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Arnold called perstrojka what happens to an immersion
when it passes through one of the main strata of the discrimnant.

Direct self-tangency perestrojka.

Inverse self-tangency perestrojka.

Triple point perestrojka.
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For generic C : S1
# R2 , Arnold introduced a numerical

characteristic St(C)
defined by the following properties:
• invariance under regular homotopy in the class of generic immersions.
• changes by 1 under a triple point perestrojka and does not change
under a self-tangency perestojka.

• For the curves

K1 K2 K3 K4K0

· · ·

the strangeness is

St(K0) = 0, St(Ki+1) = i (i = 0, 1, . . . ).
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Curves and have Whitney number 3.

Hence they are regular homotopic.

The first one has St = 3 .
The second one, St = 0 .

Hence a transition from the first to the second would take at least 3 triple
point perestrojkas.

Formula for St wanted!
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For a generic curve C : S1 → R2 and a point a ∈ R2 r C(S1) ,

let indC(a) be the degree of map S1 → S1 : x 7→ x−a

|x−a| .

This is a locally constant function on R
2

r C(S1) .

Example:
0 1

1

−1

2

1 0

1 −1
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For a generic curve C : S1 → R2 and a point a ∈ R2 r C(S1) ,

let indC(a) be the degree of map S1 → S1 : x 7→ x−a

|x−a| .

A locally constant function f on the complement of a curve extends to
arcs and double points
by taking average of values on the adjacent domains.
I will call this a harmonic extension.

c

db

a

b+d

2

c+d

2

a+c

2
a+b

2
a+b+c+d

4

Denote by indn

C the harmonic extensions of x → indn

C(x) .

The extension of n th power of x 7→ indC(x) ,
not the n th power of the extension of x 7→ indC(x) .
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The index of a point with respect to a curve on the projective plane is not
a number, but a section of the local orientation bundle.

Let C : S1 → RP 2 and x ∈ RP 2
r C((S1) .

For a local orientation O of RP 2 at x ,
define the number indC(x) by formula C∗[S

1] = indC(x)O .

A local orientation at x is a generator O of

H1(RP 2
r x) = H1(S

1) = Z.

If O is reversed, the index is multiplied by −1 .

Hence ind2

C(x) is a well-defined number independent on the local
orientation.
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Let C : S1
# R2 be a generic immersion,

f a marked point on C(S1) that is not a double point of C .

Assign to a double point v of C the number s(v) = ±1 ,
the (local) intersection number of the branches of C ,
taken in the order opposite to the order of passing. Examples:

base

12

v

s(v) = −1point

1 2

basev

s(v) = +1 point

The First Shumakovitch Formula for St(C) :
St(C) =

∑

double points v of C
s(v) indC(v),

if the base point is on an exterior arc.
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Does the formula
St(C) =

∑

double points v of C
s(v) indC(v) + ind2

C(f) − 1

2

make sense for a generic curve on RP 2 ?

At first glance, no,
because both indC(v) and s(v) require an orientation.

But indC(v) and s(v) require only local orientation,
and multiply by −1 when the local orientation reverses.

Thus the right hand side makes sense.

Another way to understand the formula.
At each double point the ordering of branches determines a local
orientation such that s(v) = +1 with respect to it. Take indC(v)
with respect to this local orientation

and sum up over all double points.
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Does the formula
St(C) =

∑

double points v of C
s(v) indC(v) + ind2

C(f) − 1

2

make sense for a generic curve on RP 2 ?

At first glance, no,
because both indC(v) and s(v) require an orientation.

But indC(v) and s(v) require only local orientation,
and multiply by −1 when the local orientation reverses.

Thus the right hand side makes sense.

The number given by the formula has all the properties expected from
St(C) .
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The latter is equivalent to a choice of a half CA+ of CA .
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Consider irreducible real algebraic plane projective curves A
of degree d , genus g and type I ,
with RA equipped with a complex orientation.

A generic curve A of this kind has only non-degenerate double singular
points , they can be of the following 4 types:
• real double points with two real branches ,
• solitary real double point with two imaginary conjugate branches,
isolated point in RA , local normal form x2 + y2 = 0 .
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Consider irreducible real algebraic plane projective curves A
of degree d , genus g and type I ,
with RA equipped with a complex orientation.

A generic curve A of this kind has only non-degenerate double singular
points , they can be of the following 4 types:
• real double points with two real branches ,
• solitary real double point with two imaginary conjugate branches,

At a solitary ordinary double point, the choice of CA+ determines a

local orientation of RP 2

such that RP 2 equipped with this local orientation intersects CA+ at
this point with intersection number +1 .
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Consider irreducible real algebraic plane projective curves A
of degree d , genus g and type I ,
with RA equipped with a complex orientation.

A generic curve A of this kind has only non-degenerate double singular
points , they can be of the following 4 types:
• real double points with two real branches ,
• solitary real double point with two imaginary conjugate branches,

At a solitary ordinary double point, the choice of CA+ determines a

local orientation of RP 2 .
Another way to get this local orientation:

perturb the curve keeping type I and converting the solitary point into an
oval.
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Consider irreducible real algebraic plane projective curves A
of degree d , genus g and type I ,
with RA equipped with a complex orientation.

A generic curve A of this kind has only non-degenerate double singular
points , they can be of the following 4 types:
• real double points with two real branches ,
• solitary real double point with two imaginary conjugate branches,

At a solitary ordinary double point, the choice of CA+ determines a

local orientation of RP 2 .
Another way to get this local orientation:

perturb the curve keeping type I and converting the solitary point into an
oval. The complex orientation of this oval gives the local orientation of
RP 2 .



Choice of curves

Table of Contents 14 / 19

Consider irreducible real algebraic plane projective curves A
of degree d , genus g and type I ,
with RA equipped with a complex orientation.

