Hypergeometries. I

Oleg Viro

August 20, 2013

Hyperalgebra

- Triangle addition
- Hyperfields
- First examples of hyperfields
- Hyperrings
- Hyperring
homomorphisms
- Ideals and their
weakness
- New ideals
- Hyperfields of linear
orders
- The amoeba
hyperfield
- Tropical addition of
complex numbers
- Properties of tropical

Hyperalgebra

addition

- Tropical addition of
real numbers
- Other subhyperfields
of $\mathcal{T} \mathbb{C}$
- Hyperring
homomorphisms
- Sign and phase
- What are hyperfields
for?
Dequantizataions
Geometries over

Complex Tropical

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\} .
$$

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\} .
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c.

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\} .
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\}
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\} .
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0 ;
is associative

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\}
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0 ;
is associative, because
$(a \nabla b) \nabla c=\{x \mid \exists$ quadrilateral with sides $a, b, c, x\}=a \nabla(b \nabla c)$.

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\} .
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0 ;
is associative, because
$(a \nabla b) \nabla c=\{x \mid \exists$ quadrilateral with sides $a, b, c, x\}=a \nabla(b \nabla c)$.

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\}
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0 ;
is associative,
for each a, there exists unique b such that $0 \in a \nabla b$.

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\}
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0 ;
is associative,
for each a, there exists unique b such that $0 \in a \nabla b$.
This b is a.

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\}
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0 ;
is associative,
for each a, there exists unique b such that $0 \in a \nabla b$.
This b is a.
That is $-a=a$!

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\}
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0 ;
is associative, for each a, there exists unique b such that $0 \in a \nabla b$.

This b is a.
That is $-a=a$!
Distributivity: $a(b \nabla c)=a b \nabla a c$.

Triangle addition

In $\mathbb{R}_{\geq 0}$ define a multivalued addition:

$$
a \nabla b=\left\{c \in \mathbb{R}_{\geq 0}| | a-b \mid \leq c \leq a+b\right\}
$$

$a \nabla b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \nabla b$ is commutative; has zero 0 ;
is associative, for each a, there exists unique b such that $0 \in a \nabla b$.

This b is a. That is $-a=a$!
Distributivity: $a(b \nabla c)=a b \nabla a c$.
$\mathbb{R}_{\geq 0}$ with addition $(a, b) \mapsto a \nabla b$ and usual multiplication is a hyperfield.

Hyperfields

A set X with a multivalued operation

$$
X \times X \rightarrow 2^{X} \backslash\{\varnothing\}:(a, b) \mapsto a \top b
$$

and a multiplication $X \times X \rightarrow X:(a, b) \mapsto a \cdot b$ is called a hyperfield, if

- $(a, b) \mapsto a \top b$ is commutative, associative;
- $\exists 0 \in X$ such that 0 т $a=a$ for any $a \in X$;
- for $\forall a \in X$ there exists a unique $-a \in X$ such that $0 \in a \top(-a)$;
- $-(a \top b)=(-a) \top(-b)$
- $0 \cdot a=a \cdot 0=0$ for any $a \in X$;
- distributivity: $a(b \top c)=a b \top a c$ for any $a, b, c \in X$;
- $X \backslash 0$ is a commutative group under the multiplication.

First examples of hyperfields

$\mathbb{R}_{\geq 0}$ with $\tau=\nabla$ and the usual multiplication is a hyperfield.

First examples of hyperfields

$\mathbb{R}_{\geq 0}$ with $T=\nabla$ and the usual multiplication is a hyperfield. triangle hyperfield ∇.

First examples of hyperfields

$\mathbb{R}_{\geq 0}$ with $\tau=\nabla$ and the usual multiplication is a hyperfield. triangle hyperfield ∇.
The Krasner hyperfield: $\mathbf{K}=\{0,1\}$ with multivalued addition \curlyvee and $1 \curlyvee 1=\{0,1\}, 0 \curlyvee 0=0,0 \curlyvee 1=1,0 \cdot 0=0 \cdot 1=0,1 \cdot 1=1$.

First examples of hyperfields

$\mathbb{R}_{\geq 0}$ with $\tau=\nabla$ and the usual multiplication is a hyperfield. triangle hyperfield ∇.
The Krasner hyperfield: $\mathbf{K}=\{0,1\}$ with multivalued addition \curlyvee and $1 \curlyvee 1=\{0,1\}, 0 \curlyvee 0=0,0 \curlyvee 1=1,0 \cdot 0=0 \cdot 1=0,1 \cdot 1=1$.
The sign hyperfield: $\mathbf{S}=\{0,1,-1\}$ with $1 \smile 1=1,-1 \smile-1=-1$,

$$
1 \smile-1=\{1,0,-1\} .
$$

Hyperrings

A hyperring is a hyperfield with no division required.

Hyperrings

A hyperring is a hyperfield with no division required.
In a hyperring, the multiplication (still univalued)
may even have zero divisors.

Hyperrings

A hyperring is a hyperfield with no division required. In a hyperring, the multiplication (still univalued)
may even have zero divisors.
A commutative hyperring satisfies all the axioms of hyperfield except the last one.

Hyperrings

A hyperring is a hyperfield with no division required. In a hyperring, the multiplication (still univalued)
may even have zero divisors.
A commutative hyperring satisfies all the axioms of hyperfield except the last one.
If the multiplication in a hyperring is non-commutative, then two distributivities are postulated:
both $a(b \uparrow c)=a b \top a c$, and $(b \top c) a=b a \uparrow c a$.

Hyperrings

A hyperring is a hyperfield with no division required.
In a hyperring, the multiplication (still univalued)
may even have zero divisors.
A commutative hyperring satisfies all the axioms of hyperfield except the last one.
If the multiplication in a hyperring is non-commutative, then two distributivities are postulated:

$$
\text { both } a(b \top c)=a b \uparrow a c \text {, and }(b \top c) a=b a \top c a \text {. }
$$

For any hyperfield $X,(n \times n)$-matrices with elements from X and with obvious operations form a hyperring.

Hyperring homomorphisms

A map $f: X \rightarrow Y$ is called a (hyperring) homomorphism if $f(a \uparrow b) \subset f(a) \uparrow f(b)$ and $f(a b)=f(a) f(b)$ for any $a, b \in X$.

Hyperring homomorphisms

A map $f: X \rightarrow Y$ is called a (hyperring) homomorphism if

$$
f(a \uparrow b) \subset f(a) \uparrow f(b) \text { and } f(a b)=f(a) f(b) \text { for any } a, b \in X .
$$

Examples:

1. $\mathbb{C} \rightarrow \nabla: z \mapsto|z|$ is a hyperring homomorphism.

Hyperring homomorphisms

A map $f: X \rightarrow Y$ is called a (hyperring) homomorphism if

$$
f(a \uparrow b) \subset f(a) \uparrow f(b) \text { and } f(a b)=f(a) f(b) \text { for any } a, b \in X .
$$

Examples:

1. $\mathbb{C} \rightarrow \nabla: z \mapsto|z|$ is a hyperring homomorphism.
2. Generalization. A multiplicative norm $K \rightarrow \mathbb{R}_{\geq 0}$ in a ring K is a hyperring homomorphism $K \rightarrow \nabla$.

