Patchworking of algebraic varieties and tropical geometry

Oleg Viro

February 8, 2008

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Patchwork

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Here is how the patchwork works:

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.
What can jump out of the points of tangency?

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.
What can jump out of a point of tangency?

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.
For example, this:

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.
For example, this:

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.

or this:

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.

or that:

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.

or that:

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.

or that:

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.

or that:

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.

or that:

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.

or that:

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.

or that:

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points. or even this:

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.

but not like that:

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.
The two points of tangency can be perturbed simultaneously and independently.

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.
The two points of tangency can be perturbed simultaneously and independently.

Gudkov's curve.

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.
The two points of tangency can be perturbed simultaneously and independently.

Harnack's curve.

Gudkov's curve.

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.
The two points of tangency can be perturbed simultaneously and independently.

Harnack's curve.

Gudkov's curve.

Hilbert's curve.

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10 with 32 odd ovals

Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.
The two points of tangency can be perturbed simultaneously and independently.

Harnack's curve.

Gudkov's curve.

Hilbert's curve.

Similarly non-singular curves of degree 7 of all topological types unrealized by 1979 are obtained from four curves with two singular points of the same kind.

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.
The two points of tangency can be perturbed simultaneously and independently.

Harnack's curve.

Gudkov's curve.

Hilbert's curve.

What lies behind these pictures?

Construction of sextics

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10 with 32 odd ovals

Tropical

53 out of 56 topological types of non-singular sextics can be realized by permutation of the union of 3 ellipses tangent to each other at 2 points.
The two points of tangency can be perturbed simultaneously and independently.

Harnack's curve.

Gudkov's curve.

Hilbert's curve.

What lies behind these pictures?
What are the equations of the curves?

Draw equations

Patchwork

- Construction of sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Equations of curves are to be drawn on plane!

Draw equations

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Equations of curves are to be drawn on plane!
Monomial $a_{k l} x^{k} y^{l}$ should be placed at $(k, l) \in \mathbb{R}^{2}$.

Draw equations

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Equations of curves are to be drawn on plane!
Monomial $a_{k l} x^{k} y^{l}$ should be placed at $(k, l) \in \mathbb{R}^{2}$. Polynomial $a(x, y)=\sum_{k l} a_{k l} x^{k} y^{l}$ should sit on its Newton polygon $\Delta(a)=\operatorname{conv}\left\{(k, l) \in \mathbb{R}^{2} \mid a_{k l} \neq 0\right\}$.

Draw equations

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Equations of curves are to be drawn on plane!
Monomial $a_{k l} x^{k} y^{l}$ should be placed at $(k, l) \in \mathbb{R}^{2}$. Polynomial $a(x, y)=\sum_{k l} a_{k l} x^{k} y^{l}$ should sit on its Newton polygon $\Delta(a)=\operatorname{conv}\left\{(k, l) \in \mathbb{R}^{2} \mid a_{k l} \neq 0\right\}$. The Newton polygon for a generic polynomial of degree 6:

Draw equations

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Equations of curves are to be drawn on plane!
Monomial $a_{k l} x^{k} y^{l}$ should be placed at $(k, l) \in \mathbb{R}^{2}$. Polynomial $a(x, y)=\sum_{k l} a_{k l} x^{k} y^{l}$ should sit on its Newton polygon $\Delta(a)=\operatorname{conv}\left\{(k, l) \in \mathbb{R}^{2} \mid a_{k l} \neq 0\right\}$. The Newton polygon for a generic polynomial of degree 6:

Draw equations

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Equations of curves are to be drawn on plane!
Monomial $a_{k l} x^{k} y^{l}$ should be placed at $(k, l) \in \mathbb{R}^{2}$. Polynomial $a(x, y)=\sum_{k l} a_{k l} x^{k} y^{l}$ should sit on its Newton polygon $\Delta(a)=\operatorname{conv}\left\{(k, l) \in \mathbb{R}^{2} \mid a_{k l} \neq 0\right\}$. However we started from the union of 3 ellipses.

Draw equations

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Equations of curves are to be drawn on plane!
Monomial $a_{k l} x^{k} y^{l}$ should be placed at $(k, l) \in \mathbb{R}^{2}$.
Polynomial $a(x, y)=\sum_{k l} a_{k l} x^{k} y^{l}$ should sit on its
Newton polygon $\Delta(a)=\operatorname{conv}\left\{(k, l) \in \mathbb{R}^{2} \mid a_{k l} \neq 0\right\}$.
However we started from the union of 3 ellipses.
On $\mathbb{R} P^{2}$ it can be placed as $\left(y-a x^{2}\right)\left(y-b x^{2}\right)\left(y-c x^{2}\right)=0$.

Draw equations

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem.
- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10 with 32 odd ovals

Tropical

Equations of curves are to be drawn on plane!
Monomial $a_{k l} x^{k} y^{l}$ should be placed at $(k, l) \in \mathbb{R}^{2}$. Polynomial $a(x, y)=\sum_{k l} a_{k l} x^{k} y^{l}$ should sit on its Newton polygon $\Delta(a)=\operatorname{conv}\left\{(k, l) \in \mathbb{R}^{2} \mid a_{k l} \neq 0\right\}$. However we started from the union of 3 ellipses. On $\mathbb{R} P^{2}$ it can be placed as $\left(y-a x^{2}\right)\left(y-b x^{2}\right)\left(y-c x^{2}\right)=0$. Then the Newton polygon is $[(6,0),(0,3)]$.

Draw equations

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

To perturb, we fill the two missing triangles with equations of curves we want to insert instead of neighborhoods of the singular points.

\square

Draw equations

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

To perturb, we fill the two missing triangles with equations of curves we want to insert instead of neighborhoods of the singular points.
Introduce a small parameter $t>0$ to keep the new fragments of the polynomial in peace with each other.

