Tropical geometries and multifields

Oleg Viro

April 15, 2010

Multi-valued algebra

- Triangle addition
- Multifields
- Examples of
multifields
- Tropical addition of complex numbers
- Properties of tropical addition
- Operation induced on
a subset
- Tropical addition of
real numbers
- Other submultifields
of $\mathcal{T} \mathbb{C}$
- Multiring
homomorphisms
- Weakness of ideals

Multi-valued algebra

Dequantizataions
Complex Tropical
Geometry

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\} .
$$

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\} .
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c.

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\} .
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\}
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\} .
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0 ;
is associative

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\}
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0 ;
is associative, because
$(a \nabla b) \nabla c=\{x \mid \exists$ quadrilateral with sides $a, b, c, x\}=a \nabla(b \nabla c)$.

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\}
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0 ;
is associative, because
$(a \nabla b) \nabla c=\{x \mid \exists$ quadrilateral with sides $a, b, c, x\}=a \nabla(b \nabla c)$.

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\} .
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0 ;
is associative,
for each a, the only b such that $0 \in a \nabla b$ is a.

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\}
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0 ;
is associative,
for each a, the only b such that $0 \in a \nabla b$ is a.
That is $-a=a$!

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\}
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0 ;
is associative,
for each a, the only b such that $0 \in a \nabla b$ is a.
That is $-a=a!$
Distributivity: $a(b \nabla c)=a b \nabla a c$.

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\}
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0 ;
is associative, for each a, the only b such that $0 \in a \nabla b$ is a. That is $-a=a!$
Distributivity: $a(b \nabla c)=a b \nabla a c$.
$\mathbb{R}_{\geq 0}$ with addition $(a, b) \mapsto a \nabla b$ and usual multiplication is a multifield.

Multifields

A set X with a multivalued operation

$$
X \times X \rightarrow 2^{X} \backslash\{\varnothing\}:(a, b) \mapsto a \top b
$$

and a multiplication $X \times X \rightarrow X:(a, b) \mapsto a \cdot b$ is called a multifield, if

- $(a, b) \mapsto a \uparrow b$ is commutative, associative;
- $\exists 0 \in X$ such that 0 т $a=a$ for any $a \in X$;
- for $\forall a \in X$ there exists a unique $-a \in X$ such that $0 \in a \top(-a)$;
- $-(a+b)=(-a) \top(-b)$
- $X \backslash 0$ is a commutative group under the multiplication;
- $0 \cdot a=0$ for any $a \in X$;
- distributivity: $a(b \tau c)=a b \tau a c$ for any $a, b, c \in X$.

Examples of multifields

$\mathbb{R}_{\geq 0}$ with $T=\nabla$ and the usual multiplication is a multifield.

Examples of multifields

$\mathbb{R}_{\geq 0}$ with $T=\nabla$ and the usual multiplication is a multifield. triangle multifield ∇.

Examples of multifields

$\mathbb{R}_{\geq 0}$ with $T=\nabla$ and the usual multiplication is a multifield. triangle multifield ∇.
The smallest multifield: $Q_{1}=\{0,1\}$ with multivalued addition Y and $1_{\curlyvee} 1=\{0,1\}, 0 \curlyvee 0=0,0 \curlyvee 1=1,0 \cdot 0=0 \cdot 1=0,1 \cdot 1=1$.

Examples of multifields

$\mathbb{R}_{\geq 0}$ with $T=\nabla$ and the usual multiplication is a multifield. triangle multifield ∇.
The smallest multifield: $Q_{1}=\{0,1\}$ with multivalued addition \curlyvee and $1 \curlyvee 1=\{0,1\}, 0 \curlyvee 0=0,0 \curlyvee 1=1,0 \cdot 0=0 \cdot 1=0,1 \cdot 1=1$.
The sign multifield: $Q_{2}=\{0,1,-1\}$ with $1 \smile 1=1,-1 \smile-1=-1$, $1 \smile-1=\{1,0,-1\}$.

Examples of multifields

$\mathbb{R}_{\geq 0}$ with $T=\nabla$ and the usual multiplication is a multifield. triangle multifield ∇.
The smallest multifield: $Q_{1}=\{0,1\}$ with multivalued addition \curlyvee and $1 \curlyvee 1=\{0,1\}, 0 \curlyvee 0=0,0 \curlyvee 1=1,0 \cdot 0=0 \cdot 1=0,1 \cdot 1=1$.
The sign multifield: $Q_{2}=\{0,1,-1\}$ with $1 \smile 1=1,-1 \smile-1=-1$, $1 \smile-1=\{1,0,-1\}$.
Let X be a linearly ordered multiplicative group and $Y=X \cup\{0\}$ with $0<a$ for any $a \in X$.

Examples of multifields

$\mathbb{R}_{\geq 0}$ with $T=\nabla$ and the usual multiplication is a multifield.
triangle multifield ∇.
The smallest multifield: $Q_{1}=\{0,1\}$ with multivalued addition \curlyvee and $1 \curlyvee 1=\{0,1\}, 0 \curlyvee 0=0,0 \curlyvee 1=1,0 \cdot 0=0 \cdot 1=0,1 \cdot 1=1$.

The sign multifield: $Q_{2}=\{0,1,-1\}$ with $1 \smile 1=1,-1 \smile-1=-1$, $1 \smile-1=\{1,0,-1\}$.
Let X be a linearly ordered multiplicative group and $Y=X \cup\{0\}$ with $0<a$ for any $a \in X$. Define a multivalued addition ζ :

$$
(a, b) \mapsto a \curlyvee b= \begin{cases}\max (a, b), & \text { if } a \neq b \\ \{x \in Y \mid x \leq a\}, & \text { if } a=b .\end{cases}
$$

Examples of multifields

$\mathbb{R}_{\geq 0}$ with $T=\nabla$ and the usual multiplication is a multifield.
triangle multifield ∇.
The smallest multifield: $Q_{1}=\{0,1\}$ with multivalued addition \curlyvee and $1 \curlyvee 1=\{0,1\}, 0 \curlyvee 0=0,0 \curlyvee 1=1,0 \cdot 0=0 \cdot 1=0,1 \cdot 1=1$.

