Link invariants a la Alexander module

Oleg Viro

December 9, 2010

The main construction

- Infinite cyclic covering
- Seifert-Turaev
construction
- Results

Theory of Skeletons
Face state sums
Upgrading the colored Jones

Khovanov homology for
surfaces in $S^{3} \times S^{1}$

The main construction

Infinite cyclic covering

Let X be a compact manifold, $p: Y \rightarrow X$ be its infinite cyclic covering

Infinite cyclic covering

Let X be a compact manifold, $p: Y \rightarrow X$ be its infinite cyclic covering defined by $\xi \in H^{1}(X ; \mathbb{Z})$;
i.e., induced by a map $f: X \rightarrow S^{1}$ from $\mathbb{R} \rightarrow S^{1}: x \mapsto \exp (2 \pi i x)$.

Infinite cyclic covering

Let X be a compact manifold, $p: Y \rightarrow X$ be its infinite cyclic covering defined by $\xi \in H^{1}(X ; \mathbb{Z})$;
i.e., induced by a map $f: X \rightarrow S^{1}$ from $\mathbb{R} \rightarrow S^{1}: x \mapsto \exp (2 \pi i x)$.

Let $F=f^{-1}(\mathrm{pt})$ be the pre-image of a regular value pt of f.

Infinite cyclic covering

Let X be a compact manifold, $p: Y \rightarrow X$ be its infinite cyclic covering defined by $\xi \in H^{1}(X ; \mathbb{Z})$;
i.e., induced by a map $f: X \rightarrow S^{1}$ from $\mathbb{R} \rightarrow S^{1}: x \mapsto \exp (2 \pi i x)$.

Let $F=f^{-1}(\mathrm{pt})$ be the pre-image of a regular value pt of f.
$p^{-1}(F)=\widetilde{F}=\bigcup_{n \in \mathbb{Z}} F_{n}$ divides Y into X_{n} with $\partial X_{i}=F_{n+1} \cup-F_{n}$.

Infinite cyclic covering

Let X be a compact manifold, $p: Y \rightarrow X$ be its infinite cyclic covering defined by $\xi \in H^{1}(X ; \mathbb{Z})$;
i.e., induced by a map $f: X \rightarrow S^{1}$ from $\mathbb{R} \rightarrow S^{1}: x \mapsto \exp (2 \pi i x)$.

Let $F=f^{-1}(\mathrm{pt})$ be the pre-image of a regular value pt of f.
$p^{-1}(F)=\widetilde{F}=\bigcup_{n \in \mathbb{Z}} F_{n}$ divides Y into X_{n} with $\partial X_{i}=F_{n+1} \cup-F_{n}$.

Seifert-Turaev construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.

Seifert-Turaev construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.

Seifert-Turaev construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.

Seifert-Turaev construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.
Let $Q(X, \xi)=Z\left(F_{0}\right) / \operatorname{Ker}\left(Z\left(\bigcup_{n=0}^{\infty} X_{n}\right)\right)$.

Seifert-Turaev construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.
Let $Q(X, \xi)=Z\left(F_{0}\right) / \operatorname{Ker}\left(Z\left(\bigcup_{n=0}^{\infty} X_{n}\right)\right)$

$$
\cong \bigcap_{j=1}^{\infty} \operatorname{Im}\left(Z\left(\bigcup_{n=-j}^{-1} X_{n}\right)\right) \subset Z\left(F_{0}\right) .
$$

Seifert-Turaev construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.
Let $Q(X, \xi)=Z\left(F_{0}\right) / \operatorname{Ker}\left(Z\left(\bigcup_{n=0}^{\infty} X_{n}\right)\right)$

$$
\cong \bigcap_{j=1}^{\infty} \operatorname{Im}\left(Z\left(\bigcup_{n=-j}^{-1} X_{n}\right)\right) \subset Z\left(F_{0}\right) .
$$

Theorem. $Q(X, \xi)$ does not depend on F.

Seifert-Turaev construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.
Let $Q(X, \xi)=Z\left(F_{0}\right) / \operatorname{Ker}\left(Z\left(\bigcup_{n=0}^{\infty} X_{n}\right)\right)$

$$
\cong \bigcap_{j=1}^{\infty} \operatorname{Im}\left(Z\left(\bigcup_{n=-j}^{-1} X_{n}\right)\right) \subset Z\left(F_{0}\right) .
$$

Theorem. $Q(X, \xi)$ does not depend on F.
Proof:

Seifert-Turaev construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.
Let $Q(X, \xi)=Z\left(F_{0}\right) / \operatorname{Ker}\left(Z\left(\bigcup_{n=0}^{\infty} X_{n}\right)\right)$

$$
\cong \bigcap_{j=1}^{\infty} \operatorname{Im}\left(Z\left(\bigcup_{n=-j}^{-1} X_{n}\right)\right) \subset Z\left(F_{0}\right) .
$$

Theorem. $Q(X, \xi)$ does not depend on F.
Deck transformations determine an action of \mathbb{Z} in $Q(X, \xi)$.

Seifert-Turaev construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.
Let $Q(X, \xi)=Z\left(F_{0}\right) / \operatorname{Ker}\left(Z\left(\bigcup_{n=0}^{\infty} X_{n}\right)\right)$

$$
\cong \bigcap_{j=1}^{\infty} \operatorname{Im}\left(Z\left(\bigcup_{n=-j}^{-1} X_{n}\right)\right) \subset Z\left(F_{0}\right) .
$$

Theorem. $Q(X, \xi)$ does not depend on F.
Deck transformations determine an action of \mathbb{Z} in $Q(X, \xi)$.
If $X=S^{3} \backslash K, Z(F)=H_{1}(F ; \mathbb{Q})$, then
this is Seifert's calculation of the Alexander module $H_{1}(Y ; \mathbb{Q})$ of K.

Seifert-Turaev construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.
Let $Q(X, \xi)=Z\left(F_{0}\right) / \operatorname{Ker}\left(Z\left(\bigcup_{n=0}^{\infty} X_{n}\right)\right)$

$$
\cong \bigcap_{j=1}^{\infty} \operatorname{Im}\left(Z\left(\bigcup_{n=-j}^{-1} X_{n}\right)\right) \subset Z\left(F_{0}\right) .
$$

Theorem. $Q(X, \xi)$ does not depend on F.
Deck transformations determine an action of \mathbb{Z} in $Q(X, \xi)$.
For 3-manifolds and various TQFT's, it was studied by Pat Gilmer in 90s.

Results

I construct new invariants by versions of the Seifert-Turaev construction.

Results

I construct new invariants by versions of the Seifert-Turaev construction.
The first construction gives an isotopy invariant of a classical link.

Results

I construct new invariants by versions of the Seifert-Turaev construction.
The first construction gives an isotopy invariant of a classical link.
For each root q of unity of degree $r>2$ and a coloring of components of a link L with pairs of natural numbers $\leq r-2$, it gives a finite-dimensional vector space over \mathbb{C} with an invertible operator.