Draw equations

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem.
- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10 with 32 odd ovals

Tropical

To perturb, we fill the two missing triangles with equations of curves we want to insert instead of neighborhoods of the singular points.
Introduce a small parameter $t>0$ to keep the new fragments of the polynomial in peace with each other. For sufficiently small t, the fragments defined by small terms are small, separated and do not spoil each other.

Log paper

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

A (double) logarithmic paper is a graph paper with logarithmic scales on both axes.

Log paper

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

A (double) logarithmic paper is a graph paper with logarithmic scales on both axes.

The transition to the log paper corresponds to the change of coordinates:

$$
\left\{\begin{array}{l}
u=\ln x \\
v=\ln y .
\end{array}\right.
$$

Log paper

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

A (double) logarithmic paper is a graph paper with logarithmic scales on both axes.

The transition to the log paper corresponds to the change of coordinates:

$$
\left\{\begin{array}{l}
u=\ln x \\
v=\ln y .
\end{array}\right.
$$

How do graphs look on the log paper?

Log paper

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

A (double) logarithmic paper is a graph paper with logarithmic scales on both axes.

The transition to the log paper corresponds to the change of coordinates:

$$
\left\{\begin{array}{l}
u=\ln x \\
v=\ln y .
\end{array}\right.
$$

The simplest special case: $y=a x^{k}$.

Log paper

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

A (double) logarithmic paper is a graph paper with logarithmic scales on both axes.

The transition to the log paper corresponds to the change of coordinates:

$$
\left\{\begin{array}{l}
u=\ln x \\
v=\ln y .
\end{array}\right.
$$

The simplest special case: $y=a x^{k}$.
We are forced to consider only positive x, y

Log paper

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

A (double) logarithmic paper is a graph paper with logarithmic scales on both axes.

The transition to the log paper corresponds to the change of coordinates:

$$
\left\{\begin{array}{l}
u=\ln x \\
v=\ln y
\end{array}\right.
$$

The simplest special case: $y=a x^{k}$.
We are forced to consider only positive x, y and hence assume $a>0$.

Log paper

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

A (double) logarithmic paper is a graph paper with logarithmic scales on both axes.

The transition to the log paper corresponds to the change of coordinates:

$$
\left\{\begin{array}{l}
u=\ln x \\
v=\ln y
\end{array}\right.
$$

The simplest special case: $y=a x^{k}$.
We are forced to consider only positive x, y and hence assume $a>0$.
$v=\ln y=\ln \left(a x^{k}\right)$

Log paper

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

A (double) logarithmic paper is a graph paper with logarithmic scales on both axes.

The transition to the log paper corresponds to the change of coordinates:

$$
\left\{\begin{array}{l}
u=\ln x \\
v=\ln y
\end{array}\right.
$$

The simplest special case: $\quad y=a x^{k}$.
We are forced to consider only positive x, y and hence assume $a>0$.
$v=\ln y=\ln \left(a x^{k}\right)=k \ln x+\ln a$

Log paper

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

A (double) logarithmic paper is a graph paper with logarithmic scales on both axes.

The transition to the log paper corresponds to the change of coordinates:

$$
\left\{\begin{array}{l}
u=\ln x \\
v=\ln y
\end{array}\right.
$$

The simplest special case: $\quad y=a x^{k}$.
We are forced to consider only positive x, y and hence assume $a>0$.
$v=\ln y=\ln \left(a x^{k}\right)=k \ln x+\ln a=k u+\ln a$

Log paper

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

A (double) logarithmic paper is a graph paper with logarithmic scales on both axes.

The transition to the log paper corresponds to the change of coordinates:

$$
\left\{\begin{array}{l}
u=\ln x \\
v=\ln y
\end{array}\right.
$$

The simplest special case: $\quad y=a x^{k}$.
We are forced to consider only positive x, y and hence assume $a>0$.
$v=\ln y=\ln \left(a x^{k}\right)=k \ln x+\ln a=k u+\ln a$,

Log paper

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals

A (double) logarithmic paper is a graph paper with logarithmic scales on both axes.

The transition to the log paper corresponds to the change of coordinates:

$$
\left\{\begin{array}{l}
u=\ln x \\
v=\ln y
\end{array}\right.
$$

The simplest special case: $y=a x^{k}$.
We are forced to consider only positive x, y and hence assume $a>0$.
$v=\ln y=\ln \left(a x^{k}\right)=k \ln x+\ln a=k u+\ln a$, or $v=k u+b$,

Log paper

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals

A (double) logarithmic paper is a graph paper with logarithmic scales on both axes.

The transition to the log paper corresponds to the change of coordinates:

$$
\left\{\begin{array}{l}
u=\ln x \\
v=\ln y
\end{array}\right.
$$

The simplest special case: $\quad y=a x^{k}$.
We are forced to consider only positive x, y and hence assume $a>0$.
$v=\ln y=\ln \left(a x^{k}\right)=k \ln x+\ln a=k u+\ln a$, or $v=k u+b$, where $b=\ln a$.

Log paper

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

A (double) logarithmic paper is a graph paper with logarithmic scales on both axes.

The transition to the log paper corresponds to the change of coordinates:

$$
\left\{\begin{array}{l}
u=\ln x \\
v=\ln y
\end{array}\right.
$$

The simplest special case: $y=a x^{k}$.
We are forced to consider only positive x, y and hence assume $a>0$.
$v=\ln y=\ln \left(a x^{k}\right)=k \ln x+\ln a=k u+\ln a$, or $v=k u+b$, where $b=\ln a$.

Thus $y=a x^{k} \quad$ turns into $\quad v=k u+b$.

Log paper

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

A (double) logarithmic paper is a graph paper with logarithmic scales on both axes.

The transition to the log paper corresponds to the change of coordinates:

$$
\left\{\begin{array}{l}
u=\ln x \\
v=\ln y
\end{array}\right.
$$

The simplest special case: $y=a x^{k}$.
We are forced to consider only positive x, y and hence assume $a>0$.
$v=\ln y=\ln \left(a x^{k}\right)=k \ln x+\ln a=k u+\ln a$, or $v=k u+b$, where $b=\ln a$.