The sign multifield: $Q_{2}=\{0,1,-1\}$ with $1 \smile 1=1,-1 \smile-1=-1$, $1 \smile-1=\{1,0,-1\}$.
Let X be a linearly ordered multiplicative group and $Y=X \cup\{0\}$ with $0<a$ for any $a \in X$. Define a multivalued addition Υ :

$$
(a, b) \mapsto a \curlyvee b= \begin{cases}\max (a, b), & \text { if } a \neq b \\ \{x \in Y \mid x \leq a\}, & \text { if } a=b .\end{cases}
$$

(Y, Υ, \times) is a multifield.

Examples of multifields

$\mathbb{R}_{\geq 0}$ with $T=\nabla$ and the usual multiplication is a multifield.
triangle multifield ∇.
The smallest multifield: $Q_{1}=\{0,1\}$ with multivalued addition \curlyvee and $1 \curlyvee 1=\{0,1\}, 0 \curlyvee 0=0,0 \curlyvee 1=1,0 \cdot 0=0 \cdot 1=0,1 \cdot 1=1$.

The sign multifield: $Q_{2}=\{0,1,-1\}$ with $1 \smile 1=1,-1 \smile-1=-1$, $1 \smile-1=\{1,0,-1\}$.
Let X be a linearly ordered multiplicative group and $Y=X \cup\{0\}$ with $0<a$ for any $a \in X$. Define a multivalued addition ζ :

$$
(a, b) \mapsto a \curlyvee b= \begin{cases}\max (a, b), & \text { if } a \neq b \\ \{x \in Y \mid x \leq a\}, & \text { if } a=b .\end{cases}
$$

(Y, Υ, \times) is a multifield. If X is the additive group of real numbers, then this Y is the tropical multifield \mathbb{Y}.

Examples of multifields

$\mathbb{R}_{\geq 0}$ with $T=\nabla$ and the usual multiplication is a multifield.

$$
\text { triangle multifield } \nabla \text {. }
$$

The smallest multifield: $Q_{1}=\{0,1\}$ with multivalued addition \curlyvee and $1 \curlyvee 1=\{0,1\}, 0 \curlyvee 0=0,0 \curlyvee 1=1,0 \cdot 0=0 \cdot 1=0,1 \cdot 1=1$.
The sign multifield: $Q_{2}=\{0,1,-1\}$ with $1 \smile 1=1,-1 \smile-1=-1$,

$$
1 \smile-1=\{1,0,-1\} .
$$

Let X be a linearly ordered multiplicative group and $Y=X \cup\{0\}$ with $0<a$ for any $a \in X$. Define a multivalued addition ζ :

$$
(a, b) \mapsto a \curlyvee b= \begin{cases}\max (a, b), & \text { if } a \neq b \\ \{x \in Y \mid x \leq a\}, & \text { if } a=b .\end{cases}
$$

(Y, Υ, \times) is a multifield. If X is the additive group of real numbers, then this Y is the tropical multifield \mathbb{Y}.
If X is the multiplicative group of positive real numbers, then Y is a multifield $U \nabla$ isomorphic to \mathbb{Y}.

Examples of multifields

$\mathbb{R}_{\geq 0}$ with $T=\nabla$ and the usual multiplication is a multifield.

$$
\text { triangle multifield } \nabla \text {. }
$$

The smallest multifield: $Q_{1}=\{0,1\}$ with multivalued addition \curlyvee and $1 \curlyvee 1=\{0,1\}, 0 \curlyvee 0=0,0 \curlyvee 1=1,0 \cdot 0=0 \cdot 1=0,1 \cdot 1=1$.
The sign multifield: $Q_{2}=\{0,1,-1\}$ with $1 \smile 1=1,-1 \smile-1=-1$,

$$
1 \smile-1=\{1,0,-1\} .
$$

Let X be a linearly ordered multiplicative group and $Y=X \cup\{0\}$ with $0<a$ for any $a \in X$. Define a multivalued addition Y :

$$
(a, b) \mapsto a \curlyvee b= \begin{cases}\max (a, b), & \text { if } a \neq b \\ \{x \in Y \mid x \leq a\}, & \text { if } a=b .\end{cases}
$$

(Y, Υ, \times) is a multifield. If X is the additive group of real numbers, then this Y is the tropical multifield \mathbb{Y}.
If X is the multiplicative group of positive real numbers, then Y is a multifield $U \nabla$ isomorphic to \mathbb{Y}.

Similar to ∇, but with ultrametric triangle inequality.

Tropical addition of complex numbers

\longrightarrow

\xrightarrow{Z}

Tropical addition of complex numbers

\mathbb{C} with the tropical addition and usual multiplication is a multifield.

Tropical addition of complex numbers

\mathbb{C} with the tropical addition and usual multiplication is a multifield.
The complex tropical multifield $\mathcal{T} \mathbb{C}$.

Properties of tropical addition

Properties of tropical addition

How do several complex numbers with the same absolute values give zero?

Properties of tropical addition

$$
0 \in a \smile b \smile c \smile \ldots \smile x \quad \text { iff } \quad 0 \in \operatorname{Conv}(a, b, c, \ldots, x) .
$$

Properties of tropical addition

$$
0 \in a \smile b \smile c \smile \ldots \smile x \quad \text { iff } \quad 0 \in \operatorname{Conv}(a, b, c, \ldots, x)
$$

What if the summands have different absolute values?

Properties of tropical addition

$$
0 \in a \smile b \smile c \smile \ldots \smile x \quad \text { iff } \quad 0 \in \operatorname{Conv}(a, b, c, \ldots, x) .
$$

What if the summands have different absolute values?
Then only those with the greatest one matter!

Properties of tropical addition

$$
0 \in a \smile b \smile c \smile \ldots \smile x \quad \text { iff } \quad 0 \in \operatorname{Conv}(a, b, c, \ldots, x) .
$$

What if the summands have different absolute values?
Then only those with the greatest one matter!

Theorem. The tropical addition \smile is upper semi-continuous and maps a connected set to a connected set and a compact set to a compact set.

Properties of tropical addition

$$
0 \in a \smile b \smile c \smile \ldots \smile x \quad \text { iff } \quad 0 \in \operatorname{Conv}(a, b, c, \ldots, x) .
$$

What if the summands have different absolute values?
Then only those with the greatest one matter!

Theorem. The tropical addition \smile is upper semi-continuous and maps a connected set to a connected set and a compact set to a compact set.

Corollary. The multivalued map defined by a complex tropical polynomial is upper semi-continuous. It preserves connectedness and compactness.