Results

I construct new invariants by versions of the Seifert-Turaev construction.
The first construction gives an isotopy invariant of a classical link.
For each root q of unity of degree $r>2$ and a coloring of components of a link L with pairs of natural numbers $\leq r-2$, it gives a finite-dimensional vector space over \mathbb{C} with an invertible operator.

A linear combination of traces of these operators
is the value at q of the colored Jones of L.

Results

I construct new invariants by versions of the Seifert-Turaev construction.
The first construction gives an isotopy invariant of a classical link.
For each root q of unity of degree $r>2$ and a coloring of components of a link L with pairs of natural numbers $\leq r-2$, it gives a finite-dimensional vector space over \mathbb{C} with an invertible operator.

A linear combination of traces of these operators
is the value at q of the colored Jones of L.
The coefficients are products of values at q of Tchebyshev polynomials.

Results

I construct new invariants by versions of the Seifert-Turaev construction.
The first construction gives an isotopy invariant of a classical link.
For each root q of unity of degree $r>2$ and a coloring of components of a link L with pairs of natural numbers $\leq r-2$, it gives a finite-dimensional vector space over \mathbb{C} with an invertible operator.

A linear combination of traces of these operators is the value at q of the colored Jones of L.

The coefficients are products of values at q of Tchebyshev polynomials.
The second construction gives a diffeotopy invariant of a smooth closed 2-submanifold Λ of $S^{3} \times S^{1}$.

Results

I construct new invariants by versions of the Seifert-Turaev construction.
The first construction gives an isotopy invariant of a classical link.
For each root q of unity of degree $r>2$ and a coloring of components of a link L with pairs of natural numbers $\leq r-2$, it gives a finite-dimensional vector space over \mathbb{C} with an invertible operator.

A linear combination of traces of these operators is the value at q of the colored Jones of L.

The coefficients are products of values at q of Tchebyshev polynomials.
The second construction gives a diffeotopy invariant of a smooth closed 2-submanifold Λ of $S^{3} \times S^{1}$.

The invariant is a bigraded $\mathbb{Z}[\mathbb{Z}]$-module. It is trivial, unless $\chi(\Lambda)=0$.

The main construction
Theory of Skeletons

- Skeletons
- Recovery from a

2-skeleton

- How 2-skeleton of a

3 -manifold moves

- How 2-skeleton of a

4-manifold moves

- Generic 2-polyhedra
with boundary
- Relative 2-skeletons

Face state sums
Upgrading the colored Jones

Khovanov homology for surfaces in $S^{3} \times S^{1}$
p. $25-6 / 28$

Skeletons

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic graph that cannot be diminished by a collapse is trivalent.

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic graph that cannot be diminished by a collapse is trivalent.

A non-generic graph:

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic graph that cannot be diminished by a collapse is trivalent.

Make elementary collapse:

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic graph that cannot be diminished by a collapse is trivalent.

Make elementary collapse:

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic graph that cannot be diminished by a collapse is trivalent.

Perturb:

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic graph that cannot be diminished by a collapse is trivalent.

Perturb:

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic non-collapsible 2-polyhedron has local structure of a foam:

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M
can be collapsed.
There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic non-collapsible 2-polyhedron has local structure of a foam:
stratified with trivalent 1-strata:
 and vertices of one kind:

Recovery from a 2-skeleton

Theorem (Casler, 1965). A closed oriented 3-manifold can be recovered from its generic 2 -skeleton.

Recovery from a 2-skeleton

Theorem (Casler, 1965). A closed oriented 3-manifold can be recovered from its generic 2-skeleton.

An oriented smooth closed 4-manifold
cannot be recovered from its generic 2-skeleton.

Recovery from a 2-skeleton

Theorem (Casler, 1965). A closed oriented 3-manifold can be recovered from its generic 2 -skeleton.

An oriented smooth closed 4-manifold
cannot be recovered from its generic 2-skeleton.
A 2-stratum of a generic 2-skeleton in an oriented 4-manifold has

$$
\text { self-intersection number } \in \frac{1}{2} \mathbb{Z}
$$

Recovery from a 2-skeleton

Theorem (Casler, 1965). A closed oriented 3-manifold can be recovered from its generic 2 -skeleton.

An oriented smooth closed 4-manifold cannot be recovered from its generic 2-skeleton.

A 2-stratum of a generic 2-skeleton in an oriented 4-manifold has self-intersection number $\in \frac{1}{2} \mathbb{Z}$.
Theorem (Turaev, 1991). An oriented smooth closed 4-manifold can be recovered from its generic 2 -skeleton equipped with self-intersection numbers of 2-strata.

Recovery from a 2-skeleton

Theorem (Casler, 1965). A closed oriented 3-manifold can be recovered from its generic 2-skeleton.

An oriented smooth closed 4-manifold cannot be recovered from its generic 2-skeleton.

A 2-stratum of a generic 2-skeleton in an oriented 4-manifold has self-intersection number $\in \frac{1}{2} \mathbb{Z}$.
Theorem (Turaev, 1991). An oriented smooth closed 4-manifold can be recovered from its generic 2-skeleton equipped with self-intersection numbers of 2-strata.

Self-intersection numbers are called gleams, a generic 2-polyhedron with gleams is a shadowed 2-polyhedron .

Recovery from a 2-skeleton

Theorem (Casler, 1965). A closed oriented 3-manifold can be recovered from its generic 2-skeleton.

An oriented smooth closed 4-manifold
cannot be recovered from its generic 2-skeleton.
A 2-stratum of a generic 2-skeleton in an oriented 4-manifold has self-intersection number $\epsilon \frac{1}{2} \mathbb{Z}$.
Theorem (Turaev, 1991). An oriented smooth closed 4-manifold can be recovered from its generic 2 -skeleton equipped with self-intersection numbers of 2-strata.

Self-intersection numbers are called gleams, a generic 2-polyhedron with gleams is a shadowed 2-polyhedron.

A generic 2-polyhedron that is not equipped with gleams is considered shadowed with all gleams equal zero.

How 2-skeleton of a 3-manifold moves

Theorem (Matveev, Piergallini). Any two 2-skeletons of an oriented closed 3-manifold can be transformed to each other by a sequence of moves of the following 3-types.

How 2-skeleton of a 3-manifold moves

Theorem (Matveev, Piergallini). Any two 2-skeletons of an oriented closed 3-manifold can be transformed to each other by a sequence of moves of the following 3-types.

How 2-skeleton of a 3-manifold moves

Corollary. Any quantity calculated for a generic 2-polyhedron and invariant with respect the three Matveev-Piergallini moves is a topological invariant of a 3-manifold.

How 2-skeleton of a 4-manifold moves

Theorem (Turaev). Any two shadowed 2-skeletons of an oriented smooth closed 4-manifold can be transformed to each other by a sequence of moves of the following 4 types.

How 2-skeleton of a 4-manifold moves

Theorem (Turaev). Any two shadowed 2-skeletons of an oriented smooth closed 4-manifold can be transformed to each other by a sequence of moves of the following 4 types.

How 2-skeleton of a 4-manifold moves

Theorem (Turaev). Any two shadowed 2-skeletons of an oriented smooth closed 4-manifold can be transformed to each other by a sequence of moves of the following 4 types.

