \mathbb{C},\left|\zeta_{i}\right|=1, \zeta=\left(\zeta_{1}, \ldots, \zeta_{m}\right) \in\left(S^{1}\right)^{m}$ and $\mu: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathbb{C}^{\times}$takes a meridian of L_{i} to ζ_{i}.

Link signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L=L_{1} \cup \cdots \cup L_{m} \subset S^{3}$ be a classical link.
$\zeta_{i} \in \mathbb{C},\left|\zeta_{i}\right|=1, \zeta=\left(\zeta_{1}, \ldots, \zeta_{m}\right) \in\left(S^{1}\right)^{m}$ and $\mu: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathbb{C}^{\times}$takes a meridian of L_{i} to ζ_{i}.
Let $F_{i} \subset D^{4}$ be smooth oriented surfaces transversal to each other with $\partial F_{i}=F_{i} \cap \partial D^{4}=L_{i}$.

Link signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L=L_{1} \cup \cdots \cup L_{m} \subset S^{3}$ be a classical link. $\zeta_{i} \in \mathbb{C},\left|\zeta_{i}\right|=1, \zeta=\left(\zeta_{1}, \ldots, \zeta_{m}\right) \in\left(S^{1}\right)^{m}$ and $\mu: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathbb{C}^{\times}$takes a meridian of L_{i} to ζ_{i}.
Let $F_{i} \subset D^{4}$ be smooth oriented surfaces transversal to each other with $\partial F_{i}=F_{i} \cap \partial D^{4}=L_{i}$. Extend μ to $D^{4} \backslash \cup_{i} F_{i}$.

Link signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L=L_{1} \cup \cdots \cup L_{m} \subset S^{3}$ be a classical link. $\zeta_{i} \in \mathbb{C},\left|\zeta_{i}\right|=1, \zeta=\left(\zeta_{1}, \ldots, \zeta_{m}\right) \in\left(S^{1}\right)^{m}$ and $\mu: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathbb{C}^{\times}$takes a meridian of L_{i} to ζ_{i}.
Let $F_{i} \subset D^{4}$ be smooth oriented surfaces transversal to each other with $\partial F_{i}=F_{i} \cap \partial D^{4}=L_{i}$. Extend μ to $D^{4} \backslash \cup_{i} F_{i}$. In $H_{2}\left(D^{4} \backslash \cup_{i} F_{i} ; \mathbb{C}_{\mu}\right)$ there is a Hermitian intersection form.

Link signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

In $H_{2}\left(D^{4} \backslash \cup_{i} F_{i} ; \mathbb{C}_{\mu}\right)$ there is a Hermitian intersection form.
Theorem. Its signature $\sigma_{\zeta}(L)$ does not depend on F_{1}, \ldots, F_{m}.

Link signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

In $H_{2}\left(D^{4} \backslash \cup_{i} F_{i} ; \mathbb{C}_{\mu}\right)$ there is a Hermitian intersection form. Theorem. Its signature $\sigma_{\zeta}(L)$ does not depend on F_{1}, \ldots, F_{m}. Proof. Any F_{i}^{\prime} with $\partial F_{i}^{\prime}=F_{i}^{\prime} \cap \partial D^{4}=l_{i}$ is cobordant to F_{i}.

Link signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

In $H_{2}\left(D^{4} \backslash \cup_{i} F_{i} ; \mathbb{C}_{\mu}\right)$ there is a Hermitian intersection form. Theorem. Its signature $\sigma_{\zeta}(L)$ does not depend on F_{1}, \ldots, F_{m}. Proof. Any F_{i}^{\prime} with $\partial F_{i}^{\prime}=F_{i}^{\prime} \cap \partial D^{4}=l_{i}$ is cobordant to F_{i}. The cobordisms $W_{i} \subset D^{4} \times I$ can be made pairwise transversal.

Link signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

In $H_{2}\left(D^{4} \backslash \cup_{i} F_{i} ; \mathbb{C}_{\mu}\right)$ there is a Hermitian intersection form. Theorem. Its signature $\sigma_{\zeta}(L)$ does not depend on F_{1}, \ldots, F_{m}. Proof. Any F_{i}^{\prime} with $\partial F_{i}^{\prime}=F_{i}^{\prime} \cap \partial D^{4}=l_{i}$ is cobordant to F_{i}. The cobordisms $W_{i} \subset D^{4} \times I$ can be made pairwise transversal. They define a cobordism $D^{4} \times I \backslash \cup_{i} N\left(W_{i}\right)$ between $D^{4} \backslash \cup_{i} N\left(F_{i}\right)$ and $D^{4} \backslash \cup_{i} N\left(F_{i}^{\prime}\right)$.

Link signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

In $H_{2}\left(D^{4} \backslash \cup_{i} F_{i} ; \mathbb{C}_{\mu}\right)$ there is a Hermitian intersection form. Theorem. Its signature $\sigma_{\zeta}(L)$ does not depend on F_{1}, \ldots, F_{m}. Proof. Any F_{i}^{\prime} with $\partial F_{i}^{\prime}=F_{i}^{\prime} \cap \partial D^{4}=l_{i}$ is cobordant to F_{i}. The cobordisms $W_{i} \subset D^{4} \times I$ can be made pairwise transversal. They define a cobordism $D^{4} \times I \backslash \cup_{i} N\left(W_{i}\right)$ between $D^{4} \backslash \cup_{i} N\left(F_{i}\right)$ and $D^{4} \backslash \cup_{i} N\left(F_{i}^{\prime}\right)$. The boundary of the cobordism consists of $D^{4} \backslash \cup_{i} N\left(F_{i}\right), D^{4} \backslash \cup_{i} N\left(F_{i}^{\prime}\right)$ and a homologically negligible part

Link signatures

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

In $H_{2}\left(D^{4} \backslash \cup_{i} F_{i} ; \mathbb{C}_{\mu}\right)$ there is a Hermitian intersection form. Theorem. Its signature $\sigma_{\zeta}(L)$ does not depend on F_{1}, \ldots, F_{m}. Proof. Any F_{i}^{\prime} with $\partial F_{i}^{\prime}=F_{i}^{\prime} \cap \partial D^{4}=l_{i}$ is cobordant to F_{i}. The cobordisms $W_{i} \subset D^{4} \times I$ can be made pairwise transversal. They define a cobordism $D^{4} \times I \backslash \cup_{i} N\left(W_{i}\right)$ between $D^{4} \backslash \cup_{i} N\left(F_{i}\right)$ and $D^{4} \backslash \cup_{i} N\left(F_{i}^{\prime}\right)$. The boundary of the cobordism consists of $D^{4} \backslash \cup_{i} N\left(F_{i}\right), D^{4} \backslash \cup_{i} N\left(F_{i}^{\prime}\right)$ and a homologically negligible part $\partial\left(N\left(\cup_{i} W_{i}\right)\right)$, the boundary of a regular neighborhood of the cobordism $\cup_{i} W_{i}$ between $\cup_{i} F_{i}$ and $\cup_{i} F_{i}$.