Properties of tropical addition

$$
0 \in a \smile b \smile c \smile \ldots \smile x \quad \text { iff } \quad 0 \in \operatorname{Conv}(a, b, c, \ldots, x) .
$$

What if the summands have different absolute values?
Then only those with the greatest one matter!

Theorem. The tropical addition \smile is upper semi-continuous and maps a connected set to a connected set and a compact set to a compact set.

Corollary. The multivalued map defined by a complex tropical polynomial is upper semi-continuous. It preserves connectedness and compactness.

If p is a complex tropical polynomial and $X \subset \mathbb{C}$ is a closed set, then $p^{-1}(X)=\{a \mid X \subset p(a)\}$ is closed.

Operation induced on a subset

Let $Y \subset X$ and $f: X \times X \rightarrow 2^{X}$ be a binary multivalued operation.

Operation induced on a subset

Let $Y \subset X$ and $f: X \times X \rightarrow 2^{X}$ be a binary multivalued operation.
A binary multivalued operation $g: Y \times Y \rightarrow 2^{Y}$ is induced by f if $g(a, b)=f(a, b) \cap Y$ for any $a, b \in Y$.

Operation induced on a subset

Let $Y \subset X$ and $f: X \times X \rightarrow 2^{X}$ be a binary multivalued operation.
A binary multivalued operation $g: Y \times Y \rightarrow 2^{Y}$ is induced by f if $g(a, b)=f(a, b) \cap Y$ for any $a, b \in Y$.
g is determined by f.

Operation induced on a subset

Let $Y \subset X$ and $f: X \times X \rightarrow 2^{X}$ be a binary multivalued operation.
A binary multivalued operation $g: Y \times Y \rightarrow 2^{Y}$ is induced by f if $g(a, b)=f(a, b) \cap Y$ for any $a, b \in Y$.
g is determined by f.
g exists iff $f(a, b) \cap Y \neq \varnothing$ for any $a, b \in Y$

Operation induced on a subset

Let $Y \subset X$ and $f: X \times X \rightarrow 2^{X}$ be a binary multivalued operation.
A binary multivalued operation $g: Y \times Y \rightarrow 2^{Y}$ is induced by f if $g(a, b)=f(a, b) \cap Y$ for any $a, b \in Y$.
g is determined by f.
g exists iff $f(a, b) \cap Y \neq \varnothing$ for any $a, b \in Y$
(The definition of multivalued addition prohibits empty values.)

Tropical addition of real numbers

The tropical addition in \mathbb{C} induces a tropical addition in \mathbb{R}.

Tropical addition of real numbers

The tropical addition in \mathbb{C} induces a tropical addition in \mathbb{R}.

Tropical addition of real numbers

The tropical addition in \mathbb{C} induces a tropical addition in \mathbb{R}.

For $a, b \in \mathbb{R}$
$a \smile_{\mathbb{R}} b=\left\{\begin{array}{lll}\{a\}, & \text { if } & |a|>|b|, \\ \{b\}, & \text { if } & |a|<|b|, \\ \{a\}, & \text { if } & a=b, \\ {[-|a|,|a|],} & \text { if } & a=-b .\end{array}\right.$

Tropical addition of real numbers

The tropical addition in \mathbb{C} induces a tropical addition in \mathbb{R}.

For $a, b \in \mathbb{R}$
$a \smile_{\mathbb{R}} b=\left\{\begin{array}{lll}\{a\}, & \text { if } & |a|>|b|, \\ \{b\}, & \text { if } & |a|<|b|, \\ \{a\}, & \text { if } & a=b, \\ {[-|a|,|a|],} & \text { if } & a=-b .\end{array}\right.$
Theorem. $\mathcal{T} \mathbb{R}=\left(\mathbb{R}, \smile_{\mathbb{R}}, \times\right)$ is a multifield.

Other submultifields of $\mathcal{T} \mathbb{C}$

The sign multifield $Q_{2}=\{0,1,-1\}$ is a submultifield of $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.

Other submultifields of $\mathcal{T} \mathbb{C}$

The sign multifield $Q_{2}=\{0,1,-1\}$ is a submultifield of $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.
The smallest multifield $Q_{1}=\{0,1\}$ is not, because $\mathcal{T} \mathbb{C}$ is idempotent:

$$
a \smile a=a \text { for any } a \in \mathcal{T} \mathbb{C}, \quad \text { while } 1 \curlyvee 1=\{0,1\} \text { in } Q_{1} .
$$

Other submultifields of $\mathcal{T} \mathbb{C}$

The sign multifield $Q_{2}=\{0,1,-1\}$ is a submultifield of $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.
Theorem. Any $X \subset \mathbb{C}$ containing 0 , invariant under $z \mapsto-z$ and $z \mapsto z^{-1}$ and closed under multiplication inherits from $\mathcal{T} \mathbb{C}$ the structure of multifield.

Other submultifields of $\mathcal{T} \mathbb{C}$

The sign multifield $Q_{2}=\{0,1,-1\}$ is a submultifield of $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.
Theorem. Any $X \subset \mathbb{C}$ containing 0 , invariant under $z \mapsto-z$ and $z \mapsto z^{-1}$ and closed under multiplication inherits from $\mathcal{T} \mathbb{C}$ the structure of multifield.

In particular, the phase multifield $\Phi=S^{1} \cup 0=\left\{z \in \mathbb{C}:|z|^{2}=|z|\right\}$.

Other submultifields of $\mathcal{T} \mathbb{C}$

The sign multifield $Q_{2}=\{0,1,-1\}$ is a submultifield of $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.
Theorem. Any $X \subset \mathbb{C}$ containing 0 , invariant under $z \mapsto-z$ and $z \mapsto z^{-1}$ and closed under multiplication inherits from $\mathcal{T} \mathbb{C}$ the structure of multifield.

In particular, the phase multifield $\Phi=S^{1} \cup 0=\left\{z \in \mathbb{C}:|z|^{2}=|z|\right\}$.
The exponential copy $\left(\mathbb{R}_{\geq 0}, \max , \times\right)$ of tropical semifield \mathbb{T} is a subsemifield of multifields $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.

Other submultifields of $\mathcal{T} \mathbb{C}$

The sign multifield $Q_{2}=\{0,1,-1\}$ is a submultifield of $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.
Theorem. Any $X \subset \mathbb{C}$ containing 0 , invariant under $z \mapsto-z$ and $z \mapsto z^{-1}$ and closed under multiplication inherits from $\mathcal{T} \mathbb{C}$ the structure of multifield.