Hyperring homomorphisms

A map $f: X \rightarrow Y$ is called a (hyperring) homomorphism if

$$
f(a \uparrow b) \subset f(a) \subset f(b) \text { and } f(a b)=f(a) f(b) \text { for any } a, b \in X .
$$

Examples:

1. $\mathbb{C} \rightarrow \nabla: z \mapsto|z|$ is a hyperring homomorphism.
2. Generalization. A multiplicative norm $K \rightarrow \mathbb{R}_{\geq 0}$ in a ring K is a hyperring homomorphism $K \rightarrow \nabla$.
3. For any field (or hyperfield) X,

$$
X \rightarrow \mathbf{K}: x \mapsto\left\{\begin{array}{ll}
1, & \text { if } x \neq 0 \\
0, & \text { if } x=0
\end{array}\right. \text { is a hyperring homomorphism. }
$$

Hyperring homomorphisms

A map $f: X \rightarrow Y$ is called a (hyperring) homomorphism if

$$
f(a \uparrow b) \subset f(a) \uparrow f(b) \text { and } f(a b)=f(a) f(b) \text { for any } a, b \in X
$$

Examples:

1. $\mathbb{C} \rightarrow \nabla: z \mapsto|z|$ is a hyperring homomorphism.
2. Generalization. A multiplicative norm $K \rightarrow \mathbb{R}_{\geq 0}$ in a ring K is a hyperring homomorphism $K \rightarrow \nabla$.
3. For any field (or hyperfield) X,

$$
X \rightarrow \mathbf{K}: x \mapsto\left\{\begin{array}{ll}
1, & \text { if } x \neq 0 \\
0, & \text { if } x=0
\end{array}\right. \text { is a hyperring homomorphism. }
$$

4. sign $: \mathbb{R} \rightarrow \mathbf{S}: x \rightarrow\left\{\begin{array}{ll}+1, & \text { if } x>0 \\ 0, & \text { if } x=0 \\ -1, & \text { if } x<0 .\end{array}\right.$ is a hyperring homomorphism.

Ideals and their weakness

Ideal is a subset I in a hyperring X such that $I \top I \subset I$ and $X I \subset I$.

Ideals and their weakness

Ideal is a subset I in a hyperring X such that $I \mathrm{~T} I \subset I$ and $X I \subset I$. In a hyperfield X any ideal is either 0 or X.

Ideals and their weakness

Ideal is a subset I in a hyperring X such that $I T I \subset I$ and $X I \subset I$. In a hyperfield X any ideal is either 0 or X.

For hyperrings X, Y and a hyperring homomorphism $h: X \rightarrow Y$, the kernel Ker $h=\{a \in X \mid h(a)=0\}$ is an ideal.

Ideals and their weakness

Ideal is a subset I in a hyperring X such that $I T I \subset I$ and $X I \subset I$.
In a hyperfield X any ideal is either 0 or X.
For hyperrings X, Y and a hyperring homomorphism $h: X \rightarrow Y$, the kernel $\operatorname{Ker} h=\{a \in X \mid h(a)=0\}$ is an ideal.
However, the image of a hyperring homomorphism $h: X \rightarrow Y$ is not isomorphic to $X / \operatorname{Ker} h$.

Ideals and their weakness

Ideal is a subset I in a hyperring X such that $I \top I \subset I$ and $X I \subset I$.
In a hyperfield X any ideal is either 0 or X.
For hyperrings X, Y and a hyperring homomorphism $h: X \rightarrow Y$, the kernel $\operatorname{Ker} h=\{a \in X \mid h(a)=0\}$ is an ideal.
However, the image of a hyperring homomorphism $h: X \rightarrow Y$ is not isomorphic to $X / \operatorname{Ker} h$.

Moreover, there are non-injective hyperring homomorphisms between hyperfields. (e.g., sign : $\mathbb{R} \rightarrow \mathbf{S}$ and $z \mapsto|z|: \mathbb{C} \rightarrow \nabla$).

Ideals and their weakness

Ideal is a subset I in a hyperring X such that $I \subset I \subset I$ and $X I \subset I$.
In a hyperfield X any ideal is either 0 or X.
For hyperrings X, Y and a hyperring homomorphism $h: X \rightarrow Y$, the kernel Ker $h=\{a \in X \mid h(a)=0\}$ is an ideal.
However, the image of a hyperring homomorphism $h: X \rightarrow Y$ is not isomorphic to $X / \operatorname{Ker} h$.

Moreover, there are non-injective hyperring homomorphisms between hyperfields. (e.g., sign : $\mathbb{R} \rightarrow \mathbf{S}$ and $z \mapsto|z|: \mathbb{C} \rightarrow \nabla$).

If X is a hyperfield, $h: X \rightarrow Y$ a hyperring homomorphism, then $\operatorname{Ker} h$ is an ideal in X and hence $\operatorname{Ker} h=0$.

New ideals

Table of Contents

New ideals

The role of $\operatorname{Ker} f$ is taken over by the multiplicative kernel $\operatorname{Ker}_{m} f=f^{-1}(1)$.

New ideals

The role of $\operatorname{Ker} f$ is taken over by the multiplicative kernel $\operatorname{Ker}_{m} f=f^{-1}(1)$.

Theorem (Krasner 1962) For any hyperfield X and a subgroup S of X^{\times}, the quotient $X / m S=\{0\} \cup X^{\times} / S$ is a hyperfield.

New ideals

The role of $\operatorname{Ker} f$ is taken over by the multiplicative kernel $\operatorname{Ker}_{m} f=f^{-1}(1)$.

Theorem (Krasner 1962) For any hyperfield X and a subgroup S of X^{\times}, the quotient $X / m S=\{0\} \cup X^{\times} / S$ is a hyperfield.

If X is a hyperfield, $h: X \rightarrow Y$ a hyperring homomorphism, then $\operatorname{Im} h$ is isomorphic to $X / m \operatorname{Ker}_{m} f$.

New ideals

The role of $\operatorname{Ker} f$ is taken over by the multiplicative kernel $\operatorname{Ker}_{m} f=f^{-1}(1)$.

Theorem (Krasner 1962) For any hyperfield X and a subgroup S of X^{\times}, the quotient $X / m S=\{0\} \cup X^{\times} / S$ is a hyperfield.

If X is a hyperfield, $h: X \rightarrow Y$ a hyperring homomorphism, then $\operatorname{Im} h$ is isomorphic to $X / m \operatorname{Ker}_{m} f$.

Examples.

- $\nabla=\mathbb{C} /{ }_{m} U(1)$,
- $\mathbf{S}=\mathbb{R} / m\{ \pm 1\}$,
- $\mathbf{K}=k /{ }_{m} k^{\times}$for any field k.

New ideals

The role of $\operatorname{Ker} f$ is taken over by the multiplicative kernel $\operatorname{Ker}_{m} f=f^{-1}(1)$.

Theorem (Krasner 1962) For any hyperfield X and a subgroup S of X^{\times}, the quotient $X / m S=\{0\} \cup X^{\times} / S$ is a hyperfield.

If X is a hyperfield, $h: X \rightarrow Y$ a hyperring homomorphism, then $\operatorname{Im} h$ is isomorphic to $X / m \operatorname{Ker}_{m} f$.

Examples.

- $\nabla=\mathbb{C} /{ }_{m} U(1)$,
- $\mathbf{S}=\mathbb{R} / m\{ \pm 1\}$,
- $\mathbf{K}=k / m k^{\times}$for any field k.

Most of interesting hyperfields can be defined in this Krasner way.

New ideals

The role of $\operatorname{Ker} f$ is taken over by the multiplicative kernel $\operatorname{Ker}_{m} f=f^{-1}(1)$.

Theorem (Krasner 1962) For any hyperfield X and a subgroup S of X^{\times}, the quotient $X / m S=\{0\} \cup X^{\times} / S$ is a hyperfield.

If X is a hyperfield, $h: X \rightarrow Y$ a hyperring homomorphism, then $\operatorname{Im} h$ is isomorphic to $X / m \operatorname{Ker}_{m} f$.

Examples.

- $\nabla=\mathbb{C} /{ }_{m} U(1)$,
- $\mathbf{S}=\mathbb{R} / m\{ \pm 1\}$,
- $\mathbf{K}=k / m k^{\times}$for any field k.

Most of interesting hyperfields can be defined in this Krasner way.
For hyperrings the notion of ideal should be borrowed from Berkovich's \mathbb{F}_{1} category.

Hyperfields of linear orders

Let X be a linearly ordered multiplicative group

$$
\text { and } Y=X \cup\{0\} \text { with } 0<a \text { for any } a \in X \text {. }
$$

Hyperfields of linear orders

Let X be a linearly ordered multiplicative group

$$
\text { and } Y=X \cup\{0\} \text { with } 0<a \text { for any } a \in X \text {. }
$$

Define a multivalued addition Y :

$$
(a, b) \mapsto a \curlyvee b= \begin{cases}\max (a, b), & \text { if } a \neq b \\ \{x \in Y \mid x \leq a\}, & \text { if } a=b .\end{cases}
$$

Hyperfields of linear orders

Let X be a linearly ordered multiplicative group

$$
\text { and } Y=X \cup\{0\} \text { with } 0<a \text { for any } a \in X \text {. }
$$

Define a multivalued addition Y :

$$
(a, b) \mapsto a \curlyvee b= \begin{cases}\max (a, b), & \text { if } a \neq b \\ \{x \in Y \mid x \leq a\}, & \text { if } a=b .\end{cases}
$$

(Y, Y, \times) is a hyperfield.