Link signatures

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

In $H_{2}\left(D^{4} \backslash \cup_{i} F_{i} ; \mathbb{C}_{\mu}\right)$ there is a Hermitian intersection form.
Theorem. Its signature $\sigma_{\zeta}(L)$ does not depend on F_{1}, \ldots, F_{m}. Proof. Any F_{i}^{\prime} with $\partial F_{i}^{\prime}=F_{i}^{\prime} \cap \partial D^{4}=l_{i}$ is cobordant to F_{i}. The cobordisms $W_{i} \subset D^{4} \times I$ can be made pairwise transversal. They define a cobordism $D^{4} \times I \backslash \cup_{i} N\left(W_{i}\right)$ between $D^{4} \backslash \cup_{i} N\left(F_{i}\right)$ and $D^{4} \backslash \cup_{i} N\left(F_{i}^{\prime}\right)$. The boundary of the cobordism consists of $D^{4} \backslash \cup_{i} N\left(F_{i}\right), D^{4} \backslash \cup_{i} N\left(F_{i}^{\prime}\right)$ and a homologically negligible part $\partial\left(N\left(\cup_{i} W_{i}\right)\right)$, the boundary of a regular neighborhood of the cobordism $\cup_{i} W_{i}$ between $\cup_{i} F_{i}$ and $\cup_{i} F_{i}$. Hence, $\sigma\left(D^{4} \backslash \cup_{i} F_{i}\right)=\sigma\left(D^{4} \backslash \cup_{i} F_{i}^{\prime}\right)$.

Link signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

In $H_{2}\left(D^{4} \backslash \cup_{i} F_{i} ; \mathbb{C}_{\mu}\right)$ there is a Hermitian intersection form. Theorem. Its signature $\sigma_{\zeta}(L)$ does not depend on F_{1}, \ldots, F_{m}. \square

The same arguments work for $L=\cup_{i=1}^{m} L_{i}$, where L_{i} are oriented submanifolds of codimension 2 of $S^{2 n-1}$ transversal to each other, and F_{i} are submanifolds of $D^{2 n}$ transversal to each other.

Link signatures

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

In $H_{2}\left(D^{4} \backslash \cup_{i} F_{i} ; \mathbb{C}_{\mu}\right)$ there is a Hermitian intersection form.
Theorem. Its signature $\sigma_{\zeta}(L)$ does not depend on F_{1}, \ldots, F_{m}.
The same arguments work for $L=\cup_{i=1}^{m} L_{i}$, where L_{i} are oriented submanifolds of codimension 2 of $S^{2 n-1}$ transversal to each other, and F_{i} are submanifolds of $D^{2 n}$ transversal to each other.
If n is odd, then the intersection form in $H_{n}\left(D^{2 n} \backslash \cup_{i} F_{i} ; \mathbb{C}_{\mu}\right)$ is skew-Hermitian.

Link signatures

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

In $H_{2}\left(D^{4} \backslash \cup_{i} F_{i} ; \mathbb{C}_{\mu}\right)$ there is a Hermitian intersection form.
Theorem. Its signature $\sigma_{\zeta}(L)$ does not depend on F_{1}, \ldots, F_{m}. \square

The same arguments work for $L=\cup_{i=1}^{m} L_{i}$, where L_{i} are oriented submanifolds of codimension 2 of $S^{2 n-1}$ transversal to each other, and F_{i} are submanifolds of $D^{2 n}$ transversal to each other.
If n is odd, then the intersection form in $H_{n}\left(D^{2 n} \backslash \cup_{i} F_{i} ; \mathbb{C}_{\mu}\right)$ is skew-Hermitian. Multiply it by $i=\sqrt{-1}$ and denote the signature of the Hermitian form by $\sigma_{\zeta}(L)$.

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.
The closest generalization of classical knots are pairs $\left(S^{n}, K\right)$, where K is a smooth submanifold diffeomorphic to S^{n-2}.

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.
The closest generalization of classical knots are pairs $\left(S^{n}, K\right)$, where K is a smooth submanifold diffeomorphic to S^{n-2}.

Then the requirements on K are weakened.

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.
The closest generalization of classical knots are pairs $\left(S^{n}, K\right)$, where K is a smooth submanifold diffeomorphic to S^{n-2}.
One may require K to be only homeomorphic to S^{n-2}, not diffeomorphic

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.
The closest generalization of classical knots are pairs $\left(S^{n}, K\right)$, where K is a smooth submanifold diffeomorphic to S^{n-2}.

One may require K to be only homeomorphic to S^{n-2}, not diffeomorphic , or just a homology sphere of dimension $n-2$

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.
The closest generalization of classical knots are pairs $\left(S^{n}, K\right)$, where K is a smooth submanifold diffeomorphic to S^{n-2}.
One may require K to be only homeomorphic to S^{n-2}, not diffeomorphic , or just a homology sphere of dimension $n-2$, or a submanifold of dimension $n-2$ with $S^{n} \backslash K$ fibered over S^{1}.

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.
The closest generalization of classical knots are pairs $\left(S^{n}, K\right)$, where K is a smooth submanifold diffeomorphic to S^{n-2}.

The codimension two is most important.

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.
The closest generalization of classical knots are pairs (S^{n}, K), where K is a smooth submanifold diffeomorphic to S^{n-2}.