Thus $y=a x^{k} \quad$ turns into $\quad v=k u+b$.
Similarly, any binomial equation $y^{l}=a x^{k}$ defines line $l v=k u+b$.

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y.

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y.

$$
a(x, y)=\sum_{k l} a_{k l} x^{k} y^{l}
$$

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y, V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$.

$$
a(x, y)=\sum_{k l} a_{k l} x^{k} y^{l}
$$

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y, V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a.

$$
a(x, y)=\sum_{k l} a_{k l} x^{k} y^{l}
$$

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y, V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a.

$$
\begin{aligned}
& a(x, y)=\sum_{k l} a_{k l} x^{k} y^{l}, \\
& \Delta=\operatorname{conv}\left\{(k, l) \in \mathbb{R}^{2} \mid a_{k l} \neq 0\right\} .
\end{aligned}
$$

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y, V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a.

$$
\begin{aligned}
& a(x, y)=\sum_{k l} a_{k l} x^{k} y^{l}, \\
& \Delta=\operatorname{conv}\left\{(k, l) \in \mathbb{R}^{2} \mid a_{k l} \neq 0\right\} .
\end{aligned}
$$

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y, V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ.

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y, V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ.

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y,
V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ, $\nu=(m, n)$ be an integer vector orthogonal to Σ.

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem.
- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y,
V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ, $\nu=(m, n)$ be an integer vector orthogonal to Σ.

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem.
- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y,
V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ, $\nu=(m, n)$ be an integer vector orthogonal to Σ.
Go in the direction of ν

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem.
- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y,
V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ, $\nu=(m, n)$ be an integer vector orthogonal to Σ.
Go in the direction of ν
$(u, v) \longmapsto(m t+u, n t+v)$

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem.
- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y,
V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ, $\nu=(m, n)$ be an integer vector orthogonal to Σ.
Go in the direction of ν looking at V.
$(u, v) \longmapsto(m t+u, n t+v)$

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y,
V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ, $\nu=(m, n)$ be an integer vector orthogonal to Σ.
Go in the direction of ν looking at V.
$(u, v) \longmapsto(m t+u, n t+v)$
$a\left(e^{u}, e^{v}\right)=0 \longmapsto a\left(e^{m t+u}, e^{n t+v}\right)=0$

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem.
- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y,
V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ, $\nu=(m, n)$ be an integer vector orthogonal to Σ.
Go in the direction of ν looking at V.
$(u, v) \mapsto(m t+u, n t+v)$
$\sum a_{k, l} e^{k u+l v}=0 \mapsto \sum a_{k, l} e^{k(m t+u)+l(n t+v)}=0$

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y,
V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ, $\nu=(m, n)$ be an integer vector orthogonal to Σ.
Go in the direction of ν looking at V.
$(u, v) \mapsto(m t+u, n t+v)$
$\sum a_{k, l} e^{k u+l v}=0 \mapsto \sum a_{k, l} e^{(k m+l n) t} e^{k u+l v}=0$

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let a be a real polynomial in x, y,
V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ, $\nu=(m, n)$ be an integer vector orthogonal to Σ.
Go in the direction of ν looking at V.
$(u, v) \mapsto(m t+u, n t+v)$
$\sum a_{k, l} e^{k u+l v}=0 \mapsto \sum\left(a_{k, l} e^{(k m+l n) t}\right) e^{k u+l v}=0$

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem.
- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10 with 32 odd ovals

Tropical

Let a be a real polynomial in x, y,
V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ, $\nu=(m, n)$ be an integer vector orthogonal to Σ.
Go in the direction of ν looking at V.
$(u, v) \mapsto(m t+u, n t+v)$
$\sum a_{k, l} e^{k u+l v}=0 \mapsto \sum\left(a_{k, l} e^{(k m+l n) t}\right) e^{k u+l v}=0$

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov’s curve
- Curve of degree 10 with 32 odd ovals

Tropical

Let a be a real polynomial in x, y,
V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ, $\nu=(m, n)$ be an integer vector orthogonal to Σ.
Go in the direction of ν looking at V.
$(u, v) \mapsto(m t+u, n t+v)$
$\sum a_{k, l} e^{k u+l v}=0 \mapsto \sum\left(a_{k, l} e^{(k m+l n) t}\right) e^{k u+l v}=0$

All the coefficients tend to ∞.

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10 with 32 odd ovals

Tropical

Let a be a real polynomial in x, y,
V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ, $\nu=(m, n)$ be an integer vector orthogonal to Σ.
Go in the direction of ν looking at V.
$(u, v) \mapsto(m t+u, n t+v)$
$\sum a_{k, l} e^{k u+l v}=0 \mapsto \sum\left(a_{k, l} e^{(k m+l n) t}\right) e^{k u+l v}=0$

Calibrate!

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10 with 32 odd ovals

Tropical

Let a be a real polynomial in x, y,
V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ, $\nu=(m, n)$ be an integer vector orthogonal to Σ.
Go in the direction of ν looking at V.
$(u, v) \mapsto(m t+u, n t+v)$
$\sum a_{k, l} e^{k u+l v}=0 \mapsto \sum\left(a_{k, l} e^{(k m+l n) t}\right) e^{k u+l v}=0$

Logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10 with 32 odd ovals

Tropical

Let a be a real polynomial in x, y,
V be the curve defined by $a\left(e^{u}, e^{v}\right)=0$, and Δ the Newton polygon of a. Let Σ be a side of Δ, $\nu=(m, n)$ be an integer vector orthogonal to Σ.
Go in the direction of ν looking at V.
$(u, v) \mapsto(m t+u, n t+v)$
$\sum a_{k, l} e^{k u+l v}=0 \mapsto \sum\left(a_{k, l} e^{(k m+l n) t}\right) e^{k u+l v}=0$

$a\left(e^{m t+u}, e^{n t+v}\right)$ tends to
$a^{\Sigma}(u, v)=\sum_{(k, l) \in \Sigma} a_{k l} e^{k u+l v}$
as $t \rightarrow \infty$.