Hyperfields of linear orders

Let X be a linearly ordered multiplicative group

$$
\text { and } Y=X \cup\{0\} \text { with } 0<a \text { for any } a \in X \text {. }
$$

Define a multivalued addition Υ :

$$
(a, b) \mapsto a \curlyvee b= \begin{cases}\max (a, b), & \text { if } a \neq b \\ \{x \in Y \mid x \leq a\}, & \text { if } a=b .\end{cases}
$$

(Y, Y, X) is a hyperfield.
If X is the additive group of real numbers with the usual order, then $Y=\mathbb{R} \cup\{-\infty\}$ is the tropical hyperfield \mathbb{Y}.

Hyperfields of linear orders

Let X be a linearly ordered multiplicative group

$$
\text { and } Y=X \cup\{0\} \text { with } 0<a \text { for any } a \in X \text {. }
$$

Define a multivalued addition Υ :

$$
(a, b) \mapsto a \curlyvee b= \begin{cases}\max (a, b), & \text { if } a \neq b \\ \{x \in Y \mid x \leq a\}, & \text { if } a=b .\end{cases}
$$

(Y, Y, X) is a hyperfield.
If X is the additive group of real numbers with the usual order, then $Y=\mathbb{R} \cup\{-\infty\}$ is the tropical hyperfield \mathbb{Y}.
If X is the same group with the reversed order,

$$
\text { then } Y=\mathbb{R} \cup\{+\infty\} \text { is the value hyperfield } \mathbb{V} \text {. }
$$

Hyperfields of linear orders

Let X be a linearly ordered multiplicative group

$$
\text { and } Y=X \cup\{0\} \text { with } 0<a \text { for any } a \in X \text {. }
$$

Define a multivalued addition Y :

$$
(a, b) \mapsto a \curlyvee b= \begin{cases}\max (a, b), & \text { if } a \neq b \\ \{x \in Y \mid x \leq a\}, & \text { if } a=b .\end{cases}
$$

(Y, Y, \times) is a hyperfield.
If X is the additive group of real numbers with the usual order, then $Y=\mathbb{R} \cup\{-\infty\}$ is the tropical hyperfield \mathbb{Y}.
If X is the same group with the reversed order, then $Y=\mathbb{R} \cup\{+\infty\}$ is the value hyperfield \mathbb{V}.
If X is the multiplicative group positive real numbers,
then Y is the ultratriangular hyperfield $\mathrm{U} \nabla$.

Hyperfields of linear orders

Let X be a linearly ordered multiplicative group

$$
\text { and } Y=X \cup\{0\} \text { with } 0<a \text { for any } a \in X \text {. }
$$

Define a multivalued addition Υ :

$$
(a, b) \mapsto a \curlyvee b= \begin{cases}\max (a, b), & \text { if } a \neq b \\ \{x \in Y \mid x \leq a\}, & \text { if } a=b .\end{cases}
$$

(Y, Y, X) is a hyperfield.
If X is the additive group of real numbers with the usual order, then $Y=\mathbb{R} \cup\{-\infty\}$ is the tropical hyperfield \mathbb{Y}.
If X is the same group with the reversed order, then $Y=\mathbb{R} \cup\{+\infty\}$ is the value hyperfield \mathbb{V}.
If X is the multiplicative group positive real numbers,
then Y is the ultratriangular hyperfield $\mathrm{U} \nabla$.
$U \nabla$ is isomorphic to \mathbb{Y} by \exp.

Hyperfields of linear orders

Let X be a linearly ordered multiplicative group

$$
\text { and } Y=X \cup\{0\} \text { with } 0<a \text { for any } a \in X \text {. }
$$

Define a multivalued addition \curlyvee :

$$
(a, b) \mapsto a \curlyvee b= \begin{cases}\max (a, b), & \text { if } a \neq b \\ \{x \in Y \mid x \leq a\}, & \text { if } a=b .\end{cases}
$$

(Y, Y, \times) is a hyperfield.
If X is the additive group of real numbers with the usual order, then $Y=\mathbb{R} \cup\{-\infty\}$ is the tropical hyperfield \mathbb{Y}.
If X is the same group with the reversed order, then $Y=\mathbb{R} \cup\{+\infty\}$ is the value hyperfield \mathbb{V}.
If X is the multiplicative group positive real numbers,
then Y is the ultratriangular hyperfield $\mathrm{U} \nabla$.
$U \nabla$ is isomorphic to \mathbb{Y} by \exp. It can be obtained like ∇, but with ultrametric triangle instead of triangle inequality.

Hyperfields of linear orders

Let X be a linearly ordered multiplicative group

$$
\text { and } Y=X \cup\{0\} \text { with } 0<a \text { for any } a \in X \text {. }
$$

Define a multivalued addition Y :

$$
(a, b) \mapsto a \curlyvee b= \begin{cases}\max (a, b), & \text { if } a \neq b \\ \{x \in Y \mid x \leq a\}, & \text { if } a=b .\end{cases}
$$

(Y, Y, \times) is a hyperfield.
If X is the additive group of real numbers with the usual order, then $Y=\mathbb{R} \cup\{-\infty\}$ is the tropical hyperfield \mathbb{Y}.
If X is the same group with the reversed order, then $Y=\mathbb{R} \cup\{+\infty\}$ is the value hyperfield \mathbb{V}.
If X is the multiplicative group positive real numbers,
then Y is the ultratriangular hyperfield $\mathrm{U} \nabla$.
$U \nabla$ is isomorphic to \mathbb{Y} by exp. It can be obtained like ∇, but with ultrametric triangle instead of triangle inequality.
Ultrametric = isosceles with legs not shorter than the base.

The amoeba hyperfield

Another view on the triangular hyperfield ∇ :

The amoeba hyperfield

Another view on the triangular hyperfield ∇ :
By the bijection

$$
\mathbb{R} \cup\{-\infty\} \rightarrow \mathbb{R}_{\geq 0}:\left\{\begin{array}{l}
x \mapsto \log x, \quad \text { for } x \neq-\infty \\
-\infty \mapsto 0
\end{array}\right.
$$

pull back the hyperfield operations of ∇.

The amoeba hyperfield

Another view on the triangular hyperfield ∇ :
By the bijection

$$
\mathbb{R} \cup\{-\infty\} \rightarrow \mathbb{R}_{\geq 0}:\left\{\begin{array}{l}
x \mapsto \log x, \quad \text { for } x \neq-\infty \\
-\infty \mapsto 0
\end{array}\right.
$$

pull back the hyperfield operations of ∇.
The hyperfield gotten as the result
is called the amoeba hyperfield and denoted by \mathcal{A}.

Tropical addition of complex numbers

\longrightarrow

\rightarrow

Tropical addition of complex numbers

\mathbb{C} with the tropical addition and usual multiplication is a hyperfield.

Tropical addition of complex numbers

\mathbb{C} with the tropical addition and usual multiplication is a hyperfield.
The complex tropical hyperfield $\mathcal{T} \mathbb{C}$.

Properties of tropical addition

Properties of tropical addition

How do several complex numbers with the same absolute values give zero?

Properties of tropical addition

$$
0 \in a \smile b \smile c \smile \ldots \smile x \quad \text { iff } \quad 0 \in \operatorname{Conv}(a, b, c, \ldots, x) .
$$

Properties of tropical addition

$$
0 \in a \smile b \smile c \smile \ldots \smile x \quad \text { iff } \quad 0 \in \operatorname{Conv}(a, b, c, \ldots, x)
$$

What if the summands have different absolute values?