The closest higher-dimensional counter-part of classical links are pairs $\left(S^{n}, L\right)$, where L is a collection of its disjoint smooth submanifolds diffeomorphic to S^{n-2}.

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.
The closest generalization of classical knots are pairs $\left(S^{n}, K\right)$, where K is a smooth submanifold diffeomorphic to S^{n-2}.

The closest higher-dimensional counter-part of classical links are pairs $\left(S^{n}, L\right)$, where L is a collection of its disjoint smooth submanifolds diffeomorphic to S^{n-2}.

Then the restrictions to submanifolds are weakened.

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.
The closest generalization of classical knots are pairs $\left(S^{n}, K\right)$, where K is a smooth submanifold diffeomorphic to S^{n-2}.

The closest higher-dimensional counter-part of classical links are pairs $\left(S^{n}, L\right)$, where L is a collection of its disjoint smooth submanifolds diffeomorphic to S^{n-2}.

Then the restrictions to submanifolds are weakened.
but they are usually required to be disjoint.

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.
The closest generalization of classical knots are pairs $\left(S^{n}, K\right)$, where K is a smooth submanifold diffeomorphic to S^{n-2}.

I suggest to allow transversal intersections of the submanifolds.

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.
The closest generalization of classical knots are pairs $\left(S^{n}, K\right)$, where K is a smooth submanifold diffeomorphic to S^{n-2}.

I suggest to allow transversal intersections of the submanifolds.
I can prove something in this situation.

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.
The closest generalization of classical knots are pairs $\left(S^{n}, K\right)$, where K is a smooth submanifold diffeomorphic to S^{n-2}.

I suggest to allow transversal intersections of the submanifolds. Other reasons:

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.
The closest generalization of classical knots are pairs (S^{n}, K), where K is a smooth submanifold diffeomorphic to S^{n-2}.

I suggest to allow transversal intersections of the submanifolds.
Other reasons:

1. In the classical dimension it is easy to be disjoint.

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.
The closest generalization of classical knots are pairs $\left(S^{n}, K\right)$, where K is a smooth submanifold diffeomorphic to S^{n-2}.

I suggest to allow transversal intersections of the submanifolds. Other reasons:

1. In the classical dimension it is easy to be disjoint. Generic submanifolds of codimension 2 in a manifold of dimension >3 intersect.

Digression on higher dim links.

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

There is a spectrum of objects considered generalizations of classical knots and links.
The closest generalization of classical knots are pairs $\left(S^{n}, K\right)$, where K is a smooth submanifold diffeomorphic to S^{n-2}.

I suggest to allow transversal intersections of the submanifolds. Other reasons:

1. In the classical dimension it is easy to be disjoint. Generic submanifolds of codimension 2 in a manifold of dimension >3 intersect.
2. A link of an algebraic hypersurface $H \subset \mathbb{C}^{n}$ with $n \geq 3$ cannot be a union of disjoint submanifolds.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Sometimes one may want to get rid of twisted homology.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Sometimes one may want to get rid of twisted homology.
If twisted homology does not vanish itself, it may be desirable to find something larger, but better understood.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher
dim links.
- Estimates of twisted
homology
- Span inequalities
- Slice inequalities

Sometimes one may want to get rid of twisted homology.
If twisted homology does not vanish itself, it may be desirable to find something larger, but better understood.

We will show that often the dimensions of twisted homology are estimated by the dimensions of untwisted ones.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Lemma 1. (The principal algebraic lemma of the Morse theory.) For a complex $C: \cdots \rightarrow C_{i} \xrightarrow{\partial_{i}} C_{i-1} \rightarrow$ of finite dimensional vector spaces over a field F

$$
\begin{aligned}
\sum_{s=r}^{2 n+r}(-1)^{s-r} & \operatorname{dim}_{F} H_{s}(C)= \\
& =\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{F} C_{s}-\operatorname{rk} \partial_{r-1}-\operatorname{rk} \partial_{2 n+r}
\end{aligned}
$$

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted
homology
- Span inequalities
- Slice inequalities

Lemma 1. (The principal algebraic lemma of the Morse theory.) For a complex $C: \cdots \rightarrow C_{i} \xrightarrow{\partial_{i}} C_{i-1} \rightarrow$ of finite dimensional vector spaces over a field F

$$
\begin{aligned}
& \quad \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{F} H_{s}(C)= \\
& \quad=\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{F} C_{s}-\operatorname{rk} \partial_{r-1}-\operatorname{rk} \partial_{2 n+r} .
\end{aligned}
$$

Proof. For $n=0$: Since $H_{s}(C)=\operatorname{Ker} \partial_{s} / \operatorname{Im} \partial_{s+1}$, we have $\operatorname{dim} H_{s}(C)=\operatorname{dim} \operatorname{Ker} \partial_{s}-\operatorname{dim} \operatorname{Im} \partial_{s+1}$.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Lemma 1. (The principal algebraic lemma of the Morse theory.) For a complex $C: \cdots \rightarrow C_{i} \xrightarrow{\partial_{i}} C_{i-1} \rightarrow$ of finite dimensional vector spaces over a field F
$\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{F} H_{s}(C)=$

$$
=\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{F} C_{s}-\operatorname{rk} \partial_{r-1}-\operatorname{rk} \partial_{2 n+r} .
$$

Proof. For $n=0$: Since $H_{s}(C)=\operatorname{Ker} \partial_{s} / \operatorname{Im} \partial_{s+1}$, we have $\operatorname{dim} H_{s}(C)=\operatorname{dim} \operatorname{Ker} \partial_{s}-\operatorname{dim} \operatorname{Im} \partial_{s+1}$.
Further, $\operatorname{dim} \operatorname{Im} \partial_{s+1}=\operatorname{rk} \partial_{s+1}$, and $\operatorname{dim} \operatorname{Ker} \partial_{s}=\operatorname{dim} C_{s}-\operatorname{rk} \partial_{s}$. Hence, $\operatorname{dim} H_{s}=\operatorname{dim} C_{s}-\operatorname{rk} \partial_{s}-\operatorname{rk} \partial_{s+1}$

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted
homology
- Span inequalities
- Slice inequalities

