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a ▿ b = {c ∈ R≥0 ∣ ∣a − b∣ ≤ c ≤ a + b}.

a ▿ b is the set of numbers c such that ∃ a traingle with sides a, b, c .

(a, b) ↦ a ▿ b is commutative; has zero 0 ;
is associative, because

(a ▿ b) ▿ c = {x ∣ ∃ quadrilateral with sides a, b, c, x} = a ▿ (b ▿ c) .
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In R≥0 define a multivalued addition :

a ▿ b = {c ∈ R≥0 ∣ ∣a − b∣ ≤ c ≤ a + b}.

a ▿ b is the set of numbers c such that ∃ a traingle with sides a, b, c .
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In R≥0 define a multivalued addition :

a ▿ b = {c ∈ R≥0 ∣ ∣a − b∣ ≤ c ≤ a + b}.

a ▿ b is the set of numbers c such that ∃ a traingle with sides a, b, c .

(a, b) ↦ a ▿ b is commutative; has zero 0 ;
is associative,
for each a , the only b such that 0 ∈ a ▿ b is a .

That is −a = a !
Distributivity: a(b ▿ c) = ab ▿ ac .

R≥0 with addition (a, b) ↦ a ▿ b and usual multiplication is a multifield .
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A set X with a multivalued operation
X ×X → 2X ∖ {∅} ∶ (a, b)↦ a ⊺ b

and a multiplication X ×X →X ∶ (a, b)↦ a ⋅ b is called a multifield , if

● (a, b)↦ a ⊺ b is commutative, associative;

● ∃0 ∈X such that 0 ⊺ a = a for any a ∈X ;

● for ∀a ∈X there exists a unique −a ∈X such that 0 ∈ a ⊺ (−a) ;

● −(a ⊺ b) = (−a) ⊺ (−b)

● X ∖ 0 is a commutative group under the multiplication;

● 0 ⋅ a = 0 for any a ∈X ;

● distributivity: a(b ⊺ c) = ab ⊺ ac for any a, b, c ∈X .
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1 + 1 = {0,1} , 0 + 0 = 0 , 0 + 1 = 1 , 0 ⋅ 0 = 0 ⋅ 1 = 0 , 1 ⋅ 1 = 1 .
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R≥0 with ⊺ = ▿ and the usual multiplication is a multifield.
triangle multifield ∇ .

The smallest multifield: Q1 = {0,1} with multivalued addition + and
1 + 1 = {0,1} , 0 + 0 = 0 , 0 + 1 = 1 , 0 ⋅ 0 = 0 ⋅ 1 = 0 , 1 ⋅ 1 = 1 .

The sign multifield : Q2 = {0,1,−1} with 1 ⌣ 1 = 1 , −1 ⌣ −1 = −1 ,
1 ⌣ −1 = {1,0,−1} .

Let X be a linearly ordered multiplicative group and Y =X ∪ {0} with
0 ≺ a for any a ∈X . Define a multivalued addition + :

(a, b)↦ a + b =
⎧⎪⎪
⎨
⎪⎪⎩

max(a, b), if a ≠ b

{x ∈ Y ∣ x ⪯ a}, if a = b.

(Y,+,×) is a multifield. If X is the additive group of real numbers,
then this Y is the tropical multifield Y .

If X is the multiplicative group of positive real numbers, then Y is a
multifield U∇ isomorphic to Y .

Similar to ∇ , but with ultrametric triangle inequality.
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C with the tropical addition and usual multiplication is a multifield.
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C with the tropical addition and usual multiplication is a multifield.
The complex tropical multifield T C .
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How do several complex numbers with the same absolute values
give zero?
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0 ∈ a ⌣ b ⌣ c ⌣ . . . ⌣ x iff 0 ∈ Conv(a, b, c, . . . , x).

What if the summands have different absolute values?
Then only those with the greatest one matter!

Theorem. The tropical addition ⌣ is upper semi-continuous and maps
a connected set to a connected set

and a compact set to a compact set.

Corollary. The multivalued map defined by a complex tropical
polynomial is upper semi-continuous. It preserves connectedness and
compactness.

If p is a complex tropical polynomial and X ⊂ C is a closed set, then
p−1(X) = {a ∣X ⊂ p(a)} is closed.
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Let Y ⊂X and f ∶X ×X → 2X be a binary multivalued operation.