Properties of tropical addition

$$
0 \in a \smile b \smile c \smile \ldots \smile x \quad \text { iff } \quad 0 \in \operatorname{Conv}(a, b, c, \ldots, x) .
$$

What if the summands have different absolute values?
Then only those with the greatest one matter!

Properties of tropical addition

$$
0 \in a \smile b \smile c \smile \ldots \smile x \quad \text { iff } \quad 0 \in \operatorname{Conv}(a, b, c, \ldots, x) .
$$

What if the summands have different absolute values?
Then only those with the greatest one matter!

Theorem. The tropical addition \smile is upper semi-continuous and maps a connected set to a connected set and a compact set to a compact set.

Properties of tropical addition

$$
0 \in a \smile b \smile c \smile \ldots \smile x \quad \text { iff } \quad 0 \in \operatorname{Conv}(a, b, c, \ldots, x) .
$$

What if the summands have different absolute values?
Then only those with the greatest one matter!

Theorem. The tropical addition \smile is upper semi-continuous and maps a connected set to a connected set and a compact set to a compact set.

Corollary. The multivalued map defined by a complex tropical polynomial is upper semi-continuous. It preserves connectedness and compactness.

Properties of tropical addition

$$
0 \in a \smile b \smile c \smile \ldots \smile x \quad \text { iff } \quad 0 \in \operatorname{Conv}(a, b, c, \ldots, x) .
$$

What if the summands have different absolute values?
Then only those with the greatest one matter!

Theorem. The tropical addition \smile is upper semi-continuous and maps a connected set to a connected set and a compact set to a compact set.

Corollary. The multivalued map defined by a complex tropical polynomial is upper semi-continuous. It preserves connectedness and compactness.

If p is a complex tropical polynomial and $X \subset \mathbb{C}$ is a closed set, then $p^{-1}(X)=\{a \mid X \subset p(a)\}$ is closed.

Tropical addition of real numbers

The tropical addition in \mathbb{C} induces a tropical addition in \mathbb{R}.

Tropical addition of real numbers

The tropical addition in \mathbb{C} induces a tropical addition in \mathbb{R}.

Tropical addition of real numbers

The tropical addition in \mathbb{C} induces a tropical addition in \mathbb{R}.

For $a, b \in \mathbb{R}$
$a \smile_{\mathbb{R}} b=\left\{\begin{array}{lll}\{a\}, & \text { if } & |a|>|b|, \\ \{b\}, & \text { if } & |a|<|b|, \\ \{a\}, & \text { if } & a=b, \\ {[-|a|,|a|],} & \text { if } & a=-b,\end{array}\right.$

Tropical addition of real numbers

The tropical addition in \mathbb{C} induces a tropical addition in \mathbb{R}.

For $a, b \in \mathbb{R}$
$a \smile_{\mathbb{R}} b=\left\{\begin{array}{lll}\{a\}, & \text { if } & |a|>|b|, \\ \{b\}, & \text { if } & |a|<|b|, \\ \{a\}, & \text { if } & a=b, \\ {[-|a|,|a|],} & \text { if } & a=-b .\end{array}\right.$
Theorem. $\mathcal{T} \mathbb{R}=\left(\mathbb{R}, \smile_{\mathbb{R}}, \times\right)$ is a hyperfield.

Other subhyperfields of $\mathcal{T} \mathbb{C}$

The sign hyperfield $\mathbf{S}=\{0,1,-1\}$ is a subhyperfield of $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.

Other subhyperfields of $\mathcal{T} \mathbb{C}$

The sign hyperfield $\mathrm{S}=\{0,1,-1\}$ is a subhyperfield of $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.
The Krasner hyperfield $\mathbf{K}=\{0,1\}$ is not, because $\mathcal{T} \mathbb{C}$ is idempotent:

$$
a \smile a=a \text { for any } a \in \mathcal{T} \mathbb{C}, \quad \text { while } 1 \curlyvee 1=\{0,1\} \text { in } \mathbf{K} .
$$

Other subhyperfields of $\mathcal{T} \mathbb{C}$

The sign hyperfield $\mathbf{S}=\{0,1,-1\}$ is a subhyperfield of $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.
The Krasner hyperfield $\mathbf{K}=\{0,1\}$ is not, because $\mathcal{T} \mathbb{C}$ is idempotent:

$$
a \smile a=a \text { for any } a \in \mathcal{T} \mathbb{C}, \quad \text { while } 1 \curlyvee 1=\{0,1\} \text { in } \mathbf{K} .
$$

According to Connes and Consani, $a \in a \top a$ means characteristic one.

Other subhyperfields of $\mathcal{T} \mathbb{C}$

The sign hyperfield $\mathrm{S}=\{0,1,-1\}$ is a subhyperfield of $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.
Theorem. Any $X \subset \mathbb{C}$ containing 0 and 1 , closed under multiplication, invariant under $z \mapsto-z$, and such that $X \backslash\{0\}$ is invariant under $z \mapsto z^{-1}$ inherits from $\mathcal{T} \mathbb{C}$ the structure of hyperfield.

Other subhyperfields of $\mathcal{T} \mathbb{C}$

The sign hyperfield $\mathbf{S}=\{0,1,-1\}$ is a subhyperfield of $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.
Theorem. Any $X \subset \mathbb{C}$ containing 0 and 1 , closed under multiplication, invariant under $z \mapsto-z$, and such that $X \backslash\{0\}$ is invariant under $z \mapsto z^{-1}$ inherits from $\mathcal{T} \mathbb{C}$ the structure of hyperfield.

In particular, the phase hyperfield $\Phi=S^{1} \cup 0=\left\{z \in \mathbb{C}:|z|^{2}=|z|\right\}$.

Other subhyperfields of $\mathcal{T} \mathbb{C}$

The sign hyperfield $\mathrm{S}=\{0,1,-1\}$ is a subhyperfield of $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.
Theorem. Any $X \subset \mathbb{C}$ containing 0 and 1 , closed under multiplication, invariant under $z \mapsto-z$, and such that $X \backslash\{0\}$ is invariant under $z \mapsto z^{-1}$ inherits from $\mathcal{T} \mathbb{C}$ the structure of hyperfield.

In particular, the phase hyperfield $\Phi=S^{1} \cup 0=\left\{z \in \mathbb{C}:|z|^{2}=|z|\right\}$.
The exponential copy $\left(\mathbb{R}_{\geq 0}\right.$, max, \times) of tropical semifield \mathbb{T} is a subsemifield of hyperfields $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.

Other subhyperfields of $\mathcal{T} \mathbb{C}$

The sign hyperfield $\mathrm{S}=\{0,1,-1\}$ is a subhyperfield of $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.
Theorem. Any $X \subset \mathbb{C}$ containing 0 and 1 , closed under multiplication, invariant under $z \mapsto-z$, and such that $X \backslash\{0\}$ is invariant under $z \mapsto z^{-1}$ inherits from $\mathcal{T} \mathbb{C}$ the structure of hyperfield.

In particular, the phase hyperfield $\Phi=S^{1} \cup 0=\left\{z \in \mathbb{C}:|z|^{2}=|z|\right\}$.
The exponential copy $\left(\mathbb{R}_{\geq 0}\right.$, max, \times) of tropical semifield \mathbb{T} is a subsemifield of hyperfields $\mathcal{T} \mathbb{R} \subset \mathcal{T} \mathbb{C}$.

The inclusion $\left(\mathbb{R}_{\geq 0}, \max , x\right) \hookrightarrow \mathcal{T} \mathbb{R}$ is a homomorphism.

Hyperring homomorphisms

Hyperring is a hyperfield with no division required.
A map $f: X \rightarrow Y$ is called a (hyperring) homomorphism if $f(a \uparrow b) \subset f(a) \uparrow f(b)$ and $f(a b)=f(a) f(b)$ for any $a, b \in X$.

Hyperring homomorphisms

Hyperring is a hyperfield with no division required.
A map $f: X \rightarrow Y$ is called a (hyperring) homomorphism if $f(a \uparrow b) \subset f(a) \uparrow f(b)$ and $f(a b)=f(a) f(b)$ for any $a, b \in X$.
Example. $\mathbb{C} \rightarrow \nabla: z \mapsto|z|$ is a hyperring homomorphism.

