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is a set of efforts to implement language standards
aimed to protect against talking about things that are

bad, unpleasant, or insulting.
Mathematics has no right to be ugly.
Mathematicians like to exercise their tastes.
Political correctness in Mathematics is a sad unavoidable reality,

it distorts the ways we do mathematics.
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The modern definition of differentiable manifold was given in the book by
O. Veblen and J.H.C. Whitehead The foundations of differential
geometry. Cambridge tracts in mathematics and mathermatical physics.
Published in 1932 by Cambridge University Press.
Inspired by H.Weyl’s book on Riemann surfaces Die Idee der
Riemannschen Fläche published in 1913.
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The traditional definition of smooth structures is quite long
and different from definitions of similar and closely related structures
studied in algebraic geometry and topology.

Smooth structures are traditionally defined only on manifolds.
This deprives us of flexibility that we enjoy in general topology,
where any set-theoretic construction has a topological counter-part:
a subset 7→ a subspace,
a quotient set 7→ a quotient space, etc.

The image of a differential manifold under a differentiable map may be
not a manifold, and hence not eligible to bear any trace of a differential
structure.
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Terminology related to differentiable manifolds
does not let us speak on bad spaces.

Is this good? Is this acceptable?

Even if you hate pathology ,
do you know beforehand what is pathologically bad in Mathematics?

Would you like to have an ability to speak about
the natural smooth structure on CP 2/ conj?

smooth structure on a Cantor set?
on a fractal set?

The notion of differential space was developed in the sixties,
but has not found a way to the mainstream Mathematics.

Why? Was it not a right time for this? Late sixties.
Were there not right people? R. Sikorski, M. A. Mostow, Kuo-Tsai Chen.
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1. Roman Sikorski, Abstract covariant derivative, 18 (1967) 251-272.

2. Mostow M. A., The differentiable space structures of Milnor
classifying spaces, simplicial complexes, and geometric realizations,
J. Diff. Geom., 14, 1979, 255-293.

3. Juan A. Navarro Gonzales, Juan B. Sanch de Salas,

C∞ -Differential Spaces, Springer, 2003.
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not differentiable, but differential, for nobody is going to differentiate it!
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Let X be a set and r be a natural number or ∞ .
A differential structure of class Cr on X

is an algebra Cr(X) of functions X → R such that:

1. Composition of functions belonging to Cr(X) with Cr -differentiable
function belongs to Cr(X) .

In other words, (g ◦ f : X → R) ∈ Cr(X)
if f : X → U is defined by f1, . . . , fn ∈ Cr(X) ,
U ⊂ Rn is an open set,
and g : U → R is a Cr -map.

2. f ∈ Cr(X) if near each point of X it coincides with a function
belonging to Cr(X) .

In other words, f ∈ Cr(X) if for each a ∈ X there exist g, h ∈
Cr(X) such that h(a) > 0 and f(x) = g(x) for each x with
h(x) > 0 .
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A pair (a set X, a differential structure of class Cr on X)
is called a differential space of class Cr , or just a Cr-space.

Examples
1. Any smooth manifold X with algebra of Cr-differentiable functions.

2. Discrete space. Any X and all functions X → R .

3. Indiscrete space. Any X and all constant functions X → R .

4. Topological space. A topological space X with all continuous
functions X → R .
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Let X and Y be Cr-spaces.

f : X → Y is called a Cr-map if f ◦ φ ∈ Cr(X) for any φ ∈ Cr(Y ) .

A Cr-map f : X → Y induces f∗ : Cr(Y ) → Cr(X) .

Cr-spaces and Cr-maps constitute a category.

Isomorphisms of this category are called Cr-diffeomorphims.
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For any set F of real valued functions on a set X ,
there exists a minimal Cr-structure on X containing F .

It is said to be generated by F .

For example, the coordinate projections Rn → R generate
the standard differential structure on R

n .

The Cr-structure generated by a Cs-structure C with s < r
coincides with C .

For example, a C0-structure

which is nothing but a topological structure.
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For any set F of real valued functions on a set X ,
there exists a minimal Cr-structure on X containing F .