Gleams change as follows:

How 2-skeleton of a 4-manifold moves

Theorem (Turaev). Any two shadowed 2-skeletons of an oriented smooth closed 4-manifold can be transformed to each other by a sequence of moves of the following 4 types.

Gleams change as follows:

How 2-skeleton of a 4-manifold moves

Theorem (Turaev). Any two shadowed 2-skeletons of an oriented smooth closed 4-manifold can be transformed to each other by a sequence of moves of the following 4 types.

Gleams change as follows:

How 2-skeleton of a 4-manifold moves

Theorem (Turaev). Any two shadowed 2-skeletons of an oriented smooth closed 4-manifold can be transformed to each other by a sequence of moves of the following 4 types.

Gleams change as follows:

How 2-skeleton of a 4-manifold moves

Theorem (Turaev). Any two shadowed 2-skeletons of an oriented smooth closed 4-manifold can be transformed to each other by a sequence of moves of the following 4 types.

Gleams change as follows:

Generic 2-polyhedra with boundary

A generic 2-polyhedron with boundary has interior points with
 and boundary points with no neighborhoods of these sorts, but with neighborhoods homeomorphic to

Generic 2-polyhedra with boundary

A generic 2-polyhedron with boundary has interior points with
 and boundary points with no neighborhoods of these sorts, but with neighborhoods homeomorphic to

The boundary of a generic 2-polyhedron is a generic 1-polyhedron.

Generic 2-polyhedra with boundary

A generic 2-polyhedron with boundary has interior points with
 and boundary points with no neighborhoods of these sorts, but with neighborhoods homeomorphic to

The boundary of a generic 2-polyhedron is a generic 1-polyhedron.
A generic 2-polyhedron X whose boundary ∂X is a disjoint union of 3 -valent graphs Γ_{0} and Γ_{1} is a cobordism between Γ_{0} and Γ_{1}.

Generic 2-polyhedra with boundary

A generic 2-polyhedron with boundary has interior points with neighborhoods homeomorphic to \mathbb{R}^{2}, or \ldots, or and boundary points with no neighborhoods of these sorts, but with neighborhoods homeomorphic to
 or

The boundary of a generic 2-polyhedron is a generic 1-polyhedron.
A generic 2-polyhedron X whose boundary ∂X is a disjoint union of 3 -valent graphs Γ_{0} and Γ_{1} is a cobordism between Γ_{0} and Γ_{1}.

Generic shadowed 2-polyhedra with boundary are called equivalent, if they can be transformed to each other by the moves.
Recall: moves do not affect the boundary.

Generic 2-polyhedra with boundary

A generic 2-polyhedron with boundary has interior points with neighborhoods homeomorphic to \mathbb{R}^{2}, or \ldots, or and boundary points with no neighborhoods of these sorts, but with neighborhoods homeomorphic to
 or

The boundary of a generic 2-polyhedron is a generic 1-polyhedron.
A generic 2-polyhedron X whose boundary ∂X is a disjoint union of 3 -valent graphs Γ_{0} and Γ_{1} is a cobordism between Γ_{0} and Γ_{1}.

Generic shadowed 2-polyhedra with boundary are called equivalent, if they can be transformed to each other by the moves.
Recall: moves do not affect the boundary.
Any two trivalent graphs are cobordant, but there are many non-equivalent generic shadowed 3-polyhedra.

Relative 2-skeletons

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that:
(1) $\partial X=X \cap \partial W$ is a generic 1-skeleton of ∂W and
(2) W \ finite set can collapse to X.

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that:
(1) $\partial X=X \cap \partial W$ is a generic 1 -skeleton of ∂W and
(2) W \ finite set can collapse to X.

A relative generic 2-skeleton of an oriented smooth compact 4-manifold W is a generic 2-polyhedron X with boundary such that:
(1) $\partial X=X \cap \partial W$ is a generic 1 -skeleton of ∂W and
(2) the union of all handles of W with indices ≤ 2 can collapse to X.

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that:
(1) $\partial X=X \cap \partial W$ is a generic 1-skeleton of ∂W and
(2) W \ finite set can collapse to X.

A relative generic 2-skeleton of an oriented smooth compact 4-manifold W is a generic 2-polyhedron X with boundary such that:
(1) $\partial X=X \cap \partial W$ is a generic 1 -skeleton of ∂W and
(2) the union of all handles of W with indices ≤ 2 can collapse to X.

For 2-strata of X adjacent to ∂X, self-intersections are not defined.

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that:
(1) $\partial X=X \cap \partial W$ is a generic 1-skeleton of ∂W and
(2) W \ finite set can collapse to X.

A relative generic 2-skeleton of an oriented smooth compact 4-manifold W is a generic 2-polyhedron X with boundary such that:
(1) $\partial X=X \cap \partial W$ is a generic 1-skeleton of ∂W and
(2) the union of all handles of W with indices ≤ 2 can collapse to X.

For 2-strata of X adjacent to ∂X, self-intersections are not defined.
Choose a framing of ∂X in ∂W.
Now all 2-strata of X have self-intersections.

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that:
(1) $\partial X=X \cap \partial W$ is a generic 1 -skeleton of ∂W and
(2) W \ finite set can collapse to X.

A relative generic 2-skeleton of an oriented smooth compact 4-manifold W is a generic 2-polyhedron X with boundary such that:
(1) $\partial X=X \cap \partial W$ is a generic 1-skeleton of ∂W and
(2) the union of all handles of W with indices ≤ 2 can collapse to X.

Any compact 3-manifold W has a relative generic 2-skeleton.

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that:
(1) $\partial X=X \cap \partial W$ is a generic 1-skeleton of ∂W and
(2) W \ finite set can collapse to X.

A relative generic 2-skeleton of an oriented smooth compact 4-manifold W is a generic 2-polyhedron X with boundary such that:
(1) $\partial X=X \cap \partial W$ is a generic 1-skeleton of ∂W and
(2) the union of all handles of W with indices ≤ 2 can collapse to X.

Any compact 3-manifold W has a relative generic 2-skeleton.
Any smooth oriented compact 4-manifold W
has a relative generic 2-skeleton.

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that:
(1) $\partial X=X \cap \partial W$ is a generic 1-skeleton of ∂W and
(2) W \ finite set can collapse to X.

A relative generic 2 -skeleton of an oriented smooth compact 4-manifold W is a generic 2-polyhedron X with boundary such that:
(1) $\partial X=X \cap \partial W$ is a generic 1 -skeleton of ∂W and
(2) the union of all handles of W with indices ≤ 2 can collapse to X.

Any compact 3-manifold W has a relative generic 2-skeleton.
Any smooth oriented compact 4-manifold W
has a relative generic 2 -skeleton.
In both dimensions, any generic 1 -skeleton of ∂W
bounds a relative generic 2 -skeleton of W.

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that:
(1) $\partial X=X \cap \partial W$ is a generic 1-skeleton of ∂W and
(2) W \ finite set can collapse to X.

A relative generic 2 -skeleton of an oriented smooth compact 4-manifold W is a generic 2-polyhedron X with boundary such that:
(1) $\partial X=X \cap \partial W$ is a generic 1 -skeleton of ∂W and
(2) the union of all handles of W with indices ≤ 2 can collapse to X.