Hyperring homomorphisms

Hyperring is a hyperfield with no division required.
A map $f: X \rightarrow Y$ is called a (hyperring) homomorphism if $f(a \uparrow b) \subset f(a) \uparrow f(b)$ and $f(a b)=f(a) f(b)$ for any $a, b \in X$.
Example. $\mathbb{C} \rightarrow \nabla: z \mapsto|z|$ is a hyperring homomorphism.
Generalization. A multiplicative norm $K \rightarrow \mathbb{R}_{\geq 0}$ in a ring K is a hyperring homomorphism $K \rightarrow \nabla$.

Hyperring homomorphisms

Hyperring is a hyperfield with no division required.
A map $f: X \rightarrow Y$ is called a (hyperring) homomorphism if $f(a \uparrow b) \subset f(a) \uparrow f(b)$ and $f(a b)=f(a) f(b)$ for any $a, b \in X$.
Example. $\mathbb{C} \rightarrow \nabla: z \mapsto|z|$ is a hyperring homomorphism.
Generalization. A multiplicative norm $K \rightarrow \mathbb{R}_{\geq 0}$ in a ring K is a hyperring homomorphism $K \rightarrow \nabla$.
A multiplicative non-archimedean norm $K \rightarrow \mathbb{R}$
is a hyperring homomorphism from $K \rightarrow \mathrm{U} \nabla$.
non-archimedian $=$ satisfies the ultra-metric triangle inequality

$$
|a+b| \leq \max (a, b) \text { for any } a, b \in K .
$$

Hyperring homomorphisms

Hyperring is a hyperfield with no division required.
A map $f: X \rightarrow Y$ is called a (hyperring) homomorphism if $f(a \uparrow b) \subset f(a) \uparrow f(b)$ and $f(a b)=f(a) f(b)$ for any $a, b \in X$.
Example. $\mathbb{C} \rightarrow \nabla: z \mapsto|z|$ is a hyperring homomorphism.
Generalization. A multiplicative norm $K \rightarrow \mathbb{R}_{\geq 0}$ in a ring K is a hyperring homomorphism $K \rightarrow \nabla$.
A multiplicative non-archimedean norm $K \rightarrow \mathbb{R}$
is a hyperring homomorphism from $K \rightarrow \mathrm{U} \nabla$.
A valuation $K \rightarrow \mathbb{R} \cup\{\infty\}$ for a ring K
is a hyperring homomorphism $K \rightarrow \mathbb{V}$.

Hyperring homomorphisms

Hyperring is a hyperfield with no division required.
A map $f: X \rightarrow Y$ is called a (hyperring) homomorphism if $f(a \uparrow b) \subset f(a) \uparrow f(b)$ and $f(a b)=f(a) f(b)$ for any $a, b \in X$.
Example. $\mathbb{C} \rightarrow \nabla: z \mapsto|z|$ is a hyperring homomorphism.
Generalization. A multiplicative norm $K \rightarrow \mathbb{R}_{\geq 0}$ in a ring K is a hyperring homomorphism $K \rightarrow \nabla$.
A multiplicative non-archimedean norm $K \rightarrow \mathbb{R}$
is a hyperring homomorphism from $K \rightarrow \mathrm{U} \nabla$.
A valuation $K \rightarrow \mathbb{R} \cup\{\infty\}$ for a ring K
is a hyperring homomorphism $K \rightarrow \mathbb{V}$.

Valuations are nothing but hyperring homomorphisms to \mathbb{V} !

Sign and phase

Sign and phase

The map

$$
\operatorname{sign}: \mathbb{R} \rightarrow\{0,1,-1\}: x \mapsto \begin{cases}\frac{x}{|x|}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

is a hyperring homomorphism $\mathbb{R} \rightarrow \mathrm{S}$ and $\mathcal{T} \mathbb{R} \rightarrow \mathrm{S}$.

Sign and phase

The map

$$
\operatorname{sign}: \mathbb{R} \rightarrow\{0,1,-1\}: x \mapsto \begin{cases}\frac{x}{|x|}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

is a hyperring homomorphism $\mathbb{R} \rightarrow \mathrm{S}$ and $\mathcal{T} \mathbb{R} \rightarrow \mathrm{S}$.
The map

$$
\text { phase : } \mathbb{C} \rightarrow S^{1} \cup\{0\}: x \mapsto \begin{cases}\frac{x}{|x|}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

is a hyperring homomorphism $\mathbb{C} \rightarrow \Phi$ and $\mathcal{T} \mathbb{C} \rightarrow \Phi$.

What are hyperfields for?

What are hyperfields for?

Fields are too rigid.

What are hyperfields for?

Fields are too rigid.
Hyperfields admit more deformations.

What are hyperfields for?

Fields are too rigid.
Hyperfields admit more deformations.
Krasner approximated fields of characteristic $p>0$
by hyperfields of characteristic 0 .

What are hyperfields for?

Fields are too rigid.
Hyperfields admit more deformations.
Krasner approximated fields of characteristic $p>0$
by hyperfields of characteristic 0 .
Characteristic 1?
Traditional tropical geometry is a geometry of (degenerated) amoebas.

What are hyperfields for?

Fields are too rigid.
Hyperfields admit more deformations.
Krasner approximated fields of characteristic $p>0$
by hyperfields of characteristic 0 .
Characteristic 1 ?
Traditional tropical geometry is a geometry of (degenerated) amoebas.
Hyperfields recover real and complex varieties in tropical geometry.

Dequantizataions

- Litvinov-Maslov
dequantization
- Dequantization
$\nabla \rightarrow \mathrm{U} \nabla$
- Dequantization \mathbb{C} to
$\mathcal{T} \mathbb{C}$
- Dequantizations
commute
Geometries over
Hyperfields
Complex Tropical
Geometry
Polynomials over a hyperfield

Dequantizataions

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

These are multiplicative homomorphisms.

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

These are multiplicative homomorphisms, but they do not respect addition.

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the addition:

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the addition: $a+{ }_{h} b=R_{h}^{-1}\left(R_{h}(a)+R_{h}(b)\right)$

$$
=\left(a^{1 / h}+b^{1 / h}\right)^{h}
$$

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the addition: $a+{ }_{h} b=R_{h}^{-1}\left(R_{h}(a)+R_{h}(b)\right)$

$$
=\left(a^{1 / h}+b^{1 / h}\right)^{h}
$$

$R_{h}=\left(\mathbb{R}_{\geq 0},{ }_{h}, \times\right)$ is a copy of semifield $\left(\mathbb{R}_{\geq 0},+, \times\right)$ and $R_{h}: P_{h} \rightarrow\left(\mathbb{R}_{\geq 0},+, \times\right)$ is an isomorphism.

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the addition: $a+{ }_{h} b=R_{h}^{-1}\left(R_{h}(a)+R_{h}(b)\right)$

$$
=\left(a^{1 / h}+b^{1 / h}\right)^{h}
$$

$R_{h}=\left(\mathbb{R}_{\geq 0},+_{h}, \times\right)$ is a copy of semifield $\left(\mathbb{R}_{\geq 0},+, \times\right)$ and $R_{h}: P_{h} \rightarrow\left(\mathbb{R}_{\geq 0},+, \times\right)$ is an isomorphism.
$\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=\max (a, b)$.

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the addition: $a+{ }_{h} b=R_{h}^{-1}\left(R_{h}(a)+R_{h}(b)\right)$

$$
=\left(a^{1 / h}+b^{1 / h}\right)^{h}
$$

$R_{h}=\left(\mathbb{R}_{\geq 0},{ }_{h}, \times\right)$ is a copy of semifield $\left(\mathbb{R}_{\geq 0},+, \times\right)$ and $R_{h}: P_{h} \rightarrow\left(\mathbb{R}_{\geq 0},+, \times\right)$ is an isomorphism.
$\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=\max (a, b)$.
P_{h} is a degeneration of $\left(\mathbb{R}_{\geq 0},+, \times\right)$ to $\left(\mathbb{R}_{\geq 0}, \max , \times\right)$.