In particular, the phase multifield $\Phi=S^{1} \cup 0=\left\{z \in \mathbb{C}:|z|^{2}=|z|\right\}$.
The exponential copy $\left(\mathbb{R}_{\geq 0}, \max , \times\right)$ of tropical semifield \mathbb{T} is a subsemifield of multifields $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.

Inclusion $\left(\mathbb{R}_{\geq 0}, \max , \times\right) \rightarrow \mathcal{T} \mathbb{R}$ is a homomorphism.

Multiring homomorphisms

Multiring is a multifield without division.

A map $f: X \rightarrow Y$ is called a (multiring) homomorphism if

 $f(a \uparrow b) \subset f(a) \uparrow f(b)$ and $f(a b)=f(a) f(b)$ for any $a, b \in X$.
Multiring homomorphisms

A map $f: X \rightarrow Y$ is called a (multiring) homomorphism if $f(a \uparrow b) \subset f(a) \uparrow f(b)$ and $f(a b)=f(a) f(b)$ for any $a, b \in X$.

Example. $\mathbb{C} \rightarrow \nabla: z \mapsto|z|$ is a multiring homomorphism.

Multiring homomorphisms

A map $f: X \rightarrow Y$ is called a (multiring) homomorphism if $f(a \uparrow b) \subset f(a) \uparrow f(b)$ and $f(a b)=f(a) f(b)$ for any $a, b \in X$.

Example. $\mathbb{C} \rightarrow \nabla: z \mapsto|z|$ is a multiring homomorphism.
Generalization. A multiplicative norm $K \rightarrow \mathbb{R}_{\geq 0}$ in a ring K is a multiring homomorphism $K \rightarrow \nabla$.

Multiring homomorphisms

A map $f: X \rightarrow Y$ is called a (multiring) homomorphism if $f(a \uparrow b) \subset f(a) \uparrow f(b)$ and $f(a b)=f(a) f(b)$ for any $a, b \in X$.

Example. $\mathbb{C} \rightarrow \nabla: z \mapsto|z|$ is a multiring homomorphism.
Generalization. A multiplicative norm $K \rightarrow \mathbb{R}_{\geq 0}$ in a ring K is a multiring homomorphism $K \rightarrow \nabla$.

A multiplicative non-archimedean norm $K \rightarrow \mathbb{R}$ is a multiring homomorphism from $K \rightarrow \mathrm{U} \nabla$.
non-archimedian $=$ satisfies the ultra-metric triangle inequality

$$
|a+b| \leq \max (a, b) \text { for any } a, b \in K .
$$

Multiring homomorphisms

A map $f: X \rightarrow Y$ is called a (multiring) homomorphism if $f(a \uparrow b) \subset f(a) \uparrow f(b)$ and $f(a b)=f(a) f(b)$ for any $a, b \in X$.

Example. $\mathbb{C} \rightarrow \nabla: z \mapsto|z|$ is a multiring homomorphism.
Generalization. A multiplicative norm $K \rightarrow \mathbb{R}_{\geq 0}$ in a ring K is a multiring homomorphism $K \rightarrow \nabla$.

A multiplicative non-archimedean norm $K \rightarrow \mathbb{R}$ is a multiring homomorphism from $K \rightarrow \mathrm{U} \nabla$.
Example.

$$
\operatorname{sign}: \mathbb{R} \rightarrow\{0,1,-1\}: x \mapsto \begin{cases}\frac{x}{|x|}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

is a multiring homomorphism $\mathbb{R} \rightarrow Q_{2}$ and $\mathcal{T} \mathbb{R} \rightarrow Q_{2}$.

Multiring homomorphisms

A map $f: X \rightarrow Y$ is called a (multiring) homomorphism if $f(a \uparrow b) \subset f(a) \uparrow f(b)$ and $f(a b)=f(a) f(b)$ for any $a, b \in X$.

Example. $\mathbb{C} \rightarrow \nabla: z \mapsto|z|$ is a multiring homomorphism.
Generalization. A multiplicative norm $K \rightarrow \mathbb{R}_{\geq 0}$ in a ring K is a multiring homomorphism $K \rightarrow \nabla$.

A multiplicative non-archimedean norm $K \rightarrow \mathbb{R}$ is a multiring homomorphism from $K \rightarrow \mathrm{U} \nabla$.
Example.

$$
\operatorname{sign}: \mathbb{R} \rightarrow\{0,1,-1\}: x \mapsto \begin{cases}\frac{x}{|x|}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

is a multiring homomorphism $\mathbb{R} \rightarrow Q_{2}$ and $\mathcal{T} \mathbb{R} \rightarrow Q_{2}$.
Example.

$$
\text { phase : } \mathbb{C} \rightarrow S^{1} \cup\{0\}: x \mapsto \begin{cases}\frac{x}{|x|}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

is a multiring homomorphism $\mathbb{C} \rightarrow \Phi$ and $\mathcal{T} \mathbb{C} \rightarrow \Phi$.

Weakness of ideals

Ideal is a subset I in a multiring X such that $I \subset I \subset I$ and $X I \subset I$.

Weakness of ideals

Ideal is a subset I in a multiring X such that $I \subset I \subset I$ and $X I \subset I$. In a multifield X any ideal is either 0 or X.

Weakness of ideals

Ideal is a subset I in a multiring X such that $I \subset I \subset I$ and $X I \subset I$. In a multifield X any ideal is either 0 or X.

For multirings X, Y and a multiring homomorphism $h: X \rightarrow Y$, the kernel Ker $h=\{a \in X \mid h(a)=0\}$ is an ideal.

Weakness of ideals

Ideal is a subset I in a multiring X such that $I \subset I \subset I$ and $X I \subset I$.
In a multifield X any ideal is either 0 or X.
For multirings X, Y and a multiring homomorphism $h: X \rightarrow Y$, the kernel Ker $h=\{a \in X \mid h(a)=0\}$ is an ideal.
However, the image of a multiring homomorphism $h: X \rightarrow Y$ is not isomorphic to $X / \operatorname{Ker} h$.

Weakness of ideals

Ideal is a subset I in a multiring X such that $I \uparrow I \subset I$ and $X I \subset I$.
In a multifield X any ideal is either 0 or X.
For multirings X, Y and a multiring homomorphism $h: X \rightarrow Y$, the kernel Ker $h=\{a \in X \mid h(a)=0\}$ is an ideal.