Picture of logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Newton polygon.

Picture of logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Strips in which the curve goes to the infinity.

Picture of logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Curves defined by a^{Σ} where Σ are sides of Δ.

Picture of logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

The curve.
\square

Picture of logarithmic asymptotes

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

A homothetic image of the Newton polygon intersecting the curve asymptotically stable.

In high dimensions

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

everything goes similarly.

In high dimensions

Patchwork

- Construction of sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Consider a hypersurface defined by a generic polynomial

In high dimensions

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

The Newton polyhedron Δ of the polynomial.

In high dimensions

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

The main part of the hypersurface fits inside of sufficiently expanded Newton polyhedron.

In high dimensions

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

The space outside of Δ is divided into domains corresponding to the faces Δ.

In high dimensions

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

A prism corresponds to a principal face.

In high dimensions

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

A prism corresponds to a principal face.

In high dimensions

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

The domain corresponding to Σ has a shape of $\Sigma \times \Sigma^{\wedge}$

In high dimensions

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

In the domain corresponding to face Σ the hypersurface is approximated by the hypersurface defined by the part of the polynomial sitting on Σ.

In high dimensions

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

In the domain corresponding to face Σ the hypersurface is approximated by the hypersurface defined by the part of the polynomial sitting on Σ.

In high dimensions

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

In the domain corresponding to face Σ the hypersurface is approximated by the hypersurface defined by the part of the polynomial sitting on Σ.

In high dimensions

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem.
- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Consider a trace of the picture on a hyperplane which is bellow the Newton Polyhedron.

In high dimensions

Patchwork

- Construction of

sextics

- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem.
- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

The intersection of the hypersurface with the hyperplane is made of pieces corresponding to the faces of Δ looking down.

In high dimensions

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem.
- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

The intersection of the hypersurface with the hyperplane is made of pieces corresponding to the faces of Δ looking down. This can be used to patchwork a hypersurface.

In high dimensions

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem.
- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

The intersection of the hypersurface with the hyperplane is made of pieces corresponding to the faces of Δ looking down. This can be used to patchwork a hypersurface. Just prepare pieces matching each other and put them on faces of a polyhedron.

In high dimensions

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

The intersection of the hypersurface with the hyperplane is made of pieces corresponding to the faces of Δ looking down. This can be used to patchwork a hypersurface. Just prepare pieces matching each other and put them on faces of a polyhedron. For smallest pieces it's nothing but combinatorics.

Combinatorial patchwork

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Combinatorial patchwork

Patchwork

- Construction of sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Initial data for combinatorial patchworking

Combinatorial patchwork

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem. - Patchworking of the Harnack curve of degree 6
- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Initial data for combinatorial patchworking

- m a positive integer (the degree of the curve),

For our example, $m=2$.

Combinatorial patchwork

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem. - Patchworking of the Harnack curve of degree 6
- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Initial data for combinatorial patchworking

- m a positive integer (the degree of the curve),
- $\Delta \quad$ the triangle with vertices $(0,0),(m, 0),(0, m)$,

Combinatorial patchwork

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem.
- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Initial data for combinatorial patchworking

- m a positive integer (the degree of the curve),
- Δ the triangle with vertices $(0,0),(m, 0),(0, m)$,
- τ a convex triangulation of Δ with integer vertices.

Combinatorial patchwork

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Initial data for combinatorial patchworking

- m a positive integer (the degree of the curve),
- $\Delta \quad$ the triangle with vertices $(0,0),(m, 0),(0, m)$,
- $\tau \quad$ a convex triangulation of Δ with integer vertices.
- $\nu: \Delta \longrightarrow \mathbb{R}_{+} \quad$ a convex PL-function, such that triangles of τ are its domains of linearity.

Combinatorial patchwork

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the Patchwork Theorem.
- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10 with 32 odd ovals

Tropical

Initial data for combinatorial patchworking

- m a positive integer (the degree of the curve),
- Δ the triangle with vertices $(0,0),(m, 0),(0, m)$,
- $\tau \quad$ a convex triangulation of Δ with integer vertices.
- $\nu: \Delta \longrightarrow \mathbb{R}_{+} \quad$ a convex PL-function, such that triangles of τ are its domains of linearity.
- $\sigma_{k, l} \quad$ a sign $(+$ or -$)$ at each vertex (k, l) of τ.

Combinatorial patchwork

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Initial data for combinatorial patchworking

- m a positive integer (the degree of the curve),
- Δ the triangle with vertices $(0,0),(m, 0),(0, m)$,
- $\tau \quad$ a convex triangulation of Δ with integer vertices.
- $\nu: \Delta \longrightarrow \mathbb{R}_{+} \quad$ a convex PL-function, such that triangles of τ are its domains of linearity.
- $\sigma_{k, l} \quad$ a sign $(+$ or -$)$ at each vertex (k, l) of τ.

Patchworking of polynomials.

Combinatorial patchwork

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Initial data for combinatorial patchworking

- m a positive integer (the degree of the curve),
- Δ the triangle with vertices $(0,0),(m, 0),(0, m)$,
- $\tau \quad$ a convex triangulation of Δ with integer vertices.
- $\nu: \Delta \longrightarrow \mathbb{R}_{+} \quad$ a convex PL-function, such that triangles of τ are its domains of linearity.
- $\sigma_{k, l} \quad$ a sign $(+$ or -$)$ at each vertex (k, l) of τ.

Patchworking of polynomials.

$$
b_{t}(x, y)=\sum_{\substack{(k, l) \text { runs over } \\ \text { vertices of } \tau}} \sigma_{k, l} t^{\nu(k, l)} x^{k} y^{l}
$$

Combinatorial patchwork

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10 with 32 odd ovals

Tropical

Initial data for combinatorial patchworking

- m a positive integer (the degree of the curve),
- $\Delta \quad$ the triangle with vertices $(0,0),(m, 0),(0, m)$,
- $\tau \quad$ a convex triangulation of Δ with integer vertices.
- $\nu: \Delta \longrightarrow \mathbb{R}_{+} \quad$ a convex PL-function, such that triangles of τ are its domains of linearity.
- $\sigma_{k, l} \quad$ a sign $(+$ or -$)$ at each vertex (k, l) of τ.