Any compact 3-manifold W has a relative generic 2-skeleton.
Any smooth oriented compact 4-manifold W
has a relative generic 2-skeleton.
In both dimensions, any generic 1 -skeleton of ∂W
bounds a relative generic 2-skeleton of W,
and any two relative 2 -skeletons with the same boundary are equivalent.

The main construction
Theory of Skeletons
Face state sums

- Colors and colorings
- Face state sums
- Background invariants
of knotted graphs
- Construction of TQFT
- Old and new TQFT'es

Upgrading the colored Jones

Khovanov homology for surfaces in $S^{3} \times S^{1}$

Face state sums

Colors and colorings

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.
For a trivalent graph Γ, a map $\{1$-strata of $\Gamma\} \rightarrow \mathcal{P}$
is called a coloring of Γ.

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.
For a trivalent graph Γ, a map $\{1$-strata of $\Gamma\} \rightarrow \mathcal{P}$
is called a coloring of Γ.
Denote by $C(\Gamma)$ a vector space over k generated by colorings of Γ.

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.
For a trivalent graph Γ, a map $\{1$-strata of $\Gamma\} \rightarrow \mathcal{P}$
is called a coloring of Γ.
Denote by $C(\Gamma)$ a vector space over k generated by colorings of Γ.
A state or coloring of a generic polyhedron X is a map
$s:\{2$-strata of $X\} \rightarrow \mathcal{P}$.

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.
For a trivalent graph Γ, a map $\{1$-strata of $\Gamma\} \rightarrow \mathcal{P}$
is called a coloring of Γ.
Denote by $C(\Gamma)$ a vector space over k generated by colorings of Γ.
A state or coloring of a generic polyhedron X is a map
$s:\{2$-strata of $X\} \rightarrow \mathcal{P}$.
A state s of X induces a coloring ∂s of ∂X.

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.
For a trivalent graph Γ, a map $\{1$-strata of $\Gamma\} \rightarrow \mathcal{P}$ is called a coloring of Γ.

Denote by $C(\Gamma)$ a vector space over k generated by colorings of Γ.
A state or coloring of a generic polyhedron X is a map $s:\{2$-strata of $X\} \rightarrow \mathcal{P}$.

A state s of X induces a coloring ∂s of ∂X.
A map $Z:\{$ states of $X\} \rightarrow k$ defines a linear map
$C(\partial X) \rightarrow k$ that maps a coloring c of ∂X to $Z_{X}(c)=\sum_{\partial s=c} Z(s)$.

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.
For a trivalent graph Γ, a map $\{1$-strata of $\Gamma\} \rightarrow \mathcal{P}$ is called a coloring of Γ.

Denote by $C(\Gamma)$ a vector space over k generated by colorings of Γ.
A state or coloring of a generic polyhedron X is a map $s:\{2$-strata of $X\} \rightarrow \mathcal{P}$.

A state s of X induces a coloring ∂s of ∂X.
A map $Z:\{$ states of $X\} \rightarrow k$ defines a linear map
$C(\partial X) \rightarrow k$ that maps a coloring c of ∂X to $Z_{X}(c)=\sum_{\partial s=c} Z(s)$.
If $\Gamma=\varnothing$, then there is only one coloring of Γ and $C(\Gamma)=k$.
If $\partial X=\varnothing$, then $Z_{X} \in k$.

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.
For a trivalent graph Γ, a map $\{1$-strata of $\Gamma\} \rightarrow \mathcal{P}$ is called a coloring of Γ.

Denote by $C(\Gamma)$ a vector space over k generated by colorings of Γ.
A state or coloring of a generic polyhedron X is a map

$$
s:\{2 \text {-strata of } X\} \rightarrow \mathcal{P} .
$$

A state s of X induces a coloring ∂s of ∂X.
A map $Z:\{$ states of $X\} \rightarrow k$ defines a linear map
$C(\partial X) \rightarrow k$ that maps a coloring c of ∂X to $Z_{X}(c)=\sum_{\partial s=c} Z(s)$.
If $\Gamma=\varnothing$, then there is only one coloring of Γ and $C(\Gamma)=k$. If $\partial X=\varnothing$, then $Z_{X} \in k$.
If X is a cobordism between Γ_{0} and Γ_{1}, then $Z_{X}\left(c_{0}, c_{1}\right)$ is a matrix defining a map $Z_{X}: C\left(\Gamma_{0}\right) \rightarrow C\left(\Gamma_{1}\right)$.

Face state sums

For what Z, Z_{X} is reasonable to manifolds:
(1) depends only on the equivalence class of X, that is only on the manifold whose skeleton is X and
(2) defines a TQFT (i.e, a functor Cobordisms $\rightarrow \operatorname{Vect}(k)$)?

Face state sums

For what Z, Z_{X} is reasonable to manifolds:
(1) depends only on the equivalence class of X, that is only on the manifold whose skeleton is X and (2) defines a TQFT (i.e, a functor Cobordisms $\rightarrow \operatorname{Vect}(k)$)?

Fix $w_{0}: \mathcal{P}^{6} \rightarrow \mathbb{C}, w_{1}: \mathcal{P}^{3} \rightarrow \mathbb{C}, w_{2}: \mathcal{P} \rightarrow \mathbb{C}, t: \mathcal{P} \rightarrow \mathbb{C}, w_{3} \in \mathbb{C}$.

Face state sums

For what Z, Z_{X} is reasonable to manifolds:
(1) depends only on the equivalence class of X, that is only on the manifold whose skeleton is X and (2) defines a TQFT (i.e, a functor Cobordisms $\rightarrow \operatorname{Vect}(k)$)?

Fix $w_{0}: \mathcal{P}^{6} \rightarrow \mathbb{C}, w_{1}: \mathcal{P}^{3} \rightarrow \mathbb{C}, w_{2}: \mathcal{P} \rightarrow \mathbb{C}, t: \mathcal{P} \rightarrow \mathbb{C}, w_{3} \in \mathbb{C}$.
w_{1} is symmetric (symmetric group S_{3});
w_{0} has the symmetry of tetrahedron (S_{4} acting on the set of 6 edges).

Face state sums

For what Z, Z_{X} is reasonable to manifolds:
(1) depends only on the equivalence class of X,
that is only on the manifold whose skeleton is X and
(2) defines a TQFT (i.e, a functor Cobordisms $\rightarrow \operatorname{Vect}(k)$)?

Fix $w_{0}: \mathcal{P}^{6} \rightarrow \mathbb{C}, w_{1}: \mathcal{P}^{3} \rightarrow \mathbb{C}, w_{2}: \mathcal{P} \rightarrow \mathbb{C}, t: \mathcal{P} \rightarrow \mathbb{C}, w_{3} \in \mathbb{C}$.
w_{1} is symmetric (symmetric group S_{3});
w_{0} has the symmetry of tetrahedron (S_{4} acting on the set of 6 edges).
For a state s, let $Z(s)=$

```
\(w_{3}^{-\chi(X)+\frac{1}{2} \chi(\partial X)} \prod_{f \in\{2 \text {-strata }\}} w_{2}(s(f))^{\chi(f)+\frac{1}{2} \chi(\bar{f} \cap \partial X \backslash\{\text { vertices }\})} t(s(f))^{2 f \circ f}\)
    \(\times \prod_{e \in\{1 \text {-strata of } \operatorname{Int} X\}} w_{1}(s(f) \mid f \in S t(e))^{\chi(e)+\frac{1}{2} \chi(e n \partial X)}\)
    \(\times \quad \Pi \quad w_{0}(s(f) \mid f \in S t(v))\).
```


Face state sums

For what Z, Z_{X} is reasonable to manifolds:
(1) depends only on the equivalence class of X,
that is only on the manifold whose skeleton is X and
(2) defines a TQFT (i.e, a functor Cobordisms $\rightarrow \operatorname{Vect}(k)$)?