However, the image of a multiring homomorphism $h: X \rightarrow Y$ is not isomorphic to $X / \operatorname{Ker} h$.

Moreover, there are non-injective multiring homomorphisms between multifields. (e.g., sign : $\mathbb{R} \rightarrow Q_{2}$).

Multi-valued algebra
Dequantizataions

- Litvinov-Maslov
dequantization
- Dequantization
$\nabla \rightarrow \mathrm{U} \nabla$
- Dequantization \mathbb{C} to
$\mathcal{T} \mathbb{C}$
- Dequantizations
commute
- Tropical Geometry
- Graphs and curves

Complex Tropical
Geometry

Dequantizataions

Table of Contents

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

These are multiplicative homomorphisms.

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

These are multiplicative homomorphisms, but they do not respect addition.

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the addition:

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the addition: $a+{ }_{h} b=R_{h}^{-1}\left(R_{h}(a)+R_{h}(b)\right)$

$$
=\left(a^{1 / h}+b^{1 / h}\right)^{h}
$$

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the addition: $a+{ }_{h} b=R_{h}^{-1}\left(R_{h}(a)+R_{h}(b)\right)$

$$
=\left(a^{1 / h}+b^{1 / h}\right)^{h}
$$

$R_{h}=\left(\mathbb{R}_{\geq 0},{ }_{h}, \times\right)$ is a copy of semifield $\left(\mathbb{R}_{\geq 0},+, \times\right)$ and $R_{h}: P_{h} \rightarrow\left(\mathbb{R}_{\geq 0},+, \times\right)$ is an isomorphism.

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the addition: $a+{ }_{h} b=R_{h}^{-1}\left(R_{h}(a)+R_{h}(b)\right)$

$$
=\left(a^{1 / h}+b^{1 / h}\right)^{h}
$$

$R_{h}=\left(\mathbb{R}_{\geq 0},+_{h}, \times\right)$ is a copy of semifield $\left(\mathbb{R}_{\geq 0},+, \times\right)$ and $R_{h}: P_{h} \rightarrow\left(\mathbb{R}_{\geq 0},+, \times\right)$ is an isomorphism.
$\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=\max (a, b)$.

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the addition: $a+{ }_{h} b=R_{h}^{-1}\left(R_{h}(a)+R_{h}(b)\right)$

$$
=\left(a^{1 / h}+b^{1 / h}\right)^{h}
$$

$R_{h}=\left(\mathbb{R}_{\geq 0},{ }_{h}, \times\right)$ is a copy of semifield $\left(\mathbb{R}_{\geq 0},+, \times\right)$ and $R_{h}: P_{h} \rightarrow\left(\mathbb{R}_{\geq 0},+, \times\right)$ is an isomorphism.
$\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=\max (a, b)$.
P_{h} is a degeneration of $\left(\mathbb{R}_{\geq 0},+, \times\right)$ to $\left(\mathbb{R}_{\geq 0}, \max , \times\right)$.

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the addition: $a+{ }_{h} b=R_{h}^{-1}\left(R_{h}(a)+R_{h}(b)\right)$

$$
=\left(a^{1 / h}+b^{1 / h}\right)^{h}
$$

$R_{h}=\left(\mathbb{R}_{\geq 0},{ }_{h}, \times\right)$ is a copy of semifield $\left(\mathbb{R}_{\geq 0},+, \times\right)$ and $R_{h}: P_{h} \rightarrow\left(\mathbb{R}_{\geq 0},+, \times\right)$ is an isomorphism.
$\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=\max (a, b)$.
P_{h} is a dequantization of $\left(\mathbb{R}_{\geq 0},+, \times\right)$ to $\left(\mathbb{R}_{\geq 0}, \max , \times\right)$.

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

These are multiplicative homomorphisms.

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

These are multiplicative homomorphisms, but they do not respect $(a, b) \mapsto a \nabla b$.

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the ∇-addition:

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the ∇-addition: $a \nabla_{h} b=R_{h}^{-1}\left(R_{h}(a) \nabla R_{h}(b)\right)$

$$
=\left\{c \in \mathbb{R}_{\geq 0}| | a^{1 / h}-\left.b^{1 / h}\right|^{h} \leq c \leq\left(a^{1 / h}+b^{1 / h}\right)^{h}\right\}
$$

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the ∇-addition: $a \nabla_{h} b=R_{h}^{-1}\left(R_{h}(a) \nabla R_{h}(b)\right)$

$$
=\left\{c \in \mathbb{R}_{\geq 0}| | a^{1 / h}-\left.b^{1 / h}\right|^{h} \leq c \leq\left(a^{1 / h}+b^{1 / h}\right)^{h}\right\}
$$

$\nabla_{h}=\left(\mathbb{R}_{\geq 0}, \nabla_{h}, \cdot\right)$ is a copy of ∇ and $R_{h}: \nabla_{h} \rightarrow \nabla$ is an isomorphism.

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the ∇-addition: $a \nabla_{h} b=R_{h}^{-1}\left(R_{h}(a) \nabla R_{h}(b)\right)$

$$
=\left\{c \in \mathbb{R}_{\geq 0}| | a^{1 / h}-\left.b^{1 / h}\right|^{h} \leq c \leq\left(a^{1 / h}+b^{1 / h}\right)^{h}\right\}
$$

$\nabla_{h}=\left(\mathbb{R}_{\geq 0}, \nabla_{h}, \cdot\right)$ is a copy of ∇ and $R_{h}: \nabla_{h} \rightarrow \nabla$ is an isomorphism.
If $a \neq b$, then
$\lim _{h \rightarrow 0}\left|a^{1 / h}-b^{1 / h}\right|^{h}=\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=\max (a, b)$,
if $a=b$, then $\left|a^{1 / h}-b^{1 / h}\right|^{h}=0$, while $\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=a$.