It is said to be generated by F .

For example, the coordinate projections Rn → R generate
the standard differential structure on R

n .

The Cr-structure generated by a Cs-structure C with s < r
coincides with C .

For example, a C0-structure is a Cr-structure for any r .

On the other hand, when decreasing r , we have to add new functions.

A Cr-structure A generated as a Cr-structure by a Cs-structure B
with s > r is called a relaxation of B .
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For any set F of real valued functions on a set X ,
there exists a minimal Cr-structure on X containing F .

It is said to be generated by F .

For example, the coordinate projections Rn → R generate
the standard differential structure on R

n .

The Cr-structure generated by a Cs-structure C with s < r
coincides with C .

For example, a C0-structure is a Cr-structure for any r .

On the other hand, when decreasing r , we have to add new functions.

A Cr-structure A generated as a Cr-structure by a Cs-structure B
with s > r is called a relaxation of B .

Then B is called a refinement of A .
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Let X be a differential space and A ⊂ X .
Restrictions to A of functions differentiable on X

do not necessarily constitute a differential structure on A .

For example, if X = R and A = R>0 = {x | x > 0} , then

A → R : x 7→ 1

x
is not a restriction of any function continuous on R ,

but any a ∈ A has a neighborhood
restriction to which extends to a C∞-function on R .

Restrictions to A of functions differentiable on X
generate a differential structure.

This structure is said to be induced on A by the structure of X ,
and A with this structure is called a (differential) subspace of X.

Whitney Problem (1934):
Describe the differential structure induced on a closed X ⊂ Rn .

Solved by Whitney for n = 1 , in general, by C.Fefferman (2006).
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Let X and Y be differential spaces (of class Cr).
A map f : X → Y is called a differential embedding

if it defines a diffeomorphism X → f(X) .
(Here f(X) is considered as a differential subspace of Y ).

For a differential space X , functions f1, . . . , fn define
a differential embedding f : X → R

n : x 7→ (f1(x), . . . , fn(x))
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Let X and Y be differential spaces (of class Cr).
A map f : X → Y is called a differential embedding

if it defines a diffeomorphism X → f(X) .
(Here f(X) is considered as a differential subspace of Y ).

For a differential space X , functions f1, . . . , fn define
a differential embedding f : X → R

n : x 7→ (f1(x), . . . , fn(x))
iff f1, . . . , fn generate Cr(X) and f is injective.
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Consider the set C of all differentiable functions R → R

with the first derivative vanishing at 0 .
This is a differential structure.
How does the space (R, C) look like? Is it embeddable to R2 ?

We need functions u, v : R → R with u′(0) = v′(0) = 0
such that any differential function f : R → R with f ′(0) = 0 was a
composition F ◦ (u× v) for some differentiable F : R2 → R .
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How does the space (R, C) look like? Is it embeddable to R2 ?

We need functions u, v : R → R with u′(0) = v′(0) = 0
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Take u(x) = x2 , v(x) = x3 .
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Consider the set C of all differentiable functions R → R

with the first derivative vanishing at 0 .
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A parametrization of semicubical parabola:
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Consider the set C of all differentiable functions R → R

with the first derivative vanishing at 0 .
This is a differential structure.
How does the space (R, C) look like? Is it embeddable to R2 ?

We need functions u, v : R → R with u′(0) = v′(0) = 0
such that any differential function f : R → R with f ′(0) = 0 was a
composition F ◦ (u× v) for some differentiable F : R2 → R .

Take u(x) = x2 , v(x) = x3 .

A parametrization of semicubical parabola:
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Multiplication. Let X and Y be Cr-spaces.
The canonical way to define Cr-structure in X × Y
is to generate it by {f ◦ prX | f ∈ Cr(X)} ∪ {g ◦ prY | g ∈ Cr(Y )} .

Factorization. Let X be a Cr-space and ∼
be an equivalence relation in X .

The Cr-structure in X/∼ canonically defined by Cr(X)
consists of f : X/∼ → R such that (f ◦ pr : X → R) ∈ Cr(X) .