Lemma 1. (The principal algebraic lemma of the Morse theory.) For a complex $C: \cdots \rightarrow C_{i} \xrightarrow{\partial_{i}} C_{i-1} \rightarrow$ of finite dimensional vector spaces over a field F
$\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{F} H_{s}(C)=$

$$
=\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{F} C_{s}-\operatorname{rk} \partial_{r-1}-\operatorname{rk} \partial_{2 n+r} .
$$

Proof. For $n=0$: Since $H_{s}(C)=\operatorname{Ker} \partial_{s} / \operatorname{Im} \partial_{s+1}$, we have $\operatorname{dim} H_{s}(C)=\operatorname{dim} \operatorname{Ker} \partial_{s}-\operatorname{dim} \operatorname{Im} \partial_{s+1}$.
Further, $\operatorname{dim} \operatorname{Im} \partial_{s+1}=\operatorname{rk} \partial_{s+1}$, and $\operatorname{dim} \operatorname{Ker} \partial_{s}=\operatorname{dim} C_{s}-\operatorname{rk} \partial_{s}$. Hence, $\operatorname{dim} H_{s}=\operatorname{dim} C_{s}-\operatorname{rk} \partial_{s}-\operatorname{rk} \partial_{s+1}$
In general case, make alternating summation of this for $s=r, \ldots, 2 n+s$.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Lemma 1. (The principal algebraic lemma of the Morse theory.) For a complex $C: \cdots \rightarrow C_{i} \xrightarrow{\partial_{i}} C_{i-1} \rightarrow$ of finite dimensional vector spaces over a field F
$\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{F} H_{s}(C)=$
$\quad=\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{F} C_{s}-\operatorname{rk} \partial_{r-1}-\operatorname{rk} \partial_{2 n+r}$.
Lemma 2. Let P and Q be fields, $R \subset Q$ a subring and $h: R \rightarrow P$ a ring homomorphism.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted
homology
- Span inequalities
- Slice inequalities

Lemma 1. (The principal algebraic lemma of the Morse theory.) For a complex $C: \cdots \rightarrow C_{i} \xrightarrow{\partial_{i}} C_{i-1} \rightarrow$ of finite dimensional vector spaces over a field F

$$
\begin{aligned}
& \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{F} H_{s}(C)= \\
& \quad=\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{F} C_{s}-\operatorname{rk} \partial_{r-1}-\operatorname{rk} \partial_{2 n+r}
\end{aligned}
$$

Lemma 2. Let P and Q be fields, $R \subset Q$ a subring and $h: R \rightarrow P$ a ring homomorphism. Let $C: \cdots \rightarrow C_{p} \rightarrow C_{p-1} \rightarrow \cdots \rightarrow C_{1} \rightarrow C_{0}$ be a complex of free finitely generated R-modules. Then for any n and r $\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{Q} H_{s}\left(C \otimes_{R} Q\right)$

$$
\leq \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{P} H_{s}\left(C \otimes_{h} P\right)
$$

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted
homology
- Span inequalities
- Slice inequalities

Lemma 1. (The principal algebraic lemma of the Morse theory.) For a complex $C: \cdots \rightarrow C_{i} \xrightarrow{\partial_{i}} C_{i-1} \rightarrow$ of finite dimensional vector spaces over a field F

$$
\begin{aligned}
& \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{F} H_{s}(C)= \\
& \quad=\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{F} C_{s}-\operatorname{rk} \partial_{r-1}-\operatorname{rk} \partial_{2 n+r}
\end{aligned}
$$

Lemma 2. Let P and Q be fields, $R \subset Q$ a subring and $h: R \rightarrow P$ a ring homomorphism. Let
$C: \cdots \rightarrow C_{p} \rightarrow C_{p-1} \rightarrow \cdots \rightarrow C_{1} \rightarrow C_{0}$ be a complex of free finitely generated R-modules. Then for any n and r $\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{Q} H_{s}\left(C \otimes_{R} Q\right)$

$$
\leq \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{P} H_{s}\left(C \otimes_{h} P\right)
$$

Proof. $\operatorname{dim}_{Q} C_{i} \otimes R Q=\operatorname{dim}_{P} C_{i} \otimes h P, \operatorname{rk} \partial_{i}^{Q} \geq \operatorname{rk} \partial_{i}^{P} . \square$

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Lemma 2. Let P and Q be fields, $R \subset Q$ a subring and $h: R \rightarrow P$ a ring homomorphism. Let
$C: \cdots \rightarrow C_{p} \rightarrow C_{p-1} \rightarrow \cdots \rightarrow C_{1} \rightarrow C_{0}$ be a complex of free finitely generated R-modules. Then for any n and r
$\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{Q} H_{s}\left(C \otimes_{R} Q\right)$ $\leq \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{P} H_{s}\left(C \otimes_{h} P\right)$.
Theorem. Let X be a finite cw-complex, $\mu: H_{1}(X) \rightarrow \mathbb{C}^{\times}$a homomorphism. If $\operatorname{Im} \mu \subset \mathbb{C}^{\times}$generates a subring R of \mathbb{C} and there is a ring homomorphism $h: R \rightarrow P$, where P is a field, such that $h \mu\left(H_{1}(X)\right)=1$, then
$\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim} H_{s}\left(X ; \mathbb{C}_{\mu}\right)$
$\leq \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{P} H_{s}(X ; P)$.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted
homology
- Span inequalities
- Slice inequalities

Theorem. Let X be a finite cw-complex, $\mu: H_{1}(X) \rightarrow \mathbb{C}^{\times}$a homomorphism. If $\operatorname{Im} \mu \subset \mathbb{C}^{\times}$generates a subring R of \mathbb{C} and there is a ring homomorphism $h: R \rightarrow P$, where P is a field, such that $h \mu\left(H_{1}(X)\right)=1$, then
$\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{H_{s}}\left(X ; \mathbb{C}_{\mu}\right)$

$$
\leq \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{P} H_{s}(X ; P)
$$

Special cases: 1. $H_{1}(X)$ is generated by g,
$\mu(g)$ is an algebraic number,
f is the minimal integer polynomial with relatively prime coefficients which annihilates $\mu(g)$.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted
homology
- Span inequalities
- Slice inequalities