Patchworking of PL-curve.

Combinatorial Patchwork Theorem

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let $m, \Delta, \tau, \sigma_{k, l}$ and ν be initial data,
b_{t} be the patchworked polynomial
and $L \subset \Delta$ be the patchworked PL-curve.

Combinatorial Patchwork Theorem

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Let $m, \Delta, \tau, \sigma_{k, l}$ and ν be initial data,
b_{t} be the patchworked polynomial
and $L \subset \Delta$ be the patchworked PL-curve.
Then for sufficiently small $t>0$ the polynomial b_{t} defines in the first quadrant $\mathbb{R}_{++}^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid x, y>0\right\}$ a curve a_{t} such that the pair $\left(\mathbb{R}_{++}^{2}, a_{t}\right)$ is homeomorphic to $(\operatorname{Int} \Delta, L \cap \operatorname{Int} \Delta)$.

Patchwork in all quadrants

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Adjoin to Δ

Patchwork in all quadrants

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Adjoin to Δ its images $\Delta_{x}=s_{x}(\Delta)$, where s_{x}, s_{y} are reflections against the coordinate axes.

Patchwork in all quadrants

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Adjoin to Δ its images $\Delta_{x}=s_{x}(\Delta), \Delta_{y}=s_{y}(\Delta)$, where s_{x}, s_{y} are reflections against the coordinate axes.

Patchwork in all quadrants

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Adjoin to Δ its images $\Delta_{x}=s_{x}(\Delta), \Delta_{y}=s_{y}(\Delta)$, $\Delta_{x y}=s_{x} \circ s_{y}(\Delta)$,
where s_{x}, s_{y} are reflections against the coordinate axes.

Patchwork in all quadrants

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Put $A \Delta=\Delta \cup \Delta_{x} \cup \Delta_{y} \cup \Delta_{x y}$.

Patchwork in all quadrants

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Extend τ to a symmetric triangulation $A \tau$ of $A \Delta$,

Patchwork in all quadrants

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Extend $\sigma_{i, j}$ to a distribution of signs at the vertices of $A \tau$ by the rule: $\sigma_{i, j} \sigma_{\epsilon i, \delta j} \epsilon^{i} \delta^{j}=1$, where $\epsilon, \delta= \pm 1$.

Patchwork in all quadrants

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

(In other words, passing from a vertex to its mirror image with respect to an axis we preserve its sign if the distance from the vertex to the axis is even, and change the sign otherwise.)

Patchwork in all quadrants

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Draw the midlines.

Addendum to the Patchwork Theorem.

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Under the assumptions of Patchwork Theorem, for all sufficiently small $t>0$ there exist a homeomorphism $A \Delta \rightarrow \mathbb{R}^{2}$ mapping $A L$ onto the the affine curve defined by b_{t} and a homeomorphism $P \Delta \rightarrow \mathbb{R} P^{2}$ mapping $P L$ onto the projective closure of this affine curve.

Patchworking of the Harnack curve of degree 6

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Patchworking of the Harnack curve of degree 6

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Nine empty ovals and two nested ovals.

Gudkov’s curve

Patchwork

- Construction of

sextics

- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

\square

Gudkov's curve

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Patchworking

of the Gudkov curve of degree 6. Five empty ovals and an oval enclosing five other empty ovals.

Curve of degree 10 with 32 odd ovals

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10
with 32 odd ovals
Tropical

Curve of degree 10 with 32 odd ovals

Patchwork

- Construction of
sextics
- Draw equations
- Log paper
- Logarithmic
asymptotes
- Picture of logarithmic
asymptotes
- In high dimensions
- Combinatorial
patchwork
- Combinatorial

Patchwork Theorem

- Patchwork in all
quadrants
- Addendum to the

Patchwork Theorem.

- Patchworking of the

Harnack curve of
degree 6

- Gudkov's curve
- Curve of degree 10 with 32 odd ovals

Tropical

Ilia Itenberg's patchworking of a counterexample the Ragsdale Conjecture. A curve of degree 10 with 32 odd ovals.

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Tropical

Arnold's advice

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

In late nineties Arnold proposed me to look into papers by Litvinov and Maslov on idenpotent mathematics.

Arnold's advice

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

In late nineties Arnold proposed me to look into papers by Litvinov and Maslov on idenpotent mathematics.
He thought it may be related to integrals against the Euler characteristic.

Arnold's advice

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

In late nineties Arnold proposed me to look into papers by Litvinov and Maslov on idenpotent mathematics.
He thought it may be related to integrals against the Euler characteristic.
I could not find any relation, but was not disappointed.

Dequantization of positive real numbers

Patchwork
Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence Principle
- Correspondences
- Real algebraic geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Dequantization of positive real numbers

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

This is a family of semifields $\left\{S_{h}\right\}_{h \in[0, \infty)}$.

Dequantization of positive real numbers

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

This is a family of semifields $\left\{S_{h}\right\}_{h \in[0, \infty)}$.
As a set, $S_{h}=\mathbb{R}$ for each h.