Examples of quotient spaces

Table of Contents p. 102 – 16 / 29

1. What differential space is obtained by identification of the end points
of [0, 1] ?



Examples of quotient spaces

Table of Contents p. 103 – 16 / 29

1. What differential space is obtained by identification of the end points
of [0, 1] ? Is it embeddable to R2 ?



Examples of quotient spaces

Table of Contents p. 104 – 16 / 29

1. What differential space is obtained by identification of the end points
of [0, 1] ? Is it embeddable to R2 ?

If so, how does the the image look like?



Examples of quotient spaces

Table of Contents p. 105 – 16 / 29

1. What differential space is obtained by identification of the end points
of [0, 1] ? Is it embeddable to R2 ?

If so, how does the the image look like? Like this: ?
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1. What differential space is obtained by identification of the end points
of [0, 1] ? Is it embeddable to R2 ?

If so, how does the the image look like? Like this: ?

No, like this: ! Or that: !
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1. What differential space is obtained by identification of the end points
of [0, 1] ? Is it embeddable to R2 ?

If so, how does the the image look like? Like this: ?

No, like this: ! Or that: ! But not this: !
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1. What differential space is obtained by identification of the end points
of [0, 1] ? Is it embeddable to R2 ?

If so, how does the the image look like? Like this: ?

No, like this: ! Or that: ! But not this: !

2. What if we take [0, 1.5] and identify
each x ∈ [0, 0.5] with x+ 1 ?
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Then we get really a space diffeomorphic to .
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New factorization:
Identifying end points of [0, 1] , identify also tangent vectors!
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Examples of quotient spaces

Table of Contents p. 114 – 16 / 29
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2. What if we take [0, 1.5] and identify
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1. What differential space is obtained by identification of the end points
of [0, 1] ? Is it embeddable to R2 ?

If so, how does the the image look like? Like this: ?

No, like this: ! Or that: ! But not this: !

2. What if we take [0, 1.5] and identify
each x ∈ [0, 0.5] with x+ 1 ?

Then we get really a space diffeomorphic to .

New factorization:
Identifying end points of [0, 1] , identify also tangent vectors!
That is consider functions f : [0, 1] → R with

f(0) = f(1) and f ′(0) = f ′(1) .

The resulting space: . Smooth, but with jump of curvature.
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It can be defined as the space of differentiations

of differentiable functions on X at p .
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of differentiable functions on X at p . As usual.
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It can be defined as the space of differentiations

of differentiable functions on X at p . As usual.

Other traditional definition of tangent vectors (via an equivalence of
smooth paths)
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It is easier to define cotangent vectors.
Let X be a differential space and p ∈ X . Functions vanishing at p
form a maximal ideal mp of R-algebra Cr(X) .
The cotangent space T ∗

p (X) is mp/m
2

p .

Tangent space Tp(X) is the dual to T ∗

p (X) .
It can be defined as the space of differentiations

of differentiable functions on X at p . As usual.

Other traditional definition of tangent vectors (via an equivalence of
smooth paths) gives another result and does not give a vector space.
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It is easier to define cotangent vectors.
Let X be a differential space and p ∈ X . Functions vanishing at p
form a maximal ideal mp of R-algebra Cr(X) .
The cotangent space T ∗

p (X) is mp/m
2

p .

Tangent space Tp(X) is the dual to T ∗

p (X) .
It can be defined as the space of differentiations

of differentiable functions on X at p . As usual.

dimT ∗

p (X) may differ from the topological dimension of X at p .



Tangent vectors and dimensions

Table of Contents p. 127 – 17 / 29
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p (X) may differ from the topological dimension of X at p .
For example, dim T0([0, 1]/(0 ∼ 1)) = 2 .
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It is easier to define cotangent vectors.
Let X be a differential space and p ∈ X . Functions vanishing at p
form a maximal ideal mp of R-algebra Cr(X) .
The cotangent space T ∗

p (X) is mp/m
2

p .

Tangent space Tp(X) is the dual to T ∗

p (X) .
It can be defined as the space of differentiations

of differentiable functions on X at p . As usual.

dimT ∗

p (X) may differ from the topological dimension of X at p .
For example, dim T0([0, 1]/(0 ∼ 1)) = 2 .