Theorem. Let X be a finite cw-complex, $\mu: H_{1}(X) \rightarrow \mathbb{C}^{\times}$a homomorphism. If $\operatorname{Im} \mu \subset \mathbb{C}^{\times}$generates a subring R of \mathbb{C} and there is a ring homomorphism $h: R \rightarrow P$, where P is a field, such that $h \mu\left(H_{1}(X)\right)=1$, then
$\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{\operatorname{dim}_{s}}\left(X ; \mathbb{C}_{\mu}\right)$

$$
\leq \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{P} H_{s}(X ; P)
$$

Special cases: 1. $H_{1}(X)$ is generated by g,
$\mu(g)$ is an algebraic number,
f is the minimal integer polynomial with relatively prime coefficients which annihilates $\mu(g)$.
Assume p is a prime number which divides $f(1)$.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted
homology
- Span inequalities
- Slice inequalities

Theorem. Let X be a finite cw-complex, $\mu: H_{1}(X) \rightarrow \mathbb{C}^{\times}$a homomorphism. If $\operatorname{Im} \mu \subset \mathbb{C}^{\times}$generates a subring R of \mathbb{C} and there is a ring homomorphism $h: R \rightarrow P$, where P is a field, such that $h \mu\left(H_{1}(X)\right)=1$, then
$\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{\operatorname{dim}_{s}}\left(X ; \mathbb{C}_{\mu}\right)$

$$
\leq \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{P} H_{s}(X ; P)
$$

Special cases: 1. $H_{1}(X)$ is generated by g,
$\mu(g)$ is an algebraic number,
f is the minimal integer polynomial with relatively prime coefficients which annihilates $\mu(g)$.
Assume p is a prime number which divides $f(1)$.
Then $R=\mathbb{Z}[\mu(g)], P=\mathbb{Z} / p$ and $h: \mathbb{Z}[\mu(g)] \rightarrow \mathbb{Z} / p, \quad \mu(g) \mapsto 1$.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted
homology
- Span inequalities
- Slice inequalities

Theorem. Let X be a finite cw-complex, $\mu: H_{1}(X) \rightarrow \mathbb{C}^{\times}$a homomorphism. If $\operatorname{Im} \mu \subset \mathbb{C}^{\times}$generates a subring R of \mathbb{C} and there is a ring homomorphism $h: R \rightarrow P$, where P is a field, such that $h \mu\left(H_{1}(X)\right)=1$, then
$\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{H_{s}}\left(X ; \mathbb{C}_{\mu}\right)$

$$
\leq \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{P} H_{s}(X ; P)
$$

Special cases: 2. $H_{1}(X)$ is generated by g_{1}, \ldots, g_{k}, $\mu\left(g_{1}\right), \ldots, \mu\left(g_{k}\right)$ are algebraic numbers, f_{i} is the minimal integer polynomial with relatively prime coefficients which annihilates $\mu\left(g_{i}\right)$.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted
homology
- Span inequalities
- Slice inequalities

Theorem. Let X be a finite cw-complex, $\mu: H_{1}(X) \rightarrow \mathbb{C}^{\times}$a homomorphism. If $\operatorname{Im} \mu \subset \mathbb{C}^{\times}$generates a subring R of \mathbb{C} and there is a ring homomorphism $h: R \rightarrow P$, where P is a field, such that $h \mu\left(H_{1}(X)\right)=1$, then
$\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{\operatorname{dim}_{s}}\left(X ; \mathbb{C}_{\mu}\right)$

$$
\leq \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{P} H_{s}(X ; P)
$$

Special cases: 2. $H_{1}(X)$ is generated by g_{1}, \ldots, g_{k}, $\mu\left(g_{1}\right), \ldots, \mu\left(g_{k}\right)$ are algebraic numbers, f_{i} is the minimal integer polynomial with relatively prime coefficients which annihilates $\mu\left(g_{i}\right)$.
Assume p is a prime number which divides $f_{1}(1), \ldots, f_{k}(1)$.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted
homology
- Span inequalities
- Slice inequalities

Theorem. Let X be a finite cw-complex, $\mu: H_{1}(X) \rightarrow \mathbb{C}^{\times}$a homomorphism. If $\operatorname{Im} \mu \subset \mathbb{C}^{\times}$generates a subring R of \mathbb{C} and there is a ring homomorphism $h: R \rightarrow P$, where P is a field, such that $h \mu\left(H_{1}(X)\right)=1$, then
$\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{\operatorname{dim}_{s}}\left(X ; \mathbb{C}_{\mu}\right)$

$$
\leq \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{P} H_{s}(X ; P)
$$

Special cases: 2. $H_{1}(X)$ is generated by g_{1}, \ldots, g_{k},
$\mu\left(g_{1}\right), \ldots, \mu\left(g_{k}\right)$ are algebraic numbers,
f_{i} is the minimal integer polynomial with relatively prime coefficients which annihilates $\mu\left(g_{i}\right)$.
Assume p is a prime number which divides $f_{1}(1), \ldots, f_{k}(1)$.
Then $R=\mathbb{Z}\left[\mu\left(g_{1}\right), \ldots, \mu\left(g_{k}\right)\right], P=\mathbb{Z} / p$ and $h: \mathbb{Z}\left[\mu\left(g_{1}\right), \ldots \mu\left(g_{k}\right)\right] \rightarrow \mathbb{Z} / p, \quad \mu\left(g_{i}\right) \mapsto 1$.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted
homology
- Span inequalities
- Slice inequalities

Theorem. Let X be a finite cw-complex, $\mu: H_{1}(X) \rightarrow \mathbb{C}^{\times}$a homomorphism. If $\operatorname{Im} \mu \subset \mathbb{C}^{\times}$generates a subring R of \mathbb{C} and there is a ring homomorphism $h: R \rightarrow P$, where P is a field, such that $h \mu\left(H_{1}(X)\right)=1$, then
$\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{H_{s}}\left(X ; \mathbb{C}_{\mu}\right)$

$$
\leq \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{P} H_{s}(X ; P)
$$