Fix $w_{0}: \mathcal{P}^{6} \rightarrow \mathbb{C}, w_{1}: \mathcal{P}^{3} \rightarrow \mathbb{C}, w_{2}: \mathcal{P} \rightarrow \mathbb{C}, t: \mathcal{P} \rightarrow \mathbb{C}, w_{3} \in \mathbb{C}$.
w_{1} is symmetric (symmetric group S_{3});
w_{0} has the symmetry of tetrahedron (S_{4} acting on the set of 6 edges).
For a state s, let $Z(s)=$

$$
\begin{aligned}
w_{3}^{-\chi(X)+\frac{1}{2} \chi(\partial X)} & \prod_{f \in\{2 \text {-strata }\}} w_{2}(s(f))^{\chi(f)+\frac{1}{2} \chi(\bar{f} \cap \partial X \backslash\{\text { vertices }\})} t(s(f))^{2 f \circ f} \\
& \times \prod_{e \in\{1 \text {-strata of } \operatorname{Int} X\}} w_{1}(s(f) \mid f \in S t(e))^{\chi(e)+\frac{1}{2} \chi(e \cap \partial X)} \\
& \times \prod_{0}(s(f) \mid f \in S t(v))
\end{aligned}
$$

Let $Z_{X}(c)=\sum_{s \text { such that } \partial s=c} Z(s) . \quad$ What w_{i} and t to choose?

Background invariants of knotted graphs

The usual source of the structural constants w_{i} and t
is a modular category.

Background invariants of knotted graphs

The usual source of the structural constants w_{i} and t
is a modular category .
Not all the axioms of modular category are needed.

Background invariants of knotted graphs

We may start with isotopy invariants of embedded in \mathbb{R}^{3} framed trivalent graphs with 1 -strata colored with colors from a finite pallet \mathcal{P}.

Background invariants of knotted graphs

We may start with isotopy invariants of embedded in \mathbb{R}^{3} framed trivalent graphs with 1 -strata colored with colors from a finite pallet \mathcal{P}.

Background invariants of knotted graphs

We may start with isotopy invariants of embedded in \mathbb{R}^{3} framed trivalent graphs with 1 -strata colored with colors from a finite pallet \mathcal{P}.

Assume that the invariant satisfies two axioms:

Background invariants of knotted graphs

We may start with isotopy invariants of embedded in \mathbb{R}^{3} framed trivalent graphs with 1 -strata colored with colors from a finite pallet \mathcal{P}.

Assume that the invariant satisfies two axioms:

$$
\begin{gathered}
\left|\stackrel{\Gamma}{\Gamma}_{\Gamma_{j}^{k}}\right|=\left.\delta_{j}^{k} C(\Gamma, j)| |\right|_{j} ^{j} \mid \\
\left|\Gamma_{k}^{i}\right\rangle_{l}^{j}\left|=\sum_{m \in \mathcal{P}} C(\Gamma, i, j, k, l, m)\right|_{k}^{i} \sum_{l}^{j}{ }_{l}^{j} \mid .
\end{gathered}
$$

Background invariants of knotted graphs

We may start with isotopy invariants of embedded in \mathbb{R}^{3} framed trivalent graphs with 1 -strata colored with colors from a finite pallet \mathcal{P}.

Assume that the invariant satisfies two axioms:

$$
\begin{gathered}
\left|\Gamma_{\Gamma}^{k}\right|=\left.\delta_{j}^{k} C(\Gamma, j)| |\right|_{j} ^{j} \mid \\
\left|\Gamma_{k}^{i}\right\rangle_{l}^{j}\left|=\sum_{m \in \mathcal{P}} C(\Gamma, i, j, k, l, m)\right|_{k}^{i} \sum_{l}^{j}{ }_{l}^{j} \mid .
\end{gathered}
$$

Theorem. If $w_{2}(j)=\left\langle\bigcirc_{j}\right\rangle, t(j)=\frac{\left|\bigcirc_{j}\right\rangle}{\left\langle\bigcirc_{j}\right\rangle}, \quad w_{1}(j, m, l)=\left\langle\left(\bigcup_{j}^{l}\right\rangle\right.$,

invariant under moves and defines a TQFT.

Construction of TQFT

Correction: the state sums define a functor
(trivalent graphs and their cobordisms) \rightarrow Vect k. but only a semifunctor (manifolds, their cobordisms) \rightarrow Vect k.

Construction of TQFT

Correction: the state sums define a functor
(trivalent graphs and their cobordisms) \rightarrow Vect k. but only a semifunctor (manifolds, their cobordisms) \rightarrow Vect k.

The identity cobordism of a trivalent graph Γ is $\Gamma \times I$, but if Γ is a 1 -skeleton of M, then $\Gamma \times I$ is not a 2 -skeleton of $M \times I$.

Construction of TQFT

Correction: the state sums define a functor
(trivalent graphs and their cobordisms) \rightarrow Vect k. but only a semifunctor (manifolds, their cobordisms) \rightarrow Vect k.

The identity cobordism of a trivalent graph Γ is $\Gamma \times I$, but if Γ is a 1 -skeleton of M, then $\Gamma \times I$ is not a 2 -skeleton of $M \times I$.

Construction of TQFT

Correction: the state sums define a functor
(trivalent graphs and their cobordisms) \rightarrow Vect k. but only a semifunctor (manifolds, their cobordisms) \rightarrow Vect k.

The identity cobordism of a trivalent graph Γ is $\Gamma \times I$, but if Γ is a 1 -skeleton of M, then $\Gamma \times I$ is not a 2 -skeleton of $M \times I$.

Still, the composition of cobordisms has a 2-skeleton
that is the compositions of 2-skeletons of the cobordisms.

Construction of TQFT

Correction: the state sums define a functor (trivalent graphs and their cobordisms) \rightarrow Vect k. but only a semifunctor (manifolds, their cobordisms) \rightarrow Vect k.

The identity cobordism of a trivalent graph Γ is $\Gamma \times I$, but if Γ is a 1 -skeleton of M, then $\Gamma \times I$ is not a 2 -skeleton of $M \times I$.

Still, the composition of cobordisms has a 2-skeleton
that is the compositions of 2-skeletons of the cobordisms.
In order to turn a functor
(trivalent graphs and their cobordisms) \rightarrow Vect k
to a functor
(manifolds and their cobordisms) \rightarrow Vect k, factorize $C(1$-skeleton of a manifold $M)$ by $\operatorname{Ker} Z_{2 \text {-skeleton of } M \times I}$.