Theorem: If Cr(X) is the set of all continuous functions
on a topological space X , then dimT ∗

p (X) = 0.
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It is easier to define cotangent vectors.
Let X be a differential space and p ∈ X . Functions vanishing at p
form a maximal ideal mp of R-algebra Cr(X) .
The cotangent space T ∗

p (X) is mp/m
2

p .

Tangent space Tp(X) is the dual to T ∗

p (X) .
It can be defined as the space of differentiations

of differentiable functions on X at p . As usual.

dimT ∗

p (X) may differ from the topological dimension of X at p .
For example, dim T0([0, 1]/(0 ∼ 1)) = 2 .

Theorem: If Cr(X) is the set of all continuous functions
on a topological space X , then dimT ∗

p (X) = 0.

The quotient space D2/∂D2 of disk D2 is homeomorphic
to sphere S2 .
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It is easier to define cotangent vectors.
Let X be a differential space and p ∈ X . Functions vanishing at p
form a maximal ideal mp of R-algebra Cr(X) .
The cotangent space T ∗

p (X) is mp/m
2

p .

Tangent space Tp(X) is the dual to T ∗

p (X) .
It can be defined as the space of differentiations

of differentiable functions on X at p . As usual.

dimT ∗

p (X) may differ from the topological dimension of X at p .
For example, dim T0([0, 1]/(0 ∼ 1)) = 2 .

Theorem: If Cr(X) is the set of all continuous functions
on a topological space X , then dimT ∗

p (X) = 0.

The quotient space D2/∂D2 of disk D2 is homeomorphic
to sphere S2 . What is dim∂D2/∂D2(D2/∂D2) ?
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It is easier to define cotangent vectors.
Let X be a differential space and p ∈ X . Functions vanishing at p
form a maximal ideal mp of R-algebra Cr(X) .
The cotangent space T ∗

p (X) is mp/m
2

p .

Tangent space Tp(X) is the dual to T ∗

p (X) .
It can be defined as the space of differentiations

of differentiable functions on X at p . As usual.

dimT ∗

p (X) may differ from the topological dimension of X at p .
For example, dim T0([0, 1]/(0 ∼ 1)) = 2 .

Theorem: If Cr(X) is the set of all continuous functions
on a topological space X , then dimT ∗

p (X) = 0.

The quotient space D2/∂D2 of disk D2 is homeomorphic
to sphere S2 . What is dim∂D2/∂D2(D2/∂D2) ? Infinity!
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However on a Riemannian manifold they are not differentiable.
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A metric gives rise to many functions: distances from points.
However on a Riemannian manifold they are not differentiable.

In a sufficiently small neighborhood of a point,
distances from other points form local coordinate system.
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Each metric space is a differential space.
A metric gives rise to many functions: distances from points.
However on a Riemannian manifold they are not differentiable.

In a sufficiently small neighborhood of a point,
distances from other points form local coordinate system.

Let X be a metric space. A function f : X → R is differentiable at
p ∈ X if for any neighborhood U of p there exist points
q1, . . . , qn ∈ U and real numbers a1 , . . . , an such that

|f(x)− f(p)−
∑

ai(dist(qi, x)− dist(qi, p))|

dist(x, p)
→ 0

as x → p .
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Each metric space is a differential space.
A metric gives rise to many functions: distances from points.
However on a Riemannian manifold they are not differentiable.

In a sufficiently small neighborhood of a point,
distances from other points form local coordinate system.

Let X be a metric space. A function f : X → R is differentiable at
p ∈ X if for any neighborhood U of p there exist points
q1, . . . , qn ∈ U and real numbers a1 , . . . , an such that

|f(x)− f(p)−
∑

ai(dist(qi, x)− dist(qi, p))|

dist(x, p)
→ 0

as x → p .

Is this definition good?
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Each metric space is a differential space.
A metric gives rise to many functions: distances from points.
However on a Riemannian manifold they are not differentiable.

In a sufficiently small neighborhood of a point,
distances from other points form local coordinate system.