A binary multivalued operation g ∶ Y × Y → 2Y is induced by f if
g(a, b) = f(a, b) ∩ Y for any a, b ∈ Y .

g is determined by f .

g exists iff f(a, b) ∩ Y ≠ ∅ for any a, b ∈ Y

(The definition of multivalued addition prohibits empty values.)
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The tropical addition in C induces a tropical addition in R .
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For a, b ∈ R
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{a}, if a = b,

[−∣a∣, ∣a∣], if a = −b.
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The tropical addition in C induces a tropical addition in R .
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For a, b ∈ R

a ⌣R b =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{a}, if ∣a∣ > ∣b∣,

{b}, if ∣a∣ < ∣b∣,

{a}, if a = b,

[−∣a∣, ∣a∣], if a = −b.

Theorem. T R = (R,⌣R,×) is a multifield.
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The sign multifield Q2 = {0,1,−1} is a submultifield of T R ⊂ T C .

The smallest multifield Q1 = {0,1} is not, because T C is idempotent:
a ⌣ a = a for any a ∈ T C , while 1 + 1 = {0,1} in Q1 .
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The sign multifield Q2 = {0,1,−1} is a submultifield of T R ⊂ T C .

Theorem. Any X ⊂ C containing 0 , invariant under z ↦ −z and
z ↦ z−1 and closed under multiplication inherits from T C the structure
of multifield.
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of multifield.

In particular, the phase multifield Φ = S1 ∪ 0 = {z ∈ C ∶ ∣z∣2 = ∣z∣} .
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The sign multifield Q2 = {0,1,−1} is a submultifield of T R ⊂ T C .

Theorem. Any X ⊂ C containing 0 , invariant under z ↦ −z and
z ↦ z−1 and closed under multiplication inherits from T C the structure
of multifield.

In particular, the phase multifield Φ = S1 ∪ 0 = {z ∈ C ∶ ∣z∣2 = ∣z∣} .

The exponential copy (R≥0,max,×) of tropical semifield T is a
subsemifield of multifields T R ⊂ T C .

Inclusion (R≥0,max,×)→ T R is a homomorphism.
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Multiring is a multifield without division.
A map f ∶X → Y is called a (multiring) homomorphism if
f(a ⊺ b) ⊂ f(a) ⊺ f(b) and f(ab) = f(a)f(b) for any a, b ∈X .



Multiring homomorphisms

Table of Contents 11 / 25

A map f ∶X → Y is called a (multiring) homomorphism if
f(a ⊺ b) ⊂ f(a) ⊺ f(b) and f(ab) = f(a)f(b) for any a, b ∈X .
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A multiplicative non-archimedean norm K → R is a multiring
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non-archimedian = satisfies the ultra-metric triangle inequality
∣a + b∣ ≤max(a, b) for any a, b ∈K .
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A map f ∶X → Y is called a (multiring) homomorphism if
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∣x∣ , if x ≠ 0

0, if x = 0
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Ideal is a subset I in a multiring X such that I ⊺ I ⊂ I and XI ⊂ I .

In a multifield X any ideal is either 0 or X .

For multirings X,Y and a multiring homomorphism h ∶X → Y ,
the kernel Kerh = {a ∈X ∣ h(a) = 0} is an ideal.

However, the image of a multiring homomorphism h ∶X → Y

is not isomorphic to X/Kerh .



Weakness of ideals

Table of Contents 12 / 25

Ideal is a subset I in a multiring X such that I ⊺ I ⊂ I and XI ⊂ I .

In a multifield X any ideal is either 0 or X .

For multirings X,Y and a multiring homomorphism h ∶X → Y ,
the kernel Kerh = {a ∈X ∣ h(a) = 0} is an ideal.

However, the image of a multiring homomorphism h ∶X → Y

is not isomorphic to X/Kerh .

Moreover, there are non-injective multiring homomorphisms
between multifields. (e.g., sign ∶ R→ Q2 ).
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= {c ∈ R≥0 ∣ ∣a1/h − b1/h∣h ≤ c ≤ (a1/h + b1/h)h}

∇h = (R≥0,▿h, ⋅) is a copy of ∇ and Rh ∶ ∇h → ∇ is an isomorphism.