Denote $C(1$-skeleton of a manifold $M) / \operatorname{Ker} Z_{2 \text {-skeleton of } M \times I}$ by $Z(M)$ and $Z_{2 \text {-skeleton of a cobordism } W}$ by Z_{W}. This is a TQFT!

Old and new TQFT'es

For 2-skeletons of 3-manifolds and the background invariants obtained from the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity, this is the Turaev-Viro TQFT introduced in 1992.

Old and new TQFT'es

For 2-skeletons of 3-manifolds and the background invariants obtained from the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity, this is the Turaev-Viro TQFT introduced in 1992.

The same background invariants give a new (3+1)-TQFT.

Old and new TQFT'es

For 2-skeletons of 3-manifolds and the background invariants obtained from the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity, this is the Turaev-Viro TQFT introduced in 1992.

The same background invariants give a new (3+1)-TQFT.
If the state sums come from a modular category, then $\operatorname{dim} Z(M)=1$ for any oriented closed connected 3-manifold M.

Old and new TQFT'es

For 2-skeletons of 3-manifolds and the background invariants obtained from the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity, this is the Turaev-Viro TQFT introduced in 1992.

The same background invariants give a new (3+1)-TQFT.
If the state sums come from a modular category, then $\operatorname{dim} Z(M)=1$ for any oriented closed connected 3-manifold M.

Then for any cobordism W
the map Z_{W} is multiplication by an exponent of the signature of W.

Old and new TQFT'es

For 2-skeletons of 3-manifolds and the background invariants obtained from the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity, this is the Turaev-Viro TQFT introduced in 1992.

The same background invariants give a new (3+1)-TQFT.
If the state sums come from a modular category, then $\operatorname{dim} Z(M)=1$ for any oriented closed connected 3-manifold M.
Then for any cobordism W
the map Z_{W} is multiplication by an exponent of the signature of W.
Because then Z_{W} is invariant under cobordism (Turaev, 1991).

Old and new TQFT'es

For 2-skeletons of 3-manifolds and the background invariants obtained from the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity, this is the Turaev-Viro TQFT introduced in 1992.

The same background invariants give a new (3+1)-TQFT.
If the state sums come from a modular category, then $\operatorname{dim} Z(M)=1$ for any oriented closed connected 3-manifold M.
Then for any cobordism W
the map Z_{W} is multiplication by an exponent of the signature of W.
Because then Z_{W} is invariant under cobordism (Turaev, 1991).
It follows from the axiom requiring invertibility of S-matrix.

Old and new TQFT'es

For 2-skeletons of 3-manifolds and the background invariants obtained from the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity, this is the Turaev-Viro TQFT introduced in 1992.

The same background invariants give a new (3+1)-TQFT.
If the state sums come from a modular category, then $\operatorname{dim} Z(M)=1$ for any oriented closed connected 3-manifold M.
Then for any cobordism W
the map Z_{W} is multiplication by an exponent of the signature of W.
Because then Z_{W} is invariant under cobordism (Turaev, 1991).
It follows from the axiom requiring invertibility of S-matrix.
There many invariants of framed colored trivalent graphs
for which the S-matrix is not invertible.

Upgrading the colored Jones

State sum model for colored Jones

Take for the background invariants the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity.

State sum model for colored Jones

Take for the background invariants the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity.

Then the value at q of the colored Jones polynomial of a link L can be obtained as the state sum of a generic 2-skeleton S of $X=D^{4} \cup \bigcup_{i} H_{i}$, where H_{i} are 2-handles attached along the components of L.

State sum model for colored Jones

Take for the background invariants the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity.
Then the value at q of the colored Jones polynomial of a link L can be obtained as the state sum of a generic 2-skeleton S of $X=D^{4} \cup \bigcup_{i} H_{i}$, where H_{i} are 2-handles attached along the components of L.
The only restriction: $H_{i} \cap S$ is a disk for each i and in the state sum the colors of these disks coincide with the colors of the corresponding components of L.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.
Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;
R is also a 2-skeleton of $\left(S^{3} \backslash L\right) \times I$.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert
surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.
Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;
R is also a 2-skeleton of $\left(S^{3} \backslash L\right) \times I$.
(3) Adjoin to R disks m_{i} along meridians of L_{i}.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.
Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;

$$
R \text { is also a 2-skeleton of }\left(S^{3} \backslash L\right) \times I
$$

(3) Adjoin to R disks m_{i} along meridians of L_{i}.

The result is a 2-skeleton of $S^{3} \times I$.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.
Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;

$$
R \text { is also a 2-skeleton of }\left(S^{3} \backslash L\right) \times I
$$

(3) Adjoin to R disks m_{i} along meridians of L_{i}.

The result is a 2-skeleton of $S^{3} \times I$ and of D^{4}.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.
Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;

$$
R \text { is also a 2-skeleton of }\left(S^{3} \backslash L\right) \times I
$$

(3) Adjoin to R disks m_{i} along meridians of L_{i}.

The result is a 2-skeleton of $S^{3} \times I$ and of D^{4}.
(4) Adjoin to R a disk l_{i} along longitude of each L_{i}. Let $U=R \cup \bigcup_{i} l_{i}$.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.
Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;

$$
R \text { is also a 2-skeleton of }\left(S^{3} \backslash L\right) \times I
$$

(3) Adjoin to R disks m_{i} along meridians of L_{i}.

The result is a 2-skeleton of $S^{3} \times I$ and of D^{4}.
(4) Adjoin to R a disk l_{i} along longitude of each L_{i}. Let $U=R \cup \bigcup_{i} l_{i}$.

This completes building of $S=U \cup \bigcup_{i} m_{i}$, a 2-skeleton for X.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;

$$
R \text { is also a 2-skeleton of }\left(S^{3} \backslash L\right) \times I
$$

(3) Adjoin to R disks m_{i} along meridians of L_{i}.

The result is a 2-skeleton of $S^{3} \times I$ and of D^{4}.
(4) Adjoin to R a disk l_{i} along longitude of each L_{i}. Let $U=R \cup \bigcup_{i} l_{i}$.

This completes building of $S=U \cup \bigcup_{i} m_{i}$, a 2-skeleton for X.
Choose a Seifert surface $F \subset S^{3}$ for L transversal to R and ∂m_{i} and disjoint from ∂l_{i}.

Partial state sums

The infinite cyclic covering of $S^{3} \backslash L$ does not extend to disks m_{i}. There is no non-trivial coverings of S, since $\pi_{1}(S)=0$.

Partial state sums

The infinite cyclic covering of $S^{3} \backslash L$ does not extend to disks m_{i}. There is no non-trivial coverings of S, since $\pi_{1}(S)=0$.

Therefore one cannot apply the Seifert-Turaev construction to S.

Partial state sums

Instead,
we split the state sum that provides the value at q of the colored Jones into partial state sums based on $U \subset S$, and apply the Seifert-Turaev construction to each of them and to the infinite cyclic covering $\widetilde{U} \rightarrow U$ defined by $F \cap U=F \cap R$.