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{n}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Pull back the ∇-addition: $a \nabla_{h} b=R_{h}^{-1}\left(R_{h}(a) \nabla R_{h}(b)\right)$

$$
=\left\{c \in \mathbb{R}_{\geq 0}| | a^{1 / h}-\left.b^{1 / h}\right|^{h} \leq c \leq\left(a^{1 / h}+b^{1 / h}\right)^{h}\right\}
$$

$\nabla_{h}=\left(\mathbb{R}_{\geq 0}, \nabla_{h}, \cdot\right)$ is a copy of ∇ and $R_{h}: \nabla_{h} \rightarrow \nabla$ is an isomorphism.
If $a \neq b$, then
$\lim _{h \rightarrow 0}\left|a^{1 / h}-b^{1 / h}\right|^{h}=\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=\max (a, b)$,
if $a=b$, then $\left|a^{1 / h}-b^{1 / h}\right|^{h}=0$, while $\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=a$.
The endpoints of segment $a \nabla_{h} b$ tend
to the endpoints of segment $a \curlyvee b$ as $h \rightarrow 0$.

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the ∇-addition: $a \nabla_{h} b=R_{h}^{-1}\left(R_{h}(a) \nabla R_{h}(b)\right)$

$$
=\left\{c \in \mathbb{R}_{\geq 0}| | a^{1 / h}-\left.b^{1 / h}\right|^{h} \leq c \leq\left(a^{1 / h}+b^{1 / h}\right)^{h}\right\}
$$

$\nabla_{h}=\left(\mathbb{R}_{\geq 0}, \nabla_{h}, \cdot\right)$ is a copy of ∇ and $R_{h}: \nabla_{h} \rightarrow \nabla$ is an isomorphism.
If $a \neq b$, then
$\lim _{h \rightarrow 0}\left|a^{1 / h}-b^{1 / h}\right|^{h}=\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=\max (a, b)$,
if $a=b$, then $\left|a^{1 / h}-b^{1 / h}\right|^{h}=0$, while $\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=a$.
The endpoints of segment $a \nabla_{h} b$ tend
to the endpoints of segment $a \curlyvee b$ as $h \rightarrow 0$.

$$
\text { Let } a \nabla_{0} b:=a \curlyvee b \text {. }
$$

∇_{h} is a dequantization of ∇ to $U \nabla$.

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

These are multiplicative isomorphisms.

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 ; \\ 0, & \text { if } z=0\end{cases}
$$

These are multiplicative isomorphisms, but they do not respect the addition.

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Pull back the addition via S_{h} :

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 ; \\ 0, & \text { if } z=0\end{cases}
$$

Pull back the addition via S_{h} :

$$
z+{ }_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 ; \\ 0, & \text { if } z=0\end{cases}
$$

Pull back the addition via S_{h} :

$$
z+{ }_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

$\mathbb{C}_{h}=\mathbb{C}_{+_{h}, \times}$ is a copy of \mathbb{C} and $S_{h}: \mathbb{C}_{h} \rightarrow \mathbb{C}$ is an isomorphism.

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Pull back the addition via S_{h} :

$$
z+{ }_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

$\mathbb{C}_{h}=\mathbb{C}_{+_{h}, \times}$ is a copy of \mathbb{C} and $S_{h}: \mathbb{C}_{h} \rightarrow \mathbb{C}$ is an isomorphism.
In a sense, $\lim _{h \rightarrow 0}\left(z+_{h} w\right)=z \smile w$.

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Pull back the addition via S_{h} :

$$
z+{ }_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

$\mathbb{C}_{h}=\mathbb{C}_{+_{h}, \times}$ is a copy of \mathbb{C} and $S_{h}: \mathbb{C}_{h} \rightarrow \mathbb{C}$ is an isomorphism.
In a sense, $\lim _{h \rightarrow 0}\left(z+_{h} w\right)=z \smile w$:
let $\Gamma \subset \mathbb{R}_{\geq 0} \times \mathbb{C}^{3}$ be a graph of $+_{h}$ for all $h>0$,

$$
\Gamma=\left\{(h, a, b, c) \in \mathbb{C}^{3} \mid a+{ }_{h} b=c\right\} .
$$

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Pull back the addition via S_{h} :

$$
z+{ }_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

$\mathbb{C}_{h}=\mathbb{C}_{+_{h}, \times}$ is a copy of \mathbb{C} and $S_{h}: \mathbb{C}_{h} \rightarrow \mathbb{C}$ is an isomorphism.
In a sense, $\lim _{h \rightarrow 0}\left(z+_{h} w\right)=z \smile w$:
let $\Gamma \subset \mathbb{R}_{\geq 0} \times \mathbb{C}^{3}$ be a graph of $+_{h}$ for all $h>0$,

$$
\Gamma=\left\{(h, a, b, c) \in \mathbb{C}^{3} \mid a+_{h} b=c\right\} .
$$

Then $\mathrm{Cl}(\Gamma) \cap\left(0 \times \mathbb{C}^{3}\right)$ is the graph of \cup.

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Pull back the addition via S_{h} :

$$
z+{ }_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

$\mathbb{C}_{h}=\mathbb{C}_{+_{h}, \times}$ is a copy of \mathbb{C} and $S_{h}: \mathbb{C}_{h} \rightarrow \mathbb{C}$ is an isomorphism.
In a sense, $\lim _{h \rightarrow 0}\left(z+_{h} w\right)=z \smile w$:
let $\Gamma \subset \mathbb{R}_{\geq 0} \times \mathbb{C}^{3}$ be a graph of $+_{h}$ for all $h>0$,

$$
\Gamma=\left\{(h, a, b, c) \in \mathbb{C}^{3} \mid a+{ }_{h} b=c\right\} .
$$

Then $\mathrm{Cl}(\Gamma) \cap\left(0 \times \mathbb{C}^{3}\right)$ is the graph of \cup.
\mathbb{C}_{h} is a dequantization of \mathbb{C} to $\mathcal{T} \mathbb{C}$.