A generic curve A of this kind has only non-degenerate double singular
points , they can be of the following 4 types:
• real double points with two real branches ,
• solitary real double point with two imaginary conjugate branches,
• imaginary double point of self-intersection of CA+ and CA− ,
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Consider irreducible real algebraic plane projective curves A
of degree d , genus g and type I ,
with RA equipped with a complex orientation.

A generic curve A of this kind has only non-degenerate double singular
points , they can be of the following 4 types:
• real double points with two real branches ,
• solitary real double point with two imaginary conjugate branches,
• imaginary double point of self-intersection of CA+ and CA− ,
Denote the number of the latter points by τ .
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Consider irreducible real algebraic plane projective curves A
of degree d , genus g and type I ,
with RA equipped with a complex orientation.

A generic curve A of this kind has only non-degenerate double singular
points , they can be of the following 4 types:
• real double points with two real branches ,
• solitary real double point with two imaginary conjugate branches,
• imaginary double point of self-intersection of CA+ and CA− ,
Denote the number of the latter points by τ .
• imaginary intersection point of CA+ and CA− .
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Consider irreducible real algebraic plane projective curves A
of degree d , genus g and type I ,
with RA equipped with a complex orientation.

A generic curve A of this kind has only non-degenerate double singular
points , they can be of the following 4 types:
• real double points with two real branches ,
• solitary real double point with two imaginary conjugate branches,
• imaginary double point of self-intersection of CA+ and CA− ,
Denote the number of the latter points by τ .
• imaginary intersection point of CA+ and CA− .
Denote the number of the latter points by σ .



New perestrojkas

Table of Contents 15 / 19

Generic RA experiences perestrojkas considered above plus the
following three new ones.



New perestrojkas

Table of Contents 15 / 19

Generic RA experiences perestrojkas considered above plus the
following three new ones.

Solitary self-tangency perestrojka.



New perestrojkas

Table of Contents 15 / 19

Generic RA experiences perestrojkas considered above plus the
following three new ones.

Solitary self-tangency perestrojka.

Triple point perestrojka with two imaginary branches.



New perestrojkas

Table of Contents 15 / 19

Generic RA experiences perestrojkas considered above plus the
following three new ones.

Solitary self-tangency perestrojka.

Triple point perestrojka with two imaginary branches.

Cusp perestrojka.
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If we order connected components of RA with infinite number of points
and mark an ordinary point on each of them,
then the Shumakovitch formula for St

adapted above to curves on RP 2 becomes applicable.

The result does not depend on the marked points,
but depends on ordering of the components.

Under all the perestrojkas, except the cusp perestrojka,
it behaves as an invariant of order one.
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If we order connected components of RA with infinite number of points
and mark an ordinary point on each of them,
then the Shumakovitch formula for St

adapted above to curves on RP 2 becomes applicable.

The result does not depend on the marked points,
but depends on ordering of the components.

Under all the perestrojkas, except the cusp perestrojka,
it behaves as an invariant of order one,
but under the cusp perestrojka it changes by the index of the vanishing
double point.
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If we order connected components of RA with infinite number of points
and mark an ordinary point on each of them,
then the Shumakovitch formula for St

adapted above to curves on RP 2 becomes applicable.

The result does not depend on the marked points,
but depends on ordering of the components.

Under all the perestrojkas, except the cusp perestrojka,
it behaves as an invariant of order one,
but under the cusp perestrojka it changes by the index of the vanishing
double point.
A true Strangeness, which is an invariant of degree one, can be
obtained by constructing a co-orientation of the union of the triple point
strata both with all three branches real and with one real and two
imaginary branches.
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Let A have only ordinary double points.
Mark an ordinary point fK on each infinite connected component K
of RA .
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Let A be a real algebraic plane projective curve of type I
with fixed complex orientation
and fixed ordering of infinite connected components of RA .
Let A have only ordinary double points.
Mark an ordinary point fK on each infinite connected component K
of RA .
Let

St(A) =
∑

real double points v of A

rotv(A) +
∑

components Kof RA

(

ind2

RA(fK) − 1
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Let A be a real algebraic plane projective curve of type I
with fixed complex orientation
and fixed ordering of infinite connected components of RA .
Let A have only ordinary double points.
Mark an ordinary point fK on each infinite connected component K
of RA .
Let

St(A) =
∑

real double points v of A

rotv(A) +
∑

components Kof RA

(

ind2

RA(fK) − 1

2

)

Here rotv A is indA(v) with respect to the local orientation of

RP 2 defined at v .
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Let A be a real algebraic plane projective curve of type I
with fixed complex orientation
and fixed ordering of infinite connected components of RA .
Let A have only ordinary double points.
Mark an ordinary point fK on each infinite connected component K
of RA .
Let

St(A) =
∑

real double points v of A

rotv(A) +
∑

components Kof RA

(

ind2

RA(fK) − 1

2

)

Here rotv A is indA(v) with respect to the local orientation of

RP 2 defined at v .
If the branches of A at v are real, this is the orientation defined by the
orientations of the second branch followed by the first branch.
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Let A be a real algebraic plane projective curve of type I
with fixed complex orientation
and fixed ordering of infinite connected components of RA .
Let A have only ordinary double points.
Mark an ordinary point fK on each infinite connected component K
of RA .
Let

St(A) =
∑

real double points v of A

rotv(A) +
∑

components Kof RA

(

ind2

RA(fK) − 1

2

)

Here rotv A is indA(v) with respect to the local orientation of

RP 2 defined at v .
If the branches of A at v are real, this is the orientation defined by the
orientations of the second branch followed by the first branch.
If the branches are imaginary, this is the orientation defined by the
complex orientation of the curve.
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This is why St(A) does not change under the cusp perestrojka:
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