Special cases: 3. $H_{1}(X)$ is generated by g,
$\mu(g)$ is a transcendental number.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Theorem. Let X be a finite cw-complex, $\mu: H_{1}(X) \rightarrow \mathbb{C}^{\times}$a homomorphism. If $\operatorname{Im} \mu \subset \mathbb{C}^{\times}$generates a subring R of \mathbb{C} and there is a ring homomorphism $h: R \rightarrow P$, where P is a field, such that $h \mu\left(H_{1}(X)\right)=1$, then
$\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{\operatorname{dim}_{s}}\left(X ; \mathbb{C}_{\mu}\right)$

$$
\leq \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{P} H_{s}(X ; P)
$$

Special cases: 3. $H_{1}(X)$ is generated by g,
$\mu(g)$ is a transcendental number.
Then $R=\mathbb{Z}[\mu(g)], P=\mathbb{Q}$ and $h: \mathbb{Z}[\mu(g)] \rightarrow \mathbb{Q}, \quad \mu(g) \mapsto 1$.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted
homology
- Span inequalities
- Slice inequalities

Theorem. Let X be a finite cw-complex, $\mu: H_{1}(X) \rightarrow \mathbb{C}^{\times}$a homomorphism. If $\operatorname{Im} \mu \subset \mathbb{C}^{\times}$generates a subring R of \mathbb{C} and there is a ring homomorphism $h: R \rightarrow P$, where P is a field, such that $h \mu\left(H_{1}(X)\right)=1$, then
$\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{\operatorname{dim}_{s}}\left(X ; \mathbb{C}_{\mu}\right)$

$$
\leq \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{P} H_{s}(X ; P)
$$

Special cases: 3. $H_{1}(X)$ is generated by g,
$\mu(g)$ is a transcendental number.
Then $R=\mathbb{Z}[\mu(g)], P=\mathbb{Q}$ and
$h: \mathbb{Z}[\mu(g)] \rightarrow \mathbb{Q}, \quad \mu(g) \mapsto 1$.
For generic $\mu(g)$ twisted homology are not greater than untwisted.

Estimates of twisted homology

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Theorem. Let X be a finite cw-complex, $\mu: H_{1}(X) \rightarrow \mathbb{C}^{\times}$a homomorphism. If $\operatorname{Im} \mu \subset \mathbb{C}^{\times}$generates a subring R of \mathbb{C} and there is a ring homomorphism $h: R \rightarrow P$, where P is a field, such that $h \mu\left(H_{1}(X)\right)=1$, then
$\sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{\operatorname{dim}_{s}}\left(X ; \mathbb{C}_{\mu}\right)$

$$
\leq \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim}_{P} H_{s}(X ; P)
$$

Theorem. $H_{1}(X)$ is generated by g_{1}, \ldots, g_{k},
$\mu, \nu: H_{1}(X) \rightarrow \mathbb{C}^{\times}$be homomorphisms,
$\mu\left(g_{1}\right), \ldots, \mu\left(g_{k}\right), \nu\left(g_{1}\right), \ldots, \nu\left(g_{k}\right)$ be transcendental numbers such that $\left(\mu\left(g_{1}\right), \ldots, \mu\left(g_{k}\right)\right) \in \mathbb{C}^{k}$ is a general point of a variety V and $\left(\nu\left(g_{1}\right), \ldots, \nu\left(g_{k}\right)\right) \in \mathbb{C}^{k}$ is a general point of a subvariety $W \subset V$. Then

$$
\begin{aligned}
\sum_{s=r}^{2 n+r}(-1)^{s-r} & \operatorname{dim}_{1} H_{s}\left(X ; \mathbb{C}_{\mu}\right) \\
& \leq \sum_{s=r}^{2 n+r}(-1)^{s-r} \operatorname{dim} H_{s}\left(X ; \mathbb{C}_{\nu}\right)
\end{aligned}
$$

Span inequalities

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension 2, $L=L_{1} \cup \cdots \cup L_{m}$.

Span inequalities

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension $2, L=L_{1} \cup \cdots \cup L_{m}$. Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$.

Span inequalities

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension $2, L=L_{1} \cup \cdots \cup L_{m}$. Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$.

Span inequalities

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension $2, L=L_{1} \cup \cdots \cup L_{m}$. Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}.

Span inequalities

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension $2, L=L_{1} \cup \cdots \cup L_{m}$. Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}. Let $F_{i} \subset D^{2 n}$ be oriented compact smooth submanifolds transversal to each other, with $\partial F_{i}=F_{i} \cap \partial D^{2 n}=L_{i}$.

Span inequalities

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension $2, L=L_{1} \cup \cdots \cup L_{m}$. Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}. Let $F_{i} \subset D^{2 n}$ be oriented compact smooth submanifolds transversal to each other, with $\partial F_{i}=F_{i} \cap \partial D^{2 n}=L_{i}$. Put $F=\cup_{i} F_{i}$. Extend $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$to $\mu: \pi_{1}\left(D^{2 n} \backslash F\right) \rightarrow \mathbb{C}^{\times}$.

Span inequalities

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension $2, L=L_{1} \cup \cdots \cup L_{m}$. Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}. Let $F_{i} \subset D^{2 n}$ be oriented compact smooth submanifolds transversal to each other, with $\partial F_{i}=F_{i} \cap \partial D^{2 n}=L_{i}$.
Put $F=\cup_{i} F_{i}$. Extend $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$to $\mu: \pi_{1}\left(D^{2 n} \backslash F\right) \rightarrow \mathbb{C}^{\times}$.
Obviously,
$\left|\sigma_{\zeta}(L)\right| \leq \operatorname{dim} H_{n}\left(D^{2 n} \backslash F ; \mathbb{C}_{\mu}\right) \leq H_{n}\left(D^{2 n} \backslash F ; \mathbb{Z} / p\right)$

Span inequalities

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension $2, L=L_{1} \cup \cdots \cup L_{m}$. Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}. Let $F_{i} \subset D^{2 n}$ be oriented compact smooth submanifolds transversal to each other, with $\partial F_{i}=F_{i} \cap \partial D^{2 n}=L_{i}$.
Put $F=\cup_{i} F_{i}$. Extend $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$to $\mu: \pi_{1}\left(D^{2 n} \backslash F\right) \rightarrow \mathbb{C}^{\times}$.
Obviously,
$\left|\sigma_{\zeta}(L)\right| \leq \operatorname{dim} H_{n}\left(D^{2 n} \backslash F ; \mathbb{C}_{\mu}\right) \leq H_{n}\left(D^{2 n} \backslash F ; \mathbb{Z} / p\right)$ $=\operatorname{dim} H_{n-1}(F ; \mathbb{Z} / p)$.