Let X be a metric space. A function f : X → R is differentiable at
p ∈ X if for any neighborhood U of p there exist points
q1, . . . , qn ∈ U and real numbers a1 , . . . , an such that

|f(x)− f(p)−
∑

ai(dist(qi, x)− dist(qi, p))|

dist(x, p)
→ 0

as x → p .

Is this definition good?
At least, it recovers the smooth structure of a Riemannian manifold.
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An average mathematician is well aware at best
about two kinds of finite topological spaces:
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Let us take a look at the rest of them.
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Topology seams to be the only fields in Mathematics that
hesitates of its own finite objects, finite topological spaces.

Finite sets, finite dimensional vector spaces, finite fields,
finite projective spaces, etc. are appreciated by their host theories.

Who is guilty?
Interest towards Analysis? Hausdorff axiom? Topology textbooks?

An average mathematician is well aware at best
about two kinds of finite topological spaces:

discrete and indiscrete.

Let us take a look at the rest of them.
They are not that bad!
At early days of topology, they were the main objects of the

Combinatorial Topology
.
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What is the minimal number of points in a topological space
with nontrivial fundamental group?

What is the group?
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What is the minimal number of points in a topological space
with nontrivial fundamental group?

What is the group?

What is the next group?
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represented as the union of closed convex polyhedra

any two of which meet in a common face.
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra

any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons.
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra

any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons.
The quotient space Q is a finite topological space.
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra

any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons.
The quotient space Q is a finite topological space.

Q knows everything on P .
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra

any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons.
The quotient space Q is a finite topological space.

Q knows everything on P .

Especially if the partition was a triangulation.
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra

any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons.
The quotient space Q is a finite topological space.

Q knows everything on P .
Each point of Q represents a face ofP .
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra

any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons.
The quotient space Q is a finite topological space.

Q knows everything on P .
Each point of Q represents a face ofP .

Points representing vertices are closed.
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra

any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons.
The quotient space Q is a finite topological space.

Q knows everything on P .
Each point of Q represents a face ofP .

Points representing vertices are closed.
The closure of a point x ∈ Q correspondent to a face F of P

consists of points correspondent to faces of F .
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra

any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons.
The quotient space Q is a finite topological space.

Q knows everything on P .
Each point of Q represents a face ofP .

Points representing vertices are closed.
The closure of a point x ∈ Q correspondent to a face F of P

consists of points correspondent to faces of F .
Each point in a finite space has minimal neighborhood.
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra

any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons.
The quotient space Q is a finite topological space.

Q knows everything on P .
Each point of Q represents a face ofP .

Points representing vertices are closed.
The closure of a point x ∈ Q correspondent to a face F of P

consists of points correspondent to faces of F .
Each point in a finite space has minimal neighborhood,

the intersection of all of its neighborhoods.
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra

any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons.
The quotient space Q is a finite topological space.

Q knows everything on P .
Each point of Q represents a face ofP .

Points representing vertices are closed.
The closure of a point x ∈ Q correspondent to a face F of P

consists of points correspondent to faces of F .
Each point in a finite space has minimal neighborhood.
In Q the minimal neighborhood of a point corresponds

to the star of corresponding face.
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra

any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons.
The quotient space Q is a finite topological space.

Q knows everything on P .
Each point of Q represents a face ofP .

Points representing vertices are closed.
The closure of a point x ∈ Q correspondent to a face F of P

consists of points correspondent to faces of F .
Each point in a finite space has minimal neighborhood.
In Q the minimal neighborhood of a point corresponds

to the star of corresponding face.
The star St(σ) of a face σ is the union of all faces Σ

such that ∂Σ ⊃ σ .
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra

any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons.
The quotient space Q is a finite topological space.

Q knows everything on P .
Each point of Q represents a face ofP .

Points representing vertices are closed.
The closure of a point x ∈ Q correspondent to a face F of P

consists of points correspondent to faces of F .
Each point in a finite space has minimal neighborhood .
In Q the minimal neighborhood of a point corresponds

to the star of the corresponding face.
Faces in P are partially ordered by adjacency: Σ > σ iff Cl(Σ) ⊃ σ .
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra

any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons.
The quotient space Q is a finite topological space.