Partial state sums

Instead,
we split the state sum that provides the value at q of the colored Jones into partial state sums based on $U \subset S$, and apply the Seifert-Turaev construction to each of them and to the infinite cyclic covering $\widetilde{U} \rightarrow U$ defined by $F \cap U=F \cap R$.

Each of the partial sums is formed by the summands of the whole sum with fixed colors on all m_{i}.

Partial state sums

Instead,
we split the state sum that provides the value at q of the colored Jones into partial state sums based on $U \subset S$, and apply the Seifert-Turaev construction to each of them and to the infinite cyclic covering $\widetilde{U} \rightarrow U$ defined by $F \cap U=F \cap R$.
Each of the partial sums is formed by the summands of the whole sum with fixed colors on all m_{i}.
In a partial sum, take the common factor $\prod_{i} w_{2}$ (color of m_{i}) outside the brackets. Inside the brackets we see a new state sum, a sum over colorings of the 2-strata of S that are contained in U.

Partial state sums

Instead,
we split the state sum that provides the value at q of the colored Jones into partial state sums based on $U \subset S$, and apply the Seifert-Turaev construction to each of them and to the infinite cyclic covering $\widetilde{U} \rightarrow U$ defined by $F \cap U=F \cap R$.
Each of the partial sums is formed by the summands of the whole sum with fixed colors on all m_{i}.
In a partial sum, take the common factor $\prod_{i} w_{2}$ (color of m_{i}) outside the brackets. Inside the brackets we see a new state sum, a sum over colorings of the 2-strata of S that are contained in U.

The summands are products of contributions from these strata.

Partial state sums

Instead,
we split the state sum that provides the value at q of the colored Jones into partial state sums based on $U \subset S$, and apply the Seifert-Turaev construction to each of them and to the infinite cyclic covering $\widetilde{U} \rightarrow U$ defined by $F \cap U=F \cap R$.

Each of the partial sums is formed by the summands of the whole sum with fixed colors on all m_{i}.
In a partial sum, take the common factor $\prod_{i} w_{2}$ (color of m_{i}) outside the brackets. Inside the brackets we see a new state sum, a sum over colorings of the 2-strata of S that are contained in U.
The summands are products of contributions from these strata.
Disks m_{i} are not in U, but ∂m_{i} contribute to the stratification by subdividing 2 -strata of R and affecting gleams of the resulting pieces.

Partial state sums

Instead,
we split the state sum that provides the value at q of the colored Jones into partial state sums based on $U \subset S$, and apply the Seifert-Turaev construction to each of them and to the infinite cyclic covering $\widetilde{U} \rightarrow U$ defined by $F \cap U=F \cap R$.

Each of the partial sums is formed by the summands of the whole sum with fixed colors on all m_{i}.
In a partial sum, take the common factor $\prod_{i} w_{2}$ (color of m_{i}) outside the brackets. Inside the brackets we see a new state sum, a sum over colorings of the 2-strata of S that are contained in U.
The summands are products of contributions from these strata.
Disks m_{i} are not in U, but ∂m_{i} contribute to the stratification by subdividing 2 -strata of R and affecting gleams of the resulting pieces.
The arcs on ∂m_{i} contribute via w_{1}, the vertices (i.e., intersections of ∂m_{i} with 1 -strata of R) via w_{0}.

Modules of a link

Application of the Seifert-Turaev construction to the partial sums gives, for each root q of unity and a coloring of components of a link L with pairs of colors from \mathcal{P}, a finite-dimensional vector space over \mathbb{C} with an invertible operator.

Modules of a link

Application of the Seifert-Turaev construction to the partial sums gives, for each root q of unity and a coloring of components of a link L with pairs of colors from \mathcal{P}, a finite-dimensional vector space over \mathbb{C} with an invertible operator.

A linear combination of traces of these operators
is the value at q of the colored Jones of L.

Modules of a link

Application of the Seifert-Turaev construction to the partial sums gives, for each root q of unity and
a coloring of components of a link L with pairs of colors from \mathcal{P}, a finite-dimensional vector space over \mathbb{C} with an invertible operator.

A linear combination of traces of these operators
is the value at q of the colored Jones of L.
The coefficients are products of values at q of Tchebyshev polynomials.

Khovanov homology for surfaces in $S^{3} \times S^{1}$

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \subset S^{3} \times S^{1}$ be a smooth 2-submanifold.

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \subset S^{3} \times S^{1}$ be a smooth 2-submanifold.
This can be obtained from a link $\bar{\Lambda} \subset S^{4}$ by a surgery along an unknotted component of $\bar{\Lambda}$ homeomorphic to S^{2}.

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \subset S^{3} \times S^{1}$ be a smooth 2-submanifold.
Let the intersection $L=S^{3} \times\{1\} \cap \Lambda$ be transversal, and $\widetilde{\Lambda} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ under $S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)$.

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \subset S^{3} \times S^{1}$ be a smooth 2-submanifold.
Let the intersection $L=S^{3} \times\{1\} \cap \Lambda$ be transversal, and $\widetilde{\Lambda} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ under $S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)$. Let $L_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$, and $W_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times[n, n+1]\right)$.

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \subset S^{3} \times S^{1}$ be a smooth 2-submanifold.
Let the intersection $L=S^{3} \times\{1\} \cap \Lambda$ be transversal, and $\widetilde{\Lambda} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ under $S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)$. Let $L_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$, and $W_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times[n, n+1]\right)$.

Now apply Seifert-Turaev construction to Khovanov homology: denote by $Z_{i, j}(\Lambda)$ the image of $K h_{i, j}\left(L_{0}\right)$ under the homomorphism induced by cobordism $\cup_{n=0}^{k} W_{n}$ for sufficiently large k.

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \subset S^{3} \times S^{1}$ be a smooth 2-submanifold.
Let the intersection $L=S^{3} \times\{1\} \cap \Lambda$ be transversal, and $\widetilde{\Lambda} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ under $S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)$. Let $L_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$, and $W_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times[n, n+1]\right)$.

Now apply Seifert-Turaev construction to Khovanov homology: denote by $Z_{i, j}(\Lambda)$ the image of $K h_{i, j}\left(L_{0}\right)$ under the homomorphism induced by cobordism $\cup_{n=0}^{k} W_{n}$ for sufficiently large k.
Observe that $Z_{i, j}(\Lambda)=0$, unless $\chi(\Lambda)=0$.

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \subset S^{3} \times S^{1}$ be a smooth 2-submanifold.
Let the intersection $L=S^{3} \times\{1\} \cap \Lambda$ be transversal, and $\widetilde{\Lambda} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ under $S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)$. Let $L_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$, and $W_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times[n, n+1]\right)$.

Now apply Seifert-Turaev construction to Khovanov homology: denote by $Z_{i, j}(\Lambda)$ the image of $K h_{i, j}\left(L_{0}\right)$ under the homomorphism induced by cobordism $\cup_{n=0}^{k} W_{n}$ for sufficiently large k.
Observe that $Z_{i, j}(\Lambda)=0$, unless $\chi(\Lambda)=0$.
If the restriction to Λ of the projection $S^{3} \times S^{1} \rightarrow S^{1}$ is a locally trivial fibration, then $Z_{i, j}(\Lambda)=K h_{i, j}(L)$.