Span inequalities

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension $2, L=L_{1} \cup \cdots \cup L_{m}$. Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}. Let $F_{i} \subset D^{2 n}$ be oriented compact smooth submanifolds transversal to each other, with $\partial F_{i}=F_{i} \cap \partial D^{2 n}=L_{i}$. Put $F=\cup_{i} F_{i}$. Extend $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$to $\mu: \pi_{1}\left(D^{2 n} \backslash F\right) \rightarrow \mathbb{C}^{\times}$.
Obviously,
$\left|\sigma_{\zeta}(L)\right| \leq \operatorname{dim} H_{n}\left(D^{2 n} \backslash F ; \mathbb{C}_{\mu}\right) \leq H_{n}\left(D^{2 n} \backslash F ; \mathbb{Z} / p\right)$
$=\operatorname{dim} H_{n-1}(F ; \mathbb{Z} / p)$. Thus, $\left|\sigma_{\zeta}(L)\right| \leq \operatorname{dim} H_{n-1}(F ; \mathbb{Z} / p)$.

Span inequalities

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension $2, L=L_{1} \cup \cdots \cup L_{m}$. Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}. Let $F_{i} \subset D^{2 n}$ be oriented compact smooth submanifolds transversal to each other, with $\partial F_{i}=F_{i} \cap \partial D^{2 n}=L_{i}$. Put $F=\cup_{i} F_{i}$. Extend $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$to $\mu: \pi_{1}\left(D^{2 n} \backslash F\right) \rightarrow \mathbb{C}^{\times}$.
Obviously,
$\left|\sigma_{\zeta}(L)\right| \leq \operatorname{dim} H_{n}\left(D^{2 n} \backslash F ; \mathbb{C}_{\mu}\right) \leq H_{n}\left(D^{2 n} \backslash F ; \mathbb{Z} / p\right)$
$=\operatorname{dim} H_{n-1}(F ; \mathbb{Z} / p)$. Thus, $\left|\sigma_{\zeta}(L)\right| \leq \operatorname{dim} H_{n-1}(F ; \mathbb{Z} / p)$.
Similarly one can prove:

Span inequalities

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension $2, L=L_{1} \cup \cdots \cup L_{m}$. Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}. Let $F_{i} \subset D^{2 n}$ be oriented compact smooth submanifolds transversal to each other, with $\partial F_{i}=F_{i} \cap \partial D^{2 n}=L_{i}$. Put $F=\cup_{i} F_{i}$. Extend $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$to $\mu: \pi_{1}\left(D^{2 n} \backslash F\right) \rightarrow \mathbb{C}^{\times}$.
Theorem. For any integer r with $0 \leq r \leq \frac{n}{2}$

Span inequalities

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension $2, L=L_{1} \cup \cdots \cup L_{m}$. Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}. Let $F_{i} \subset D^{2 n}$ be oriented compact smooth submanifolds transversal to each other, with $\partial F_{i}=F_{i} \cap \partial D^{2 n}=L_{i}$. Put $F=\cup_{i} F_{i}$. Extend $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$to $\mu: \pi_{1}\left(D^{2 n} \backslash F\right) \rightarrow \mathbb{C}^{\times}$.
Theorem. For any integer r with $0 \leq r \leq \frac{n}{2}$

$$
\begin{aligned}
& \left|\sigma_{\zeta}(L)\right|+\sum_{s=0}^{2 r}(-1)^{s} \operatorname{dim}_{1} H_{r-1-s}\left(S^{2 n-1} \backslash L ; \mathbb{C}_{\zeta}\right) \\
& \leq \sum_{s=0}^{2 r}(-1)^{s} \operatorname{dim} H_{n-1+s}(F, L ; \mathbb{Z} / p) \\
& \quad+\sum_{s=0}^{2 r}(-1)^{s} \operatorname{dim} H_{n-2-s}(F, L ; \mathbb{Z} / p)
\end{aligned}
$$

Span inequalities

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension $2, L=L_{1} \cup \cdots \cup L_{m}$. Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}. Let $F_{i} \subset D^{2 n}$ be oriented compact smooth submanifolds transversal to each other, with $\partial F_{i}=F_{i} \cap \partial D^{2 n}=L_{i}$.

The r th nullity $n_{\zeta}^{r}(L)$ is defined as
$\sum_{s=0}^{2 r}(-1)^{s} \operatorname{dim} H_{n+s}\left(S^{2 n-1} \backslash \cup_{i=1}^{m} L_{i} ; \mathbb{C}_{\mu}\right)$.

Span inequalities

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension $2, L=L_{1} \cup \cdots \cup L_{m}$. Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}. Let $F_{i} \subset D^{2 n}$ be oriented compact smooth submanifolds transversal to each other, with $\partial F_{i}=F_{i} \cap \partial D^{2 n}=L_{i}$.
Theorem. For any integer r with $0 \leq r \leq \frac{n}{2}$

$$
\begin{aligned}
\left|\sigma_{\zeta}(L)\right|+n_{\zeta}^{r}(L) \leq & \sum_{s=0}^{2 r}(-1)^{s} \operatorname{dim} H_{n-1+s}(F, L ; \mathbb{Z} / p) \\
& +\sum_{s=0}^{2 r}(-1)^{s} \operatorname{dim} H_{n-2-s}(F, L ; \mathbb{Z} / p)
\end{aligned}
$$

Span inequalities

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension $2, L=L_{1} \cup \cdots \cup L_{m}$. Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}. Let $F_{i} \subset D^{2 n}$ be oriented compact smooth submanifolds transversal to each other, with $\partial F_{i}=F_{i} \cap \partial D^{2 n}=L_{i}$.
In particular, $\left|\sigma_{\zeta}(L)\right|+\operatorname{dim} H_{n}\left(S^{2 n-1} \backslash L ; \mathbb{C}_{\mu}\right)$

$$
\leq \operatorname{dim} H_{n}(F, L ; \mathbb{Z} / p)+\operatorname{dim} H_{n-1}(F, L ; \mathbb{Z} / p)
$$