Q knows everything on P .
Each point of Q represents a face ofP .

Points representing vertices are closed.
The closure of a point x ∈ Q correspondent to a face F of P

consists of points correspondent to faces of F .
Each point in a finite space has minimal neighborhood .
In Q the minimal neighborhood of a point corresponds

to the star of the corresponding face.
Faces in P are partially ordered by adjacency: Σ > σ iff Cl(Σ) ⊃ σ .
This partial order defines and is defined by the topology of Q .
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Let P be a triangulated polyhedron
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Let P be a triangulated polyhedron,

Q the space of its simplices
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Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P )
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Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P ),

pr : P → Q the natural projection.
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Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P ),

pr : P → Q the natural projection.

For topological spaces X and Y denote by π(X,Y )
the set of homotopy classes of maps X → Y .
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Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P ),

pr : P → Q the natural projection.

For topological spaces X and Y denote by π(X,Y )
the set of homotopy classes of maps X → Y .

Theorem. For any topological space X , composition with pr
defines a bijection π(X,P ) → π(X,Q) .
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Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P ),

pr : P → Q the natural projection.

For topological spaces X and Y denote by π(X,Y )
the set of homotopy classes of maps X → Y .

Theorem. For any topological space X , composition with pr
defines a bijection π(X,P ) → π(X,Q) .

Corollary. All homotopy and singular homology groups of P and Q
are isomorphic.
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Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P ),

pr : P → Q the natural projection.

For topological spaces X and Y denote by π(X,Y )
the set of homotopy classes of maps X → Y .

Theorem. For any topological space X , composition with pr
defines a bijection π(X,P ) → π(X,Q) .

Corollary. All homotopy and singular homology groups of P and Q
are isomorphic.

Corollary. Any compact polyhedron
is weak homotopy equivalent to a finite topological space.
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Digital line D is the quotient space of R by partition to points of Z
and open intervals (n, n + 1) .



Digital plane and Jordan Theorem

Table of Contents p. 180 – 24 / 29

Digital line D is the quotient space of R by partition to points of Z
and open intervals (n, n + 1) .
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Digital line D is the quotient space of R by partition to points of Z
and open intervals (n, n + 1) .
Digital plane is D2 .
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Digital line D is the quotient space of R by partition to points of Z
and open intervals (n, n + 1) .
Digital plane is D2 . It is the quotient space of R2 by the partition
formed by integer points, open unit intervals connecting them, and open
unit squares.
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Digital line D is the quotient space of R by partition to points of Z
and open intervals (n, n + 1) .
Digital plane is D2 . It is the quotient space of R2 by the partition
formed by integer points, open unit intervals connecting them, and open
unit squares.
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Digital line D is the quotient space of R by partition to points of Z
and open intervals (n, n + 1) .
Digital plane is D2 . It is the quotient space of R2 by the partition
formed by integer points, open unit intervals connecting them, and open
unit squares.

Digital circle of length d is the quotient space of the circle S1 ⊂ C by
the partition formed by complex roots of unity of degree d and open
arcs connecting the roots next to each other.
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Digital line D is the quotient space of R by partition to points of Z
and open intervals (n, n + 1) .
Digital plane is D2 . It is the quotient space of R2 by the partition
formed by integer points, open unit intervals connecting them, and open
unit squares.

Digital circle
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Digital line D is the quotient space of R by partition to points of Z
and open intervals (n, n + 1) .
Digital plane is D2 . It is the quotient space of R2 by the partition
formed by integer points, open unit intervals connecting them, and open
unit squares.

Digital Jordan Theorem. (Khalimsky, Kiselman) A digital circle
embedded in the digital plane divides it into two connected sets.
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Digital line D is the quotient space of R by partition to points of Z
and open intervals (n, n + 1) .
Digital plane is D2 . It is the quotient space of R2 by the partition
formed by integer points, open unit intervals connecting them, and open
unit squares.