Dequantization of positive real numbers

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

This is a family of semifields $\left\{S_{h}\right\}_{h \in[0, \infty)}$.
As a set, $S_{h}=\mathbb{R}$ for each h.
The semiring operations \oplus_{h} and \odot_{h} in S_{h} :

Dequantization of positive real numbers

Patchwork

Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

This is a family of semifields $\left\{S_{h}\right\}_{h \in[0, \infty)}$.
As a set, $S_{h}=\mathbb{R}$ for each h.
The semiring operations \oplus_{h} and \odot_{h} in S_{h} :

$$
\begin{align*}
& a \oplus_{h} b= \begin{cases}h \ln \left(e^{a / h}+e^{b / h}\right), & \text { if } h>0 \\
\max \{a, b\}, & \text { if } h=0\end{cases} \tag{1}\\
& a \odot_{h} b=a+b \tag{2}
\end{align*}
$$

Dequantization of positive real numbers

Patchwork

Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

This is a family of semifields $\left\{S_{h}\right\}_{h \in[0, \infty)}$.
As a set, $S_{h}=\mathbb{R}$ for each h.
The semiring operations \oplus_{h} and \odot_{h} in S_{h} :

$$
\begin{align*}
& a \oplus_{h} b= \begin{cases}h \ln \left(e^{a / h}+e^{b / h}\right), & \text { if } h>0 \\
\max \{a, b\}, & \text { if } h=0\end{cases} \tag{1}\\
& a \odot_{h} b=a+b \tag{2}
\end{align*}
$$

These operations depend continuously on h.

Dequantization of positive real numbers

Patchwork

Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

This is a family of semifields $\left\{S_{h}\right\}_{h \in[0, \infty)}$.
As a set, $S_{h}=\mathbb{R}$ for each h.
The semiring operations \oplus_{h} and \odot_{h} in S_{h} :

$$
\begin{align*}
& a \oplus_{h} b= \begin{cases}h \ln \left(e^{a / h}+e^{b / h}\right), & \text { if } h>0 \\
\max \{a, b\}, & \text { if } h=0\end{cases} \tag{1}\\
& a \odot_{h} b=a+b \tag{2}
\end{align*}
$$

These operations depend continuously on h.
For $h>0 \quad D_{h}: \mathbb{R}_{>0} \rightarrow S_{h}: x \mapsto h \ln x$

Dequantization of positive real numbers

Patchwork
Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

This is a family of semifields $\left\{S_{h}\right\}_{h \in[0, \infty)}$.
As a set, $S_{h}=\mathbb{R}$ for each h.
The semiring operations \oplus_{h} and \odot_{h} in S_{h} :

$$
\begin{align*}
& a \oplus_{h} b= \begin{cases}h \ln \left(e^{a / h}+e^{b / h}\right), & \text { if } h>0 \\
\max \{a, b\}, & \text { if } h=0\end{cases} \tag{1}\\
& a \odot_{h} b=a+b \tag{2}
\end{align*}
$$

These operations depend continuously on h.
For $h>0 \quad D_{h}: \mathbb{R}_{>0} \rightarrow S_{h}: x \mapsto h \ln x$ is a semiring isomorphism of $\left\{\mathbb{R}_{>0},+, \cdot\right\}$ onto $\left\{S_{h}, \oplus_{h}, \odot_{h}\right\}$.

Correspondence Principle

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry
S_{h} with $h>0$ is a copy of $\mathbb{R}_{>0}$ with the usual operations.

Correspondence Principle

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry
S_{h} with $h>0$ is a copy of $\mathbb{R}_{>0}$ with the usual operations. $S_{0}=\mathbb{R}_{\max +}$, a copy of \mathbb{R} with addition $(a, b) \mapsto \max \{a, b\}$ and multiplication $(a, b) \mapsto a+b$.

Correspondence Principle

Patchwork

Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry
S_{h} with $h>0$ is a copy of $\mathbb{R}_{>0}$ with the usual operations. $S_{0}=\mathbb{R}_{\max +}$, a copy of \mathbb{R} with addition $(a, b) \mapsto \max \{a, b\}$ and multiplication $(a, b) \mapsto a+b$. (Idempotent semifield: $a+a=a$ for any a).

Correspondence Principle

Patchwork

Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry
S_{h} with $h>0$ is a copy of $\mathbb{R}_{>0}$ with the usual operations. $S_{0}=\mathbb{R}_{\max +}$, a copy of \mathbb{R} with addition $(a, b) \mapsto \max \{a, b\}$ and multiplication $(a, b) \mapsto a+b$. (Idempotent semifield: $a+a=a$ for any a). Speaking quantum:

Correspondence Principle

Patchwork

Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry
S_{h} with $h>0$ is a copy of $\mathbb{R}_{>0}$ with the usual operations. $S_{0}=\mathbb{R}_{\max +}$, a copy of \mathbb{R} with addition $(a, b) \mapsto \max \{a, b\}$ and multiplication $(a, b) \mapsto a+b$.
(Idempotent semifield: $a+a=a$ for any a).
Speaking quantum:
S_{0} is a classical object
(idempotent semifield $\mathbb{R}_{\max +}$,

Correspondence Principle

Patchwork

Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry
S_{h} with $h>0$ is a copy of $\mathbb{R}_{>0}$ with the usual operations. $S_{0}=\mathbb{R}_{\max +}$, a copy of \mathbb{R} with addition $(a, b) \mapsto \max \{a, b\}$ and multiplication $(a, b) \mapsto a+b$. (Idempotent semifield: $a+a=a$ for any a). Speaking quantum:
S_{0} is a classical object
(idempotent semifield $\mathbb{R}_{\max +}$, not that classical in mathematics),

Correspondence Principle

Patchwork
Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry
S_{h} with $h>0$ is a copy of $\mathbb{R}_{>0}$ with the usual operations. $S_{0}=\mathbb{R}_{\max +}$, a copy of \mathbb{R} with addition $(a, b) \mapsto \max \{a, b\}$ and multiplication $(a, b) \mapsto a+b$.
(Idempotent semifield: $a+a=a$ for any a).
Speaking quantum:
S_{0} is a classical object (idempotent semifield $\mathbb{R}_{\max +}$, not that classical in mathematics),
S_{h} with $h \neq 0$ are quantum objects

Correspondence Principle

Patchwork
Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry
S_{h} with $h>0$ is a copy of $\mathbb{R}_{>0}$ with the usual operations. $S_{0}=\mathbb{R}_{\max +}$, a copy of \mathbb{R} with addition $(a, b) \mapsto \max \{a, b\}$ and multiplication $(a, b) \mapsto a+b$.
(Idempotent semifield: $a+a=a$ for any a).
Speaking quantum:
S_{0} is a classical object (idempotent semifield $\mathbb{R}_{\max +}$, not that classical in mathematics),
S_{h} with $h \neq 0$ are quantum objects (but very classical
in mathematics),