Span inequalities

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension $2, L=L_{1} \cup \cdots \cup L_{m}$. Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}. Let $F_{i} \subset D^{2 n}$ be oriented compact smooth submanifolds transversal to each other, with $\partial F_{i}=F_{i} \cap \partial D^{2 n}=L_{i}$.
That is $\left|\sigma_{\zeta}(L)\right|+n_{\zeta}^{0}(L)$

$$
\leq \operatorname{dim} H_{n}(F, L ; \mathbb{Z} / p)+\operatorname{dim} H_{n-1}(F, L ; \mathbb{Z} / p)
$$

Slice inequalities

- Twisted homology
- Duality
- Unitary local
coefficients
- Signatures
- Link signatures
- Digression on higher
dim links.
- Estimates of twisted
homology
- Span inequalities
- Slice inequalities

Slice inequalities

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Again, let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension 2,
$L=L_{1} \cup \cdots \cup L_{m}$.
Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}.

Slice inequalities

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Again, let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension 2,
$L=L_{1} \cup \cdots \cup L_{m}$.
Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}.
Let $\Lambda_{i} \subset S^{2 n}$ be oriented closed smooth submanifolds transversal to each other and to $S^{2 n-1}$, with $\partial \Lambda_{i} \cap S^{2 n-1}=L_{i}$.

Slice inequalities

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Again, let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension 2,
$L=L_{1} \cup \cdots \cup L_{m}$.
Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}.
Let $\Lambda_{i} \subset S^{2 n}$ be oriented closed smooth submanifolds transversal to each other and to $S^{2 n-1}$, with $\partial \Lambda_{i} \cap S^{2 n-1}=L_{i}$. Put $\Lambda=\cup_{i} \Lambda_{i}$. Extend $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$to $\mu: \pi_{1}\left(S^{2 n} \backslash \Lambda\right) \rightarrow \mathbb{C}^{\times}$.

Slice inequalities

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Again, let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension 2,
$L=L_{1} \cup \cdots \cup L_{m}$.
Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}.
Let $\Lambda_{i} \subset S^{2 n}$ be oriented closed smooth submanifolds transversal to each other and to $S^{2 n-1}$, with $\partial \Lambda_{i} \cap S^{2 n-1}=L_{i}$. Put $\Lambda=\cup_{i} \Lambda_{i}$. Extend $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$to $\mu: \pi_{1}\left(S^{2 n} \backslash \Lambda\right) \rightarrow \mathbb{C}^{\times}$.
Theorem. $\left|\sigma_{\zeta}(L)\right| \leq \frac{1}{2} \operatorname{dim} H_{n-1}(\Lambda ; \mathbb{Z} / p)$

Slice inequalities

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Again, let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension 2,
$L=L_{1} \cup \cdots \cup L_{m}$.
Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}.
Let $\Lambda_{i} \subset S^{2 n}$ be oriented closed smooth submanifolds transversal to each other and to $S^{2 n-1}$, with $\partial \Lambda_{i} \cap S^{2 n-1}=L_{i}$. Put $\Lambda=\cup_{i} \Lambda_{i}$. Extend $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$to $\mu: \pi_{1}\left(S^{2 n} \backslash \Lambda\right) \rightarrow \mathbb{C}^{\times}$.
Theorem. $\left|\sigma_{\zeta}(L)\right| \leq \frac{1}{2} \operatorname{dim} H_{n-1}(\Lambda ; \mathbb{Z} / p)$
$\left|\sigma_{\zeta}(L)\right|+n_{\zeta}^{0}(L)$

$$
\leq \frac{1}{2} \operatorname{dim} H_{n-1}(\Lambda ; \mathbb{Z} / p)+\operatorname{dim} H_{n-2}(\Lambda \backslash L ; \mathbb{Z} / p)
$$

Slice inequalities

- Twisted homology
- Duality
- Unitary local coefficients
- Signatures
- Link signatures
- Digression on higher dim links.
- Estimates of twisted homology
- Span inequalities
- Slice inequalities

Again, let $L_{1}, \ldots, L_{m} \subset S^{2 n-1}$ be smooth oriented transversal to each other submanifolds of codimension 2,
$L=L_{1} \cup \cdots \cup L_{m}$.
Let $\zeta_{i} \in \mathbb{C}$ be algebraic numbers with $\left|\zeta_{i}\right|=1$, and f_{i} be irreducible integer polynomials with $f_{i}\left(\zeta_{i}\right)=0$. Suppose prime number p divides $f_{i}(1)$ for $i=1, \ldots, m$. Let $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$take a meridian of L_{i} to ζ_{i}.
Let $\Lambda_{i} \subset S^{2 n}$ be oriented closed smooth submanifolds transversal to each other and to $S^{2 n-1}$, with $\partial \Lambda_{i} \cap S^{2 n-1}=L_{i}$. Put $\Lambda=\cup_{i} \Lambda_{i}$. Extend $\mu: \pi_{1}\left(S^{2 n-1} \backslash L\right) \rightarrow \mathbb{C}^{\times}$to $\mu: \pi_{1}\left(S^{2 n} \backslash \Lambda\right) \rightarrow \mathbb{C}^{\times}$.
Theorem. $\left|\sigma_{\zeta}(L)\right| \leq \frac{1}{2} \operatorname{dim} H_{n-1}(\Lambda ; \mathbb{Z} / p)$

$$
\left|\sigma_{\zeta}(L)\right|+n_{\zeta}^{r}(L) \leq \frac{1}{2} \sum_{s=-2 r}^{2 r}(-1)^{s} \operatorname{dim} H_{n-1+s}(\Lambda ; \mathbb{Z} / p)
$$

$$
+\sum_{s=0}^{2 r}(-1)^{s} \operatorname{dim} H_{n-2-s}(\Lambda \backslash L ; \mathbb{Z} / p)
$$