Digital Jordan Theorem. (Khalimsky, Kiselman) A digital circle
embedded in the digital plane divides it into two connected sets.

Here spaces are not finite, but locally finite.
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In any topological space there is T0-equivalence relation:
x ∼ y if x and y have the same neighborhoods.

The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0:
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In any topological space there is T0-equivalence relation:
x ∼ y if x and y have the same neighborhoods.

The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0:
for any pair of points x , y
at least one of them has a neighborhood not containing the other one.
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In any topological space there is T0-equivalence relation:
x ∼ y if x and y have the same neighborhoods.

The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0 .
In any T0-space the relation x ∈ Cl y is a partial order.
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In any topological space there is T0-equivalence relation:
x ∼ y if x and y have the same neighborhoods.

The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0 .
In any T0-space the relation x ∈ Cl y is a partial order.

Remark. Without T0 axiom this is only a preorder, that is transitive and
reflexive, but not antisymmetric.
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In any topological space there is T0-equivalence relation:
x ∼ y if x and y have the same neighborhoods.

The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0 .
In any T0-space the relation x ∈ Cl y is a partial order.

Remark. Without T0 axiom this is only a preorder, that is transitive and
reflexive, but not antisymmetric
(if x and y are T0-equivalent, then both x ∈ Cl y and y ∈ Clx ).
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In any topological space there is T0-equivalence relation:
x ∼ y if x and y have the same neighborhoods.

The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0 .
In any T0-space the relation x ∈ Cl y is a partial order.

Any partial order defines a poset topology generated by sets
{x | a ≺ x} .
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In any topological space there is T0-equivalence relation:
x ∼ y if x and y have the same neighborhoods.

The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0 .
In any T0-space the relation x ∈ Cl y is a partial order.

Any partial order defines a poset topology generated by sets
{x | a ≺ x} .

A topology is a poset topology iff the Kolmogorov axiom holds true and
each point has the smallest neighborhood.
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In any topological space there is T0-equivalence relation:
x ∼ y if x and y have the same neighborhoods.

The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0 .
In any T0-space the relation x ∈ Cl y is a partial order.

Any partial order defines a poset topology generated by sets
{x | a ≺ x} .

A topology is a poset topology iff the Kolmogorov axiom holds true and
each point has the smallest neighborhood.

In particular, topology in a finite space is a poset topology
iff this is a T0-space.
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In any topological space there is T0-equivalence relation:
x ∼ y if x and y have the same neighborhoods.

The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0 .
In any T0-space the relation x ∈ Cl y is a partial order.

Any partial order defines a poset topology generated by sets
{x | a ≺ x} .

A topology is a poset topology iff the Kolmogorov axiom holds true and
each point has the smallest neighborhood.

In particular, topology in a finite space is a poset topology
iff this is a T0-space.

An arbitrary finite topological space
is composed of clusters of T0-equivalent points.
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In any topological space there is T0-equivalence relation:
x ∼ y if x and y have the same neighborhoods.

The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0 .
In any T0-space the relation x ∈ Cl y is a partial order.

Any partial order defines a poset topology generated by sets
{x | a ≺ x} .

A topology is a poset topology iff the Kolmogorov axiom holds true and
each point has the smallest neighborhood.

In particular, topology in a finite space is a poset topology
iff this is a T0-space.

An arbitrary finite topological space
is composed of clusters of T0-equivalent points.

The clusters are partially ordered and the order determines the topology.
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How far is a poset topology from the face space of a polyhedron?
Not really far, just one step construction.
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How far is a poset topology from the face space of a polyhedron?
Not really far, just one step construction. Let (X,≺) be a poset.
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How far is a poset topology from the face space of a polyhedron?
Not really far, just one step construction. Let (X,≺) be a poset.
Let X ′ = {a1 ≺ a2 ≺ · · · ≺ an | ai ∈ X} .
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How far is a poset topology from the face space of a polyhedron?
Not really far, just one step construction. Let (X,≺) be a poset.
Let X ′ = {a1 ≺ a2 ≺ · · · ≺ an | ai ∈ X} , the set of all non-empty
finite subsets of X in each of which ≺ defines a linear order.
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How far is a poset topology from the face space of a polyhedron?
Not really far, just one step construction. Let (X,≺) be a poset.
Let X ′ = {a1 ≺ a2 ≺ · · · ≺ an | ai ∈ X} , the set of all non-empty
finite subsets of X in each of which ≺ defines a linear order.