Correspondence Principle

Patchwork
Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry
S_{h} with $h>0$ is a copy of $\mathbb{R}_{>0}$ with the usual operations. $S_{0}=\mathbb{R}_{\max +}$, a copy of \mathbb{R} with addition $(a, b) \mapsto \max \{a, b\}$ and multiplication $(a, b) \mapsto a+b$.
(Idempotent semifield: $a+a=a$ for any a).
Speaking quantum:
S_{0} is a classical object (idempotent semifield $\mathbb{R}_{\max +}$, not that classical in mathematics),
S_{h} with $h \neq 0$ are quantum objects (but very classical
in mathematics),
Correspondence Principle (G. L. Litvinov and V. P. Maslov)
"There exists a (heuristic) correspondence, in the spirit of the correspondence principle in Quantum Mechanics, between important, useful and interesting constructions and results over the field of real (or complex) numbers (or the semiring of all nonnegative numbers) and similar constructions and results over idempotent semirings."

Correspondences

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Integral $\int_{X} f(x) d x$
\longleftrightarrow
Supremum $\sup _{X}\{f(x)\}$

Correspondences

Patchwork
Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Integral $\int_{X} f(x) d x$
\longleftrightarrow
Fourier transform
$\tilde{f}(\xi)=\int e^{i x \xi} f(x) d x$

Supremum $\sup _{X}\{f(x)\}$
Legendre transform
$\tilde{f}(\xi)=$
$\sup \{x \cdot \xi-f(x)\}$.

Correspondences

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Integral $\int_{X} f(x) d x$

Fourier transform
$\tilde{f}(\xi)=\int e^{i x \xi} f(x) d x$
\longleftrightarrow

Linear problems

Supremum $\sup _{X}\{f(x)\}$
Legendre transform
$\tilde{f}(\xi)=$
$\sup \{x \cdot \xi-f(x)\}$.
Optimization problems

Correspondences

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Integral $\int_{X} f(x) d x$

Fourier transform
$\tilde{f}(\xi)=\int e^{i x \xi} f(x) d x$

Linear problems

Polynomial over \mathbb{R}_{+} $p(x)=\sum_{k} a_{k} x^{k}$

Supremum $\sup _{X}\{f(x)\}$
Legendre transform

$$
\tilde{f}(\xi)=
$$

$$
\sup \{x \cdot \xi-f(x)\}
$$

Optimization problems
Convex PL-function

$$
M_{p}(u)=
$$

$\max _{k}\left\{k u+\ln a_{k}\right\}$

Correspondences

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Integral $\int_{X} f(x) d x$

Fourier transform
$\tilde{f}(\xi)=\int e^{i x \xi} f(x) d x$

Polynomial over \mathbb{R}_{+} $p(x)=\sum_{k} a_{k} x^{k}$

Supremum $\sup _{X}\{f(x)\}$
Legendre transform

$$
\tilde{f}(\xi)=
$$

$$
\sup \{x \cdot \xi-f(x)\}
$$

Optimization problems
Convex PL-function

$$
M_{p}(u)=
$$

$$
\max _{k}\left\{k u+\ln a_{k}\right\}
$$

The dequantization deforms graph Γ_{p} of p on log paper to to the tropical graph of p.

Correspondences

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Integral $\int_{X} f(x) d x$

Fourier transform
$\tilde{f}(\xi)=\int e^{i x \xi} f(x) d x$ \longleftrightarrow

Linear problems

Polynomial over \mathbb{R}_{+} $p(x)=\sum_{k} a_{k} x^{k}$

Supremum $\sup _{X}\{f(x)\}$
Legendre transform

$$
\tilde{f}(\xi)=
$$

$$
\sup \{x \cdot \xi-f(x)\}
$$

Optimization problems
Convex PL-function

$$
M_{p}(u)=
$$

$$
\max _{k}\left\{k u+\ln a_{k}\right\}
$$

The dequantization deforms graph Γ_{p} of p on log paper to to the tropical graph of p.

The deformation consists of the graphs of the same polynomial $\sum_{k} \ln \left(a_{k}\right) x^{k}$, but on S_{h}^{2} with varying $h \in[0,1]$.

Real algebraic geometry as quantized PL-geometry

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Real algebraic geometry as quantized PL-geometry

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Real algebraic geometry as quantized PL-geometry

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Real algebraic geometry as quantized PL-geometry

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Combinatorial patchworking is a construction of real tropical curve.

Real algebraic geometry as quantized PL-geometry

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Combinatorial patchworking is a construction of real tropical curve.
I presented this in my talk at European Congress of Mathematicians in 2000.

Tropical algebra

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

The set \mathbb{R} with operations
$(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$.

Tropical algebra

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

The set \mathbb{R} with operations
$(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$. Denoted by $\mathbb{R}_{\text {max, }+}$

Tropical algebra

Patchwork

Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

The set \mathbb{R} with operations
$(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$. Denoted by $\mathbb{R}_{\text {max },+}$, called tropical algebra.

Tropical algebra

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

The set \mathbb{R} with operations
$(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$.
Denoted by $\mathbb{R}_{\text {max },+}$, called tropical algebra.
The adjective tropical was coined by
French mathematicians in the honor
of Imre Simon

Tropical algebra

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

The set \mathbb{R} with operations
$(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$.
Denoted by $\mathbb{R}_{\text {max },+}$, called tropical algebra.
The adjective tropical was coined by French mathematicians in the honor of Imre Simon

Tropical algebra

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

The set \mathbb{R} with operations
$(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$. Denoted by $\mathbb{R}_{\text {max },+}$, called tropical algebra. The adjective tropical was coined by French mathematicians in the honor of Imre Simon, who resides in São Paolo, Brazil and was one of the pioneers in algebra of $\mathbb{R}_{\text {max, }+ \text {. }}$.