Dequantizations commute

$$
\mathbb{C} \equiv \mathbb{C}_{h} \xrightarrow{h \rightarrow 0} \mathbb{C}_{0}=\mathcal{T} \mathbb{C}
$$

Dequantizations commute

$$
\begin{gathered}
\mathbb{C} \equiv \mathbb{C}_{h} \xrightarrow{h \rightarrow 0} \mathbb{C}_{0}=\mathcal{T} \mathbb{C} \\
\left.\begin{array}{l}
x \mapsto|x| \mid \\
\\
\downarrow \\
\nabla \equiv \nabla_{h} \xrightarrow[h \rightarrow 0]{ } \nabla_{0}=\mathrm{U} \nabla
\end{array} . \begin{array}{l}
x \mapsto|x| \\
\end{array}\right)
\end{gathered}
$$

Dequantizations commute

$$
\begin{aligned}
& \mathbb{C} \equiv \mathbb{C}_{h} \xrightarrow{h \rightarrow 0} \mathbb{C}_{0}=\mathcal{T} \mathbb{C} \\
& x \mapsto|x| \downarrow \downarrow \mapsto|x| \\
& \nabla \equiv \nabla_{h} \xrightarrow[h \rightarrow 0]{ } \nabla_{0}=\mathrm{U} \nabla \\
& x \mapsto \log x \downarrow \downarrow x \mapsto \log x \\
& \mathbb{R} \xrightarrow[h \rightarrow 0]{ } \mathbb{Y}_{0}=\mathbb{Y}
\end{aligned}
$$

Dequantizations commute

Complex Algebraic Geometry

$$
\begin{aligned}
& \mathbb{C} \equiv \mathbb{C}_{h} \xrightarrow{h \rightarrow 0} \mathbb{C}_{0}=\mathcal{T} \mathbb{C} \\
& x \mapsto|x| \downarrow \downarrow x \mapsto|x| \\
& \nabla \equiv \nabla_{h} \xrightarrow[h \rightarrow 0]{ } \nabla_{0}=\mathrm{U} \nabla \\
& x \mapsto \log x \downarrow \downarrow x \mapsto \log x \\
& \mathbb{R} \xrightarrow[h \rightarrow 0]{ } \mathbb{Y}_{0}=\mathbb{Y}
\end{aligned}
$$

Dequantizations commute

Complex Algebraic Geometry

Amoebas

Dequantizations commute

Complex Algebraic Geometry

$$
\begin{aligned}
& \mathbb{C} \equiv \mathbb{C}_{h} \xrightarrow{h \rightarrow 0} \mathbb{C}_{0}=\mathcal{T} \mathbb{C} \\
& x \mapsto|x| \downarrow \downarrow \text { 路 } \downarrow x \mid \\
& \nabla \equiv \nabla_{h} \xrightarrow[h \rightarrow 0]{ } \nabla_{0}=\mathrm{U} \nabla \\
& x \mapsto \log x \downarrow \downarrow x \mapsto \log x \\
& \mathbb{R} \xrightarrow[h \rightarrow 0]{ } \mathbb{Y}_{0}=\mathbb{Y}
\end{aligned}
$$

Amoebas

Dequantizations commute

Complex Algebraic Geometry

Amoebas

Tropical Geometry

Dequantizations commute

Complex Algebraic Geometry

Amoebas

Tropical Geometry

Dequantizations commute

Complex Algebraic Geometry
Complex Tropical Geometry

Amoebas

Tropical Geometry

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over $\mathbb{T}=(\mathbb{R} \cup\{-\infty\}$, max,+$)$, not over \mathbb{Y}.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$, that is, a linear function $a+\langle k, x\rangle$.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$, that is, a linear function $a+\langle k, x\rangle$.
A polynomial is a finite sum of monomials.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$, that is, a linear function $a+\langle k, x\rangle$.
A polynomial is a finite sum of monomials,
that is the maximum of finite collection of linear functions.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
A polynomial $\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ over \mathbb{T} does not vanish, because the zero in \mathbb{T} is $-\infty$.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
A polynomial $\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ over \mathbb{T} does not vanish, because the zero in \mathbb{T} is $-\infty$.
Tricky definition. A hypersurface defined by tropical polynomial
$\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ is the set of points, at which the maximum is attained by at least two of the linear functions.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y} .
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
A polynomial $\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ over \mathbb{T} does not vanish, because the zero in \mathbb{T} is $-\infty$.
Tricky definition. A hypersurface defined by tropical polynomial
$\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ is the set of points, at which the maximum is attained by at least two of the linear functions.

The easiest way to understand this: replace \mathbb{T} by \mathbb{Y}.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \text { max },+), \text { not over } \mathbb{Y} .
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
A polynomial $\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ over \mathbb{T} does not vanish, because the zero in \mathbb{T} is $-\infty$.
Tricky definition. A hypersurface defined by tropical polynomial
$\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ is the set of points, at which the maximum is attained by at least two of the linear functions.

The easiest way to understand this: replace \mathbb{T} by \mathbb{Y}.
The only difference between \mathbb{T} and \mathbb{Y} :
\mathbb{T} is an idempotent semiring, $\max (x, x)=x$ for any $x \in \mathbb{T}$. \mathbb{Y} is a multifield of characteristic $2, x \curlyvee x=\{y \mid y \leq x\}$ for any $x \in \mathbb{Y}$.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \text { max },+), \text { not over } \mathbb{Y} .
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
A polynomial $\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ over \mathbb{T} does not vanish, because the zero in \mathbb{T} is $-\infty$.
Tricky definition. A hypersurface defined by tropical polynomial $\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ is the set of points, at which the maximum is attained by at least two of the linear functions.

The easiest way to understand this: replace \mathbb{T} by \mathbb{Y}.
The only difference between \mathbb{T} and \mathbb{Y} :
\mathbb{T} is an idempotent semiring, $\max (x, x)=x$ for any $x \in \mathbb{T}$. \mathbb{Y} is a multifield of characteristic $2, x \curlyvee x=\{y \mid y \leq x\}$ for any $x \in \mathbb{Y}$.
$-\infty \in \mathrm{Y}_{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ where the maximum
$\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ is attained at least twice.

Graphs and curves

In geometry over \mathbb{T}

Graphs and curves

In geometry over \mathbb{T}

the graph of function $y=x+1$,

Graphs and curves

In geometry over \mathbb{T}

the graph of function $y=x+1$,

the curve defined by $x+y+1$.

Graphs and curves

In geometry over \mathbb{Y}

the graph of function $y=x+1$,

the curve defined by $x+y+1$.

Dequantizataions
Complex Tropical
Geometry

- Good and bad
polynomials
- Complex tropical line
- Complex tropical
varieties
- Problems

Complex Tropical Geometry

Good and bad polynomials

$$
\text { Is } x=x \smile 1 \smile-1 ?
$$

Good and bad polynomials

Is $x=x \smile 1 \smile-1$? Somewhere yes, somewhere no.

Good and bad polynomials

Is $x=x \smile 1 \smile-1$? Somewhere yes, somewhere no.

Good and bad polynomials

Is $x=x \smile 1 \smile-1$? Somewhere yes, somewhere no.

A polynomial is said to be pure if it has no two monomials with the same exponents.

Good and bad polynomials

Graph of $y=x \smile-1$.