X ′ is partially ordered by inclusion.
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How far is a poset topology from the face space of a polyhedron?
Not really far, just one step construction. Let (X,≺) be a poset.
Let X ′ = {a1 ≺ a2 ≺ · · · ≺ an | ai ∈ X} , the set of all non-empty
finite subsets of X in each of which ≺ defines a linear order.

X ′ is partially ordered by inclusion.
Poset (X ′,⊂) is called the baricentric subdivision of (X,≺) .
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How far is a poset topology from the face space of a polyhedron?
Not really far, just one step construction. Let (X,≺) be a poset.
Let X ′ = {a1 ≺ a2 ≺ · · · ≺ an | ai ∈ X} , the set of all non-empty
finite subsets of X in each of which ≺ defines a linear order.

X ′ is partially ordered by inclusion.
Poset (X ′,⊂) is called the baricentric subdivision of (X,≺) .
The baricentric subdivision of any finite poset is

the space of simplices of a compact triangulated polyhedron.
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How far is a poset topology from the face space of a polyhedron?
Not really far, just one step construction. Let (X,≺) be a poset.
Let X ′ = {a1 ≺ a2 ≺ · · · ≺ an | ai ∈ X} , the set of all non-empty
finite subsets of X in each of which ≺ defines a linear order.

X ′ is partially ordered by inclusion.
Poset (X ′,⊂) is called the baricentric subdivision of (X,≺) .
The baricentric subdivision of any finite poset is

the space of simplices of a compact triangulated polyhedron.
This construction is used in combinatorics

to define homology groups of a poset.
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How far is a poset topology from the face space of a polyhedron?
Not really far, just one step construction. Let (X,≺) be a poset.
Let X ′ = {a1 ≺ a2 ≺ · · · ≺ an | ai ∈ X} , the set of all non-empty
finite subsets of X in each of which ≺ defines a linear order.

X ′ is partially ordered by inclusion.
Poset (X ′,⊂) is called the baricentric subdivision of (X,≺) .
The baricentric subdivision of any finite poset is

the space of simplices of a compact triangulated polyhedron.
This construction is used in combinatorics

to define homology groups of a poset.

Theorem. Any finite topological space
is weak homotopy equivalent to a compact polyhedron.
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What to do with the matters of taste?

Keep balance: beware of stupid empty theories
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What to do with the matters of taste?

Keep balance: beware of stupid empty theories, and prejudices.
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What to do with the matters of taste?

Keep balance: beware of stupid empty theories, and prejudices.

What axioms are good for the background objects?
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What to do with the matters of taste?

Keep balance: beware of stupid empty theories, and prejudices.

What axioms are good for the background objects?

Valuable qualities:
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What to do with the matters of taste?

Keep balance: beware of stupid empty theories, and prejudices.

What axioms are good for the background objects?

Valuable qualities:
motivation and non-triviality
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What to do with the matters of taste?

Keep balance: beware of stupid empty theories, and prejudices.

What axioms are good for the background objects?

Valuable qualities:
motivation and non-triviality,
simplicity
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What to do with the matters of taste?

Keep balance: beware of stupid empty theories, and prejudices.

What axioms are good for the background objects?

Valuable qualities:
motivation and non-triviality,
simplicity,
hierarchic notions
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What to do with the matters of taste?

Keep balance: beware of stupid empty theories, and prejudices.

What axioms are good for the background objects?

Valuable qualities:
motivation and non-triviality,
simplicity,
hierarchic notions,
use of the right lobe
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What to do with the matters of taste?

Keep balance: beware of stupid empty theories, and prejudices.

What axioms are good for the background objects?

Valuable qualities:
motivation and non-triviality,
simplicity,
hierarchic notions,
use of the right lobe,
common mathematical legacy.
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