Litvinov-Maslov dequantization

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the addition: $a+{ }_{h} b=R_{h}^{-1}\left(R_{h}(a)+R_{h}(b)\right)$

$$
=\left(a^{1 / h}+b^{1 / h}\right)^{h}
$$

$R_{h}=\left(\mathbb{R}_{\geq 0},{ }_{h}, \times\right)$ is a copy of semifield $\left(\mathbb{R}_{\geq 0},+, \times\right)$ and $R_{h}: P_{h} \rightarrow\left(\mathbb{R}_{\geq 0},+, \times\right)$ is an isomorphism.
$\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=\max (a, b)$.
P_{h} is a dequantization of $\left(\mathbb{R}_{\geq 0},+, \times\right)$ to $\left(\mathbb{R}_{\geq 0}, \max , \times\right)$.

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

These are multiplicative homomorphisms.

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

These are multiplicative homomorphisms, but they do not respect $(a, b) \mapsto a \nabla b$.

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the ∇-addition:

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the ∇-addition: $a \nabla_{h} b=R_{h}^{-1}\left(R_{h}(a) \nabla R_{h}(b)\right)$

$$
=\left\{c \in \mathbb{R}_{\geq 0}| | a^{1 / h}-\left.b^{1 / h}\right|^{h} \leq c \leq\left(a^{1 / h}+b^{1 / h}\right)^{h}\right\}
$$

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the ∇-addition: $a \nabla_{h} b=R_{h}^{-1}\left(R_{h}(a) \nabla R_{h}(b)\right)$

$$
=\left\{c \in \mathbb{R}_{\geq 0}| | a^{1 / h}-\left.b^{1 / h}\right|^{h} \leq c \leq\left(a^{1 / h}+b^{1 / h}\right)^{h}\right\}
$$

$\nabla_{h}=\left(\mathbb{R}_{\geq 0}, \nabla_{h}, \cdot\right)$ is a copy of ∇ and $R_{h}: \nabla_{h} \rightarrow \nabla$ is an isomorphism.

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the ∇-addition: $a \nabla_{h} b=R_{h}^{-1}\left(R_{h}(a) \nabla R_{h}(b)\right)$

$$
=\left\{c \in \mathbb{R}_{\geq 0}| | a^{1 / h}-\left.b^{1 / h}\right|^{h} \leq c \leq\left(a^{1 / h}+b^{1 / h}\right)^{h}\right\}
$$

$\nabla_{h}=\left(\mathbb{R}_{\geq 0}, \nabla_{h}, \cdot\right)$ is a copy of ∇ and $R_{h}: \nabla_{h} \rightarrow \nabla$ is an isomorphism.
If $a \neq b$, then
$\lim _{h \rightarrow 0}\left|a^{1 / h}-b^{1 / h}\right|^{h}=\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=\max (a, b)$,
if $a=b$, then $\left|a^{1 / h}-b^{1 / h}\right|^{h}=0$, while $\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=a$.

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{n}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Pull back the ∇-addition: $a \nabla_{h} b=R_{h}^{-1}\left(R_{h}(a) \nabla R_{h}(b)\right)$

$$
=\left\{c \in \mathbb{R}_{\geq 0}| | a^{1 / h}-\left.b^{1 / h}\right|^{h} \leq c \leq\left(a^{1 / h}+b^{1 / h}\right)^{h}\right\}
$$

$\nabla_{h}=\left(\mathbb{R}_{\geq 0}, \nabla_{h}, \cdot\right)$ is a copy of ∇ and $R_{h}: \nabla_{h} \rightarrow \nabla$ is an isomorphism.
If $a \neq b$, then
$\lim _{h \rightarrow 0}\left|a^{1 / h}-b^{1 / h}\right|^{h}=\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=\max (a, b)$,
if $a=b$, then $\left|a^{1 / h}-b^{1 / h}\right|^{h}=0$, while $\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=a$.
The endpoints of segment $a \nabla_{h} b$ tend
to the endpoints of segment $a \curlyvee b$ as $h \rightarrow 0$.

Dequantization $\nabla \rightarrow \mathrm{U} \nabla$

For $h>0$, consider a map $R_{h}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

$$
x \mapsto \begin{cases}x^{\frac{1}{h}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 .\end{cases}
$$

Pull back the ∇-addition: $a \nabla_{h} b=R_{h}^{-1}\left(R_{h}(a) \nabla R_{h}(b)\right)$

$$
=\left\{c \in \mathbb{R}_{\geq 0}| | a^{1 / h}-\left.b^{1 / h}\right|^{h} \leq c \leq\left(a^{1 / h}+b^{1 / h}\right)^{h}\right\}
$$

$\nabla_{h}=\left(\mathbb{R}_{\geq 0}, \nabla_{h}, \cdot\right)$ is a copy of ∇ and $R_{h}: \nabla_{h} \rightarrow \nabla$ is an isomorphism.
If $a \neq b$, then
$\lim _{h \rightarrow 0}\left|a^{1 / h}-b^{1 / h}\right|^{h}=\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=\max (a, b)$,
if $a=b$, then $\left|a^{1 / h}-b^{1 / h}\right|^{h}=0$, while $\lim _{h \rightarrow 0}\left(a^{1 / h}+b^{1 / h}\right)^{h}=a$.
The endpoints of segment $a \nabla_{h} b$ tend
to the endpoints of segment $a \curlyvee b$ as $h \rightarrow 0$.

$$
\text { Let } a \nabla_{0} b:=a \curlyvee b \text {. }
$$

∇_{h} is a dequantization of ∇ to $U \nabla$.

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

These are multiplicative isomorphisms.

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 ; \\ 0, & \text { if } z=0\end{cases}
$$

These are multiplicative isomorphisms, but they do not respect the addition.

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 ; \\ 0, & \text { if } z=0\end{cases}
$$

Pull back the addition via S_{h} :

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 ; \\ 0, & \text { if } z=0\end{cases}
$$

Pull back the addition via S_{h} :

$$
z+{ }_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 ; \\ 0, & \text { if } z=0\end{cases}
$$

Pull back the addition via S_{h} :

$$
z+{ }_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

$\mathbb{C}_{h}=\mathbb{C}_{+_{h}, \times}$ is a copy of \mathbb{C} and $S_{h}: \mathbb{C}_{h} \rightarrow \mathbb{C}$ is an isomorphism.

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Pull back the addition via S_{h} :

$$
z+{ }_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

$\mathbb{C}_{h}=\mathbb{C}_{+_{h}, \times}$ is a copy of \mathbb{C} and $S_{h}: \mathbb{C}_{h} \rightarrow \mathbb{C}$ is an isomorphism.
In a sense, $\lim _{h \rightarrow 0}\left(z+_{h} w\right)=z \smile w$.

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Pull back the addition via S_{h} :

$$
z+{ }_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

$\mathbb{C}_{h}=\mathbb{C}_{+_{h}, \times}$ is a copy of \mathbb{C} and $S_{h}: \mathbb{C}_{h} \rightarrow \mathbb{C}$ is an isomorphism.
In a sense, $\lim _{h \rightarrow 0}\left(z+_{h} w\right)=z \smile w$:
let $\Gamma \subset \mathbb{R}_{\geq 0} \times \mathbb{C}^{3}$ be a graph of $+_{h}$ for all $h>0$,

$$
\Gamma=\left\{(h, a, b, c) \in \mathbb{C}^{3} \mid a+{ }_{h} b=c\right\} .
$$

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Pull back the addition via S_{h} :

$$
z+{ }_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

$\mathbb{C}_{h}=\mathbb{C}_{+_{h}, \times}$ is a copy of \mathbb{C} and $S_{h}: \mathbb{C}_{h} \rightarrow \mathbb{C}$ is an isomorphism.
In a sense, $\lim _{h \rightarrow 0}\left(z+_{h} w\right)=z \smile w$:
let $\Gamma \subset \mathbb{R}_{\geq 0} \times \mathbb{C}^{3}$ be a graph of $+_{h}$ for all $h>0$,

$$
\Gamma=\left\{(h, a, b, c) \in \mathbb{C}^{3} \mid a+_{h} b=c\right\} .
$$

Then $\mathrm{Cl}(\Gamma) \cap\left(0 \times \mathbb{C}^{3}\right)$ is the graph of \smile.

Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Pull back the addition via S_{h} :

$$
z+{ }_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

$\mathbb{C}_{h}=\mathbb{C}_{+_{h}, \times}$ is a copy of \mathbb{C} and $S_{h}: \mathbb{C}_{h} \rightarrow \mathbb{C}$ is an isomorphism.
In a sense, $\lim _{h \rightarrow 0}\left(z+_{h} w\right)=z \smile w$:
let $\Gamma \subset \mathbb{R}_{\geq 0} \times \mathbb{C}^{3}$ be a graph of $+_{h}$ for all $h>0$,

$$
\Gamma=\left\{(h, a, b, c) \in \mathbb{C}^{3} \mid a+_{h} b=c\right\} .
$$

Then $\mathrm{Cl}(\Gamma) \cap\left(0 \times \mathbb{C}^{3}\right)$ is the graph of \cup.
\mathbb{C}_{h} is a dequantization of \mathbb{C} to $\mathcal{T} \mathbb{C}$.

Dequantizations commute

$$
\mathbb{C} \equiv \mathbb{C}_{h} \xrightarrow{h \rightarrow 0} \mathbb{C}_{0}=\mathcal{T} \mathbb{C}
$$

Dequantizations commute

$$
\begin{gathered}
\mathbb{C} \equiv \mathbb{C}_{h} \xrightarrow{h \rightarrow 0} \mathbb{C}_{0}=\mathcal{T} \mathbb{C} \\
\left.\begin{array}{l}
x \mapsto|x| \mid \\
\\
\downarrow \\
\nabla \equiv \nabla_{h} \xrightarrow[h \rightarrow 0]{ } \nabla_{0}=\mathrm{U} \nabla
\end{array} . \begin{array}{l}
x \mapsto|x| \\
\end{array}\right)
\end{gathered}
$$

Dequantizations commute

$$
\begin{aligned}
& \mathbb{C} \equiv \mathbb{C}_{h} \xrightarrow{h \rightarrow 0} \mathbb{C}_{0}=\mathcal{T} \mathbb{C} \\
& x \mapsto|x| \downarrow \downarrow x \mapsto|x| \\
& \nabla \equiv \nabla_{h} \xrightarrow[h \rightarrow 0]{ } \nabla_{0}=\mathrm{U} \nabla \\
& x \mapsto \log x \downarrow \quad \downarrow \mapsto \log x \\
& \mathcal{A} \xrightarrow[h \rightarrow 0]{ } \mathbb{Y}_{0}=\mathbb{Y}
\end{aligned}
$$

Dequantizations commute

Complex Algebraic Geometry

$$
\begin{aligned}
& \mathbb{C} \equiv \mathbb{C}_{h} \xrightarrow{h \rightarrow 0} \mathbb{C}_{0}=\mathcal{T} \mathbb{C} \\
& x \mapsto|x| \downarrow \downarrow \text { 路 } \downarrow x \mid \\
& \nabla \equiv \nabla_{h} \xrightarrow[h \rightarrow 0]{ } \nabla_{0}=\mathrm{U} \nabla \\
& x \mapsto \log x \downarrow \downarrow x \mapsto \log x \\
& \mathcal{A} \xrightarrow[h \rightarrow 0]{ } \mathbb{Y}_{0}=\mathbb{Y}
\end{aligned}
$$

Dequantizations commute

Complex Algebraic Geometry

$$
\begin{aligned}
& \mathbb{C} \equiv \mathbb{C}_{h} \xrightarrow{h \rightarrow 0} \mathbb{C}_{0}=\mathcal{T} \mathbb{C} \\
& x \mapsto|x| \downarrow \downarrow \text { 路 } \downarrow x \mid \\
& \nabla \equiv \nabla_{h} \xrightarrow[h \rightarrow 0]{ } \nabla_{0}=\mathrm{U} \nabla \\
& x \mapsto \log x \downarrow \downarrow x \mapsto \log x \\
& \mathcal{A} \xrightarrow[h \rightarrow 0]{ } \mathbb{Y}_{0}=\mathbb{Y}
\end{aligned}
$$

Amoebas

Dequantizations commute

Complex Algebraic Geometry

$$
\begin{aligned}
& \mathbb{C} \equiv \mathbb{C}_{h} \xrightarrow{h \rightarrow 0} \mathbb{C}_{0}=\mathcal{T} \mathbb{C} \\
& x \mapsto|x| \downarrow \downarrow \mapsto|x| \\
& \nabla \equiv \nabla_{h} \xrightarrow[h \rightarrow 0]{ } \nabla_{0}=\mathrm{U} \nabla \\
& x \mapsto \log x \downarrow \downarrow x \mapsto \log x \\
& \mathcal{A} \xrightarrow[h \rightarrow 0]{ } \mathbb{Y}_{0}=\mathbb{Y}
\end{aligned}
$$

Amoebas

Dequantizations commute

Complex Algebraic Geometry

$$
\begin{aligned}
& \mathbb{C} \equiv \mathbb{C}_{h} \xrightarrow{h \rightarrow 0} \mathbb{C}_{0}=\mathcal{T} \mathbb{C} \\
& x \mapsto|x| \downarrow \downarrow{ }^{x \mapsto|x|} \\
& \nabla \equiv \nabla_{h} \xrightarrow[h \rightarrow 0]{ } \nabla_{0}=\mathrm{U} \nabla \\
& x \mapsto \log x \downarrow \downarrow x \mapsto \log x \\
& \mathcal{A} \xrightarrow[h \rightarrow 0]{ } \quad \mathbb{Y}_{0}=\mathbb{Y}
\end{aligned}
$$

Amoebas
Tropical Geometry

Dequantizations commute

Complex Algebraic Geometry

$$
\begin{aligned}
& \mathbb{C} \equiv \mathbb{C}_{h} \xrightarrow{h \rightarrow 0} \mathbb{C}_{0}=\mathcal{T} \mathbb{C} \\
& x \mapsto|x| \downarrow \downarrow{ }^{x \mapsto|x|} \\
& \nabla \equiv \nabla_{h} \xrightarrow[h \rightarrow 0]{ } \nabla_{0}=\mathrm{U} \nabla \\
& x \mapsto \log x \downarrow \downarrow x \mapsto \log x \\
& \mathcal{A} \xrightarrow[h \rightarrow 0]{ } \quad \mathbb{Y}_{0}=\mathbb{Y}
\end{aligned}
$$

Amoebas

Tropical Geometry

Dequantizations commute

Complex Algebraic Geometry
Complex Tropical Geometry

Amoebas

Tropical Geometry

- Tropical Geometry
- Graphs and curves

Complex Tropical
Geometry
Polynomials over a hyperfield

Geometries over Hyperfields

Amoeba geometries

The amoeba of a complex variety $X \subset(\mathbb{C} \backslash 0)^{n}$
is the image of X under $\log :(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}$.

Amoeba geometries

The amoeba of a complex variety $X \subset(\mathbb{C} \backslash 0)^{n}$
is the image of X under $\log :(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}$.
The image is contained in the variety over \mathcal{A}
defined by the same equations as X.

Amoeba geometries

The amoeba of a complex variety $X \subset(\mathbb{C} \backslash 0)^{n}$
is the image of X under $\log :(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}$.
The image is contained in the variety over \mathcal{A}
defined by the same equations as X.

Often, they coincide.

Amoeba geometries

The amoeba of a complex variety $X \subset(\mathbb{C} \backslash 0)^{n}$
is the image of X under $\log :(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}$.
The image is contained in the variety over \mathcal{A}
defined by the same equations as X.

Often, they coincide. When?

Amoeba geometries

The amoeba of a complex variety $X \subset(\mathbb{C} \backslash 0)^{n}$
is the image of X under $\log :(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}$.
The image is contained in the variety over \mathcal{A}
defined by the same equations as X.

Often, they coincide. When?
What is the geometry of varieties over the amoeba hyperfield \mathcal{A} ?