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \subset S^{3} \times S^{1}$ be a smooth 2-submanifold.
Let the intersection $L=S^{3} \times\{1\} \cap \Lambda$ be transversal, and $\widetilde{\Lambda} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ under $S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)$. Let $L_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$, and $W_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times[n, n+1]\right)$.

Now apply Seifert-Turaev construction to Khovanov homology: denote by $Z_{i, j}(\Lambda)$ the image of $K h_{i, j}\left(L_{0}\right)$ under the homomorphism induced by cobordism $\cup_{n=0}^{k} W_{n}$ for sufficiently large k.

Observe that $Z_{i, j}(\Lambda)=0$, unless $\chi(\Lambda)=0$.
If the restriction to Λ of the projection $S^{3} \times S^{1} \rightarrow S^{1}$ is a locally trivial fibration, then $Z_{i, j}(\Lambda)=K h_{i, j}(L)$ with an additional structure: the action of \mathbb{Z} (the monodromy).

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \subset S^{3} \times S^{1}$ be a smooth 2-submanifold.
Let the intersection $L=S^{3} \times\{1\} \cap \Lambda$ be transversal, and $\widetilde{\Lambda} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ under $S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)$. Let $L_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$, and $W_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times[n, n+1]\right)$.
Now apply Seifert-Turaev construction to Khovanov homology: denote by $Z_{i, j}(\Lambda)$ the image of $K h_{i, j}\left(L_{0}\right)$ under the homomorphism induced by cobordism $\cup_{n=0}^{k} W_{n}$ for sufficiently large k.
Observe that $Z_{i, j}(\Lambda)=0$, unless $\chi(\Lambda)=0$.
If the restriction to Λ of the projection $S^{3} \times S^{1} \rightarrow S^{1}$ is a locally trivial fibration, then $Z_{i, j}(\Lambda)=K h_{i, j}(L)$ with an additional structure: the action of \mathbb{Z} (the monodromy).

Luoying Weng calculated $Z_{i, j}(\Lambda)$ for many such surfaces.

Problems

Problems

Calculate the TQFT modules of knots and links in a traditional form: higher colored Jones polynomials aka higher Alexander polynomials.

Problems

Calculate the TQFT modules of knots and links in a traditional form: higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the 0 -surgery along the knot) have not been studied in this way.

Problems

Calculate the TQFT modules of knots and links in a traditional form: higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the 0 -surgery along the knot) have not been studied in this way.

A sharp question:
can the new TQFT modules be reduced to the colored Jones?

Problems

Calculate the TQFT modules of knots and links in a traditional form: higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the 0 -surgery along the knot) have not been studied in this way.

A sharp question:
can the new TQFT modules be reduced to the colored Jones?
If not, how are they related to the Khovanov homology?

Problems

Calculate the TQFT modules of knots and links in a traditional form: higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the 0 -surgery along the knot) have not been studied in this way.

A sharp question:
can the new TQFT modules be reduced to the colored Jones?
If not, how are they related to the Khovanov homology?
What kind of knotting phenomena for surfaces in $S^{3} \times S^{1}$ are detected by Khovanov homology?

Problems

Calculate the TQFT modules of knots and links in a traditional form: higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the 0 -surgery along the knot) have not been studied in this way.

A sharp question:
can the new TQFT modules be reduced to the colored Jones?
If not, how are they related to the Khovanov homology?
What kind of knotting phenomena for surfaces in $S^{3} \times S^{1}$ are detected by Khovanov homology?

Can it detect linking/knotting of a surface consisting of a sphere and sphere with 2 handles?

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$.

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$.
Why does it require a separate proof?

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$.
Why does it require a separate proof?
Because cobordisms needed for Khovanov homology
are surfaces in $S^{3} \times I$,
while in the proof we meet
a cobordism between a link in $S^{3} \times\{\mathrm{pt}\}$ and a skew copy of it.

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$. Proof. Let $\Lambda_{t}, t \in I$ be an isotopy of Λ.

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$.
Proof. Let $\Lambda_{t}, t \in I$ be an isotopy of Λ.
Extend it to an isotopy $h_{t}: S^{3} \times S^{1} \rightarrow S^{3} \times S^{1}$ with $h_{0}=i d$,

$$
h_{t}(\Lambda)=\Lambda_{t} .
$$

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$.
Proof. Let $\Lambda_{t}, t \in I$ be an isotopy of Λ.
Extend it to an isotopy $h_{t}: S^{3} \times S^{1} \rightarrow S^{3} \times S^{1}$ with $h_{0}=i d$,

$$
h_{t}(\Lambda)=\Lambda_{t} .
$$

Let $\widetilde{\Lambda}_{t} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ_{t} under

$$
S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)
$$

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$.
Proof. Let $\Lambda_{t}, t \in I$ be an isotopy of Λ.
Extend it to an isotopy $h_{t}: S^{3} \times S^{1} \rightarrow S^{3} \times S^{1}$ with $h_{0}=i d$,

$$
h_{t}(\Lambda)=\Lambda_{t} .
$$

Let $\widetilde{\Lambda}_{t} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ_{t} under

$$
S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)
$$

Let $L_{t, n}=\widetilde{\Lambda}_{t} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$,

$$
\text { and } W_{t, n}=\widetilde{\Lambda}_{t} \cap\left(S^{3} \times[n, n+1]\right) \text {. }
$$

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$.
Proof. Let $\Lambda_{t}, t \in I$ be an isotopy of Λ.
Extend it to an isotopy $h_{t}: S^{3} \times S^{1} \rightarrow S^{3} \times S^{1}$ with $h_{0}=i d$,

$$
h_{t}(\Lambda)=\Lambda_{t} .
$$

Let $\widetilde{\Lambda}_{t} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ_{t} under

$$
S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)
$$

Let $L_{t, n}=\widetilde{\Lambda}_{t} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$,

$$
\text { and } W_{t, n}=\widetilde{\Lambda}_{t} \cap\left(S^{3} \times[n, n+1]\right)
$$

Pull this new stuff back by $\widetilde{h}_{t}: S^{3} \times \mathbb{R} \rightarrow S^{3} \times \mathbb{R}$:

$$
\widetilde{h}_{t}^{-1}\left(L_{t, n}\right)=L_{n} \subset \widetilde{h}_{t}^{-1}\left(S^{3} \times\{n\}\right),
$$

$\widetilde{h}_{t}^{-1}\left(W_{t, n}\right)=\widetilde{\Lambda} \cap \widetilde{h}_{t}^{-1}\left(S^{3} \times[n, n+1]\right)$

Table of Contents

The main construction
Infinite cyclic covering
Seifert-Turaev construction
Results
Theory of Skeletons

Upgrading the colored Jones
State sum model for colored Jones
Building a special 2-skeleton
Partial state sums
Modules of a link

Skeletons
Recovery from a 2-skeleton
How 2-skeleton of a 3-manifold moves
How 2-skeleton of a 4-manifold moves
Generic 2-polyhedra with boundary
Relative 2-skeletons
Face state sums
Colors and colorings
Face state sums
Background invariants of knotted graphs
Construction of TQFT