A polynomial is said to be pure if it has no two monomials with the same exponents.

Good and bad polynomials

$$
\text { Is } x^{2} \smile-1=(x \smile 1)(x \smile-1) ?
$$

Good and bad polynomials

$$
\text { Is } x^{2} \smile-1=(x \smile 1)(x \smile-1) \text { ? Yes, } x^{2} \smile-1=x^{2} \smile x \smile-x \smile-1 \text {. }
$$

Complex tropical line

$$
\left\{(x, y) \in \mathbb{C}^{2} \mid 0 \in x \smile y \smile 1\right\}
$$

Complex tropical line

$\left\{(x, y) \in \mathbb{C}^{2} \mid 0 \in x \smile y \smile 1\right\}$
The amoeba (the image under $\left.\log :(\mathbb{C} \backslash 0)^{2} \rightarrow \mathbb{R}^{2}\right)$ is the tropical line

Complex tropical line

$\left\{(x, y) \in \mathbb{C}^{2} \mid 0 \in x \smile y \smile 1\right\}$
The amoeba (the image under $\left.\log :(\mathbb{C} \backslash 0)^{2} \rightarrow \mathbb{R}^{2}\right)$ is the tropical line

$\log ^{-1}$ (a ray) is a holomorphic cylinder.

Complex tropical line

$\left\{(x, y) \in \mathbb{C}^{2} \mid 0 \in x \smile y \smile 1\right\}$
The amoeba (the image under $\left.\log :(\mathbb{C} \backslash 0)^{2} \rightarrow \mathbb{R}^{2}\right)$ is the tropical line

$\log ^{-1}$ (a ray) is a holomorphic cylinder.

Complex tropical line

$\left\{(x, y) \in \mathbb{C}^{2} \mid 0 \in x \smile y \smile 1\right\}$
The amoeba (the image under $\left.\log :(\mathbb{C} \backslash 0)^{2} \rightarrow \mathbb{R}^{2}\right)$ is the tropical line

$\log ^{-1}$ (a ray) is a holomorphic cylinder.

Overall a disk.

Complex tropical line

$\left\{(x, y) \in \mathbb{C}^{2} \mid 0 \in x \smile y \smile 1\right\}$
The amoeba (the image under $\left.\log :(\mathbb{C} \backslash 0)^{2} \rightarrow \mathbb{R}^{2}\right)$ is the tropical line

$\log ^{-1}$ (a ray) is a holomorphic cylinder.

Overall a disk. A 2-manifold!

Complex tropical varieties

Complex tropical varieties

Any complex toric variety is a complex tropical variety.

Complex tropical varieties

Any complex toric variety is a complex tropical variety.
A non-singular complex tropical plane projective curve (defined by a pure polynomial) is homeomorphic and isotopic to a non-singular complex plane projective curve of the same degree.

Complex tropical varieties

Any complex toric variety is a complex tropical variety.
A non-singular complex tropical plane projective curve (defined by a pure polynomial) is homeomorphic and isotopic to a non-singular complex plane projective curve of the same degree.

Conjecture. Any non-singular complex tropical variety is a topological manifold.

Complex tropical varieties

Any complex toric variety is a complex tropical variety.
A non-singular complex tropical plane projective curve (defined by a pure polynomial) is homeomorphic and isotopic to a non-singular complex plane projective curve of the same degree.

Conjecture. Any non-singular complex tropical variety is a topological manifold.

Conjecture. If under the dequantization a non-singular complex varieties tends to a non-singular complex tropical variety, then the dequantization provides an isotopy between the varieties.

Problems

There are lots of open questions.

Problems

There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?

Problems

There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?
Tangent bundles?

Problems

There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?

Problems

There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?

Conjecture. (Itenberg, Mikhalkin, Zharkov) Let X be a complex tropical variety, $X_{q}=\log ^{-1}(q$-skeleton $(\log (X)))$, $H_{n}^{q}(X)=\operatorname{Im}\left(\mathrm{in}_{*}: H_{n}\left(X_{q}\right) \rightarrow H_{n}(X)\right)$, $H_{p, q}(X)=H_{p+q}^{q}(X) / H_{p+q}^{q-1}(X)$. Then $H_{p, q}(X) \otimes \mathbb{C}$ is isomorphic to $H^{p, q}\left(X_{h}\right)$.

Problems

There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?
Second, what happens at singular points?

Problems

There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.? Tangent bundles?
Differential forms?
Second, what happens at singular points?
Does the tropical deformation smash them completely?

Problems

There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.? Tangent bundles?
Differential forms?
Second, what happens at singular points?
Does the tropical deformation smash them completely?
Third, is there other multifields responsible for the fate of
higher germs of complex varieties in the dequantization?

Problems

There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.? Tangent bundles?
Differential forms?
Second, what happens at singular points?
Does the tropical deformation smash them completely?
Third, is there other multifields responsible for the fate of
higher germs of complex varieties in the dequantization?
There is a tropical addition of quaternions.

Problems

There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.? Tangent bundles?
Differential forms?
Second, what happens at singular points?
Does the tropical deformation smash them completely?
Third, is there other multifields responsible for the fate of
higher germs of complex varieties in the dequantization?
There is a multivalued addition of p-adic numbers.

Problems

There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.? Tangent bundles?
Differential forms?
Second, what happens at singular points?
Does the tropical deformation smash them completely?
Third, is there other multifields responsible for the fate of
higher germs of complex varieties in the dequantization?
Fourth, what are abstract complex tropical varieties?

Problems

There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.? Tangent bundles?
Differential forms?
Second, what happens at singular points?
Does the tropical deformation smash them completely?
Third, is there other multifields responsible for the fate of
higher germs of complex varieties in the dequantization?
Fourth, what are abstract complex tropical varieties?
This is a work in progress started 5 months ago.

Table of Contents

Multi-valued algebra

Triangle addition
Multifields
Examples of multifields
Tropical addition of complex numbers
Properties of tropical addition
Operation induced on a subset
Tropical addition of real numbers Other submultifields of $\mathcal{T} \mathbb{C}$
Multiring homomorphisms
Weakness of ideals

Dequantizataions
Litvinov-Maslov dequantization
Dequantization $\nabla \rightarrow U \nabla$
Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

Dequantizations commute
Tropical Geometry
Graphs and curves
Complex Tropical Geometry Good and bad polynomials
Complex tropical line
Complex tropical varieties
Problems