Tropical algebra

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

The set \mathbb{R} with operations
$(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$.
Denoted by $\mathbb{R}_{\text {max },+}$, called tropical algebra.
The adjective tropical was coined by French mathematicians in the honor of Imre Simon, who resides in São Paolo, Brazil and was one of the pioneers in algebra of $\mathbb{R}_{\text {max, }+ \text {. }}$. This is a semi-ring.

Tropical algebra

Patchwork
Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

The set \mathbb{R} with operations
$(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$.
Denoted by $\mathbb{R}_{\text {max },+}$, called tropical algebra.
The adjective tropical was coined by French mathematicians in the honor of Imre Simon, who resides in São Paolo, Brazil and was one of the pioneers in algebra of $\mathbb{R}_{\text {max, }}+$

This is a semi-ring. Everything is as in a ring, but no subtraction.

Tropical algebra

Patchwork
Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

The set \mathbb{R} with operations
$(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$.
Denoted by $\mathbb{R}_{\text {max },+}$, called tropical algebra.
The adjective tropical was coined by French mathematicians in the honor of Imre Simon, who resides in São Paolo, Brazil and was one of the pioneers in algebra of $\mathbb{R}_{\text {max,+ }}$.

This is a semi-ring. Everything is as in a ring, but no subtraction, no 0 .

Tropical algebra

Patchwork

Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

The set \mathbb{R} with operations
$(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$.
Denoted by $\mathbb{R}_{\text {max },+}$, called tropical algebra.
The adjective tropical was coined by French mathematicians in the honor of Imre Simon, who resides in São Paolo, Brazil and was one of the pioneers in algebra of $\mathbb{R}_{\text {max, }}+$

This is a semi-ring. Everything is as in a ring, but no subtraction, no 0 .
Adjoin $-\infty$ as 0 .

Tropical algebra

Patchwork

Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

The set \mathbb{R} with operations
$(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$.
Denoted by $\mathbb{R}_{\text {max },+}$, called tropical algebra.
The adjective tropical was coined by French mathematicians in the honor of Imre Simon, who resides in São Paolo, Brazil and was one of the pioneers in algebra of $\mathbb{R}_{\text {max,+ }}$.

This is a semi-ring. Everything is as in a ring, but no subtraction, no 0 .
Adjoin $-\infty$ as 0 , denote by \mathbb{T}.

Tropical algebra

Patchwork

Tropical

- Arnold's advice
- Dequantization of positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
- Tropical algebra
- Tropical polynomials
- Tropical geometry

The set \mathbb{R} with operations
$(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$.
Denoted by $\mathbb{R}_{\text {max },+}$, called tropical algebra.
The adjective tropical was coined by French mathematicians in the honor of Imre Simon, who resides in São Paolo, Brazil and was one of the pioneers in algebra of $\mathbb{R}_{\text {max, }+ \text {. }}$

This is a semi-ring. Everything is as in a ring, but no subtraction, no 0 .
Adjoin $-\infty$ as 0 , denote by \mathbb{T}. This is a semi-field.

Tropical polynomials

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

A polynomial over \mathbb{T} is

a convex PL-function with integral slopes.

Tropical polynomials

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

A polynomial over \mathbb{T} is
a convex PL-function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}$ is
$a+k_{1} x_{1}+k_{2} x_{2}+\cdots+k_{n} x_{n}$.

Tropical polynomials

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

A polynomial over \mathbb{T} is
a convex PL-function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}$ is
$a+k_{1} x_{1}+k_{2} x_{2}+\cdots+k_{n} x_{n}$, a linear function

Tropical polynomials

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

A polynomial over \mathbb{T} is
a convex PL-function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}$ is
$a+k_{1} x_{1}+k_{2} x_{2}+\cdots+k_{n} x_{n}$, a linear function $a+\langle k, x\rangle$.

Tropical polynomials

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

A polynomial over \mathbb{T} is
a convex PL-function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}$ is
$a+k_{1} x_{1}+k_{2} x_{2}+\cdots+k_{n} x_{n}$, a linear function $a+\langle k, x\rangle$.
A polynomial is a finite sum of monomials

Tropical polynomials

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

A polynomial over \mathbb{T} is
a convex PL-function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}$ is
$a+k_{1} x_{1}+k_{2} x_{2}+\cdots+k_{n} x_{n}$, a linear function $a+\langle k, x\rangle$.
A polynomial is a finite sum of monomials, that is the maximum of finite collection of linear functions.

Tropical geometry

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Tropical geometry is an algebraic geometry over \mathbb{T}.

Tropical geometry

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Tropical geometry is an algebraic geometry over \mathbb{T}.
Algebraic geometry is based on polynomials.

Tropical geometry

Patchwork

Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Tropical geometry is an algebraic geometry over \mathbb{T}.
Algebraic geometry is based on polynomials. Hence, tropical geometry is based on convex PL-functions with integral slopes.

Tropical geometry

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Tropical geometry is an algebraic geometry over \mathbb{T}.
Algebraic geometry is based on polynomials.
Hence, tropical geometry is based on
convex PL-functions with integral slopes.
It would be exotic and needless if there was no relations to the classical algebraic geometry, which is provided by
Litvinov-Maslov dequantization.

Tropical geometry

Patchwork
Tropical

- Arnold's advice
- Dequantization of
positive real numbers
- Correspondence

Principle

- Correspondences
- Real algebraic
geometry as quantized
PL-geometry
- Tropical algebra
- Tropical polynomials
- Tropical geometry

Tropical geometry is an algebraic geometry over \mathbb{T}.
Algebraic geometry is based on polynomials.
Hence, tropical geometry is based on
convex PL-functions with integral slopes.
It would be exotic and needless if there was no relations to the classical algebraic geometry, which is provided by
Litvinov-Maslov dequantization.
Applications (besides combinatorial patchworking) in
enumerative geometry, both real and complex.