If a ≠ b , then
limh→0 ∣a1/h − b1/h∣h = limh→0(a1/h + b1/h)h =max(a, b),
if a = b , then ∣a1/h − b1/h∣h = 0 , while limh→0(a1/h + b1/h)h = a .
The endpoints of segment a ▿h b tend
to the endpoints of segment a + b as h→ 0 .

Let a ▿0 b ∶= a + b .

∇h is a dequantization of ∇ to U∇ .
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Pull back the addition via Sh :
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Ch = C+h,× is a copy of C and Sh ∶ Ch → C is an isomorphism.

In a sense, limh→0(z +h w) = z ⌣w :
let Γ ⊂ R≥0 ×C3 be a graph of +h for all h > 0 ,

Γ = {(h, a, b, c) ∈ C3 ∣ a +h b = c} .

Then Cl(Γ) ∩ (0 ×C3) is the graph of ⌣ .

Ch is a dequantization of C to T C .
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Usually tropical geometry is defined as an algebraic geometry over
T = (R ∪ {−∞},max,+) , not over Y .

A polynomial over T is a convex PL-function with integral slopes.

A polynomial maxk=(k1,...,kn)(ak + k1x1 + ⋅ ⋅ ⋅ + knxn) over T
does not vanish, because the zero in T is −∞ .

Tricky definition. A hypersurface defined by tropical polynomial
maxk=(k1,...,kn)(ak + k1x1 + ⋅ ⋅ ⋅ + knxn) is the set of points, at which the
maximum is attained by at least two of the linear functions.

The easiest way to understand this: replace T by Y .

The only difference between T and Y :
T is an idempotent semiring , max(x, x) = x for any x ∈ T .

Y is a multifield of characteristic 2, x + x = {y ∣ y ≤ x} for any x ∈ Y .

−∞ ∈ Yk=(k1,...,kn)(ak + k1x1 + ⋅ ⋅ ⋅ + knxn) where the maximum
maxk=(k1,...,kn)(ak + k1x1 + ⋅ ⋅ ⋅ + knxn) is attained at least twice.
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In geometry over Y

the graph of function y = x + 1 ,

the curve defined by x + y + 1 .
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A polynomial is said to be pure if it has no two monomials with the same
exponents.
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Is x2 ⌣ −1 = (x ⌣ 1)(x ⌣ −1) ? Yes, x2 ⌣ −1 = x2 ⌣ x ⌣ −x ⌣ −1 .

0 1 2−2 −1

1

2

−1
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{(x, y) ∈ C2 ∣ 0 ∈ x ⌣ y ⌣ 1}
The amoeba (the image under Log ∶ (C ∖ 0)2 → R2 ) is the tropical line

Log−1(a ray) is a holomorphic cylinder.

Log−1(the central point) =

(0,0)

ψ

ϕ(π,0)

(0,π)

Overall a disk. A 2-manifold!
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Any complex toric variety is a complex tropical variety.

A non-singular complex tropical plane projective curve (defined by a
pure polynomial) is homeomorphic and isotopic to a non-singular
complex plane projective curve of the same degree.

Conjecture. Any non-singular complex tropical variety is a topological
manifold.

Conjecture. If under the dequantization a non-singular complex
varieties tends to a non-singular complex tropical variety, then the
dequantization provides an isotopy between the varieties.
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There are lots of open questions .
First, what are infinitesimal structures

in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?

Conjecture. (Itenberg, Mikhalkin, Zharkov) Let X be a complex
tropical variety, Xq = Log

−1(q-skeleton(Log(X))) ,
H

q
n(X) = Im(in∗ ∶Hn(Xq)→Hn(X)) ,

Hp,q(X) =H
q
p+q(X)/H

q−1
p+q (X) . Then Hp,q(X)⊗C is isomorphic to

Hp,q(Xh) .
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Tangent bundles?
Differential forms?

Second, what happens at singular points?
Does the tropical deformation smash them completely?

Third, is there other multifields responsible for the fate of
higher germs of complex varieties in the dequantization?

There is a multivalued addition of p -adic numbers.
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There are lots of open questions .
First, what are infinitesimal structures

in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?

Second, what happens at singular points?
Does the tropical deformation smash them completely?

Third, is there other multifields responsible for the fate of
higher germs of complex varieties in the dequantization?

Fourth, what are abstract complex tropical varieties?
This is a work in progress started 5 months ago.
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