Amoeba geometries

The amoeba of a complex variety $X \subset(\mathbb{C} \backslash 0)^{n}$ is the image of X under $\log :(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}$.
The image is contained in the variety over \mathcal{A}
defined by the same equations as X.

Often, they coincide. When?
What is the geometry of varieties over the amoeba hyperfield \mathcal{A} ?
This question has many meanings

Amoeba geometries

The amoeba of a complex variety $X \subset(\mathbb{C} \backslash 0)^{n}$ is the image of X under $\log :(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}$.
The image is contained in the variety over \mathcal{A}
defined by the same equations as X.

Often, they coincide. When?
What is the geometry of varieties over the amoeba hyperfield \mathcal{A} ?
This question has many meanings:
semialgebraic geometry over \mathbb{R}, geometry over \mathcal{A}

Amoeba geometries

The amoeba of a complex variety $X \subset(\mathbb{C} \backslash 0)^{n}$ is the image of X under $\log :(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}$.
The image is contained in the variety over \mathcal{A}
defined by the same equations as X.

Often, they coincide. When?
What is the geometry of varieties over the amoeba hyperfield \mathcal{A} ?
This question has many meanings:
semialgebraic geometry over \mathbb{R}, geometry over \mathcal{A}, the variety may be analytic over \mathcal{A}.
Analytic functions over \mathcal{A} have graphs
that are closed sets with non-empty interior.

Amoeba geometries

The amoeba of a complex variety $X \subset(\mathbb{C} \backslash 0)^{n}$ is the image of X under $\log :(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}$.
The image is contained in the variety over \mathcal{A}
defined by the same equations as X.

Often, they coincide. When?
What is the geometry of varieties over the amoeba hyperfield \mathcal{A} ?
This question has many meanings:
semialgebraic geometry over \mathbb{R}, geometry over \mathcal{A}, the variety may be analytic over \mathcal{A}.
Analytic functions over \mathcal{A} have graphs
that are closed sets with non-empty interior.
What are the boundaries?

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over $\mathbb{T}=(\mathbb{R} \cup\{-\infty\}$, max,+$)$, not over \mathbb{Y}.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$, that is, a linear function $a+\langle k, x\rangle$.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$, that is, a linear function $a+\langle k, x\rangle$.
A polynomial is a finite sum of monomials.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$, that is, a linear function $a+\langle k, x\rangle$.
A polynomial is a finite sum of monomials,
that is the maximum of finite collection of linear functions.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
A polynomial $\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ over \mathbb{T} does not vanish, because the zero in \mathbb{T} is $-\infty$.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
A polynomial $\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ over \mathbb{T} does not vanish, because the zero in \mathbb{T} is $-\infty$.
Tricky definition. A hypersurface defined by tropical polynomial
$\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ is the set of points, at which the maximum is attained by at least two of the linear functions.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
A polynomial $\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ over \mathbb{T} does not vanish, because the zero in \mathbb{T} is $-\infty$.
Tricky definition. A hypersurface defined by tropical polynomial
$\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ is the set of points, at which the maximum is attained by at least two of the linear functions.

The easiest way to understand this: replace \mathbb{T} by \mathbb{Y}.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
A polynomial $\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ over \mathbb{T} does not vanish, because the zero in \mathbb{T} is $-\infty$.
Tricky definition. A hypersurface defined by tropical polynomial
$\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ is the set of points, at which the maximum is attained by at least two of the linear functions.

The easiest way to understand this: replace \mathbb{T} by \mathbb{Y}.
The only difference between \mathbb{T} and \mathbb{Y} :
\mathbb{T} is an idempotent semiring, $\max (x, x)=x$ for any $x \in \mathbb{T}$. \mathbb{Y} is a hyperfield of characteristic $2, x_{\curlyvee} \curlyvee x=\{y \mid y \leq x\}$ for any $x \in \mathbb{Y}$.

Tropical Geometry

Usually tropical geometry is defined as an algebraic geometry over

$$
\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \max ,+), \text { not over } \mathbb{Y}
$$

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
A polynomial $\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ over \mathbb{T} does not vanish, because the zero in \mathbb{T} is $-\infty$.
Tricky definition. A hypersurface defined by tropical polynomial $\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ is the set of points, at which the maximum is attained by at least two of the linear functions.

The easiest way to understand this: replace \mathbb{T} by \mathbb{Y}.
The only difference between \mathbb{T} and \mathbb{Y} :
\mathbb{T} is an idempotent semiring, $\max (x, x)=x$ for any $x \in \mathbb{T}$. \mathbb{Y} is a hyperfield of characteristic $2, x_{\curlyvee} \curlyvee x=\{y \mid y \leq x\}$ for any $x \in \mathbb{Y}$.
$-\infty \in \mathrm{Y}_{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ where the maximum
$\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ is attained at least twice.

Graphs and curves

In geometry over \mathbb{T}

Graphs and curves

In geometry over \mathbb{T}

the graph of function $y=x+1$,

Graphs and curves

In geometry over \mathbb{T}

the graph of function $y=x+1$,

the curve defined by $x+y+1$.

Graphs and curves

In geometry over \mathbb{Y}

the graph of function $y=x+1$,

the curve defined by $x+y+1$.

Dequantizataions
Geometries over
Hyperfields
Complex Tropical
Geometry

- Complex tropical line
- Complex tropical
varieties
Polynomials over a hyperfield

Complex Tropical Geometry

Complex tropical line

$$
\left\{(x, y) \in \mathbb{C}^{2} \mid 0 \in x \smile y \smile 1\right\}
$$

Complex tropical line

$\left\{(x, y) \in \mathbb{C}^{2} \mid 0 \in x \smile y \smile 1\right\}$
The amoeba (the image under $\left.\log :(\mathbb{C} \backslash 0)^{2} \rightarrow \mathbb{R}^{2}\right)$ is the tropical line

Complex tropical line

$\left\{(x, y) \in \mathbb{C}^{2} \mid 0 \in x \smile y \smile 1\right\}$
The amoeba (the image under $\left.\log :(\mathbb{C} \backslash 0)^{2} \rightarrow \mathbb{R}^{2}\right)$ is the tropical line

$\log ^{-1}$ (a ray) is a holomorphic cylinder.

Complex tropical line

$\left\{(x, y) \in \mathbb{C}^{2} \mid 0 \in x \smile y \smile 1\right\}$
The amoeba (the image under $\left.\log :(\mathbb{C} \backslash 0)^{2} \rightarrow \mathbb{R}^{2}\right)$ is the tropical line

$\log ^{-1}$ (a ray) is a holomorphic cylinder.

Complex tropical line

$\left\{(x, y) \in \mathbb{C}^{2} \mid 0 \in x \smile y \smile 1\right\}$
The amoeba (the image under $\left.\log :(\mathbb{C} \backslash 0)^{2} \rightarrow \mathbb{R}^{2}\right)$ is the tropical line

$\log ^{-1}$ (a ray) is a holomorphic cylinder.

Overall a disk.

Complex tropical line

$\left\{(x, y) \in \mathbb{C}^{2} \mid 0 \in x \smile y \smile 1\right\}$
The amoeba (the image under $\left.\log :(\mathbb{C} \backslash 0)^{2} \rightarrow \mathbb{R}^{2}\right)$ is the tropical line

$\log ^{-1}$ (a ray) is a holomorphic cylinder.

Overall a disk. A 2-manifold!

Complex tropical varieties

Complex tropical varieties

Any complex toric variety is a complex tropical variety.

Complex tropical varieties

Any complex toric variety is a complex tropical variety.
A non-singular complex tropical plane projective curve (defined by a pure polynomial) is homeomorphic and isotopic to a non-singular complex plane projective curve of the same degree.

Complex tropical varieties

Any complex toric variety is a complex tropical variety.
A non-singular complex tropical plane projective curve (defined by a pure polynomial) is homeomorphic and isotopic to a non-singular complex plane projective curve of the same degree.

Conjecture. Any non-singular complex tropical variety is a topological manifold.

Complex tropical varieties

Any complex toric variety is a complex tropical variety.
A non-singular complex tropical plane projective curve (defined by a pure polynomial) is homeomorphic and isotopic to a non-singular complex plane projective curve of the same degree.

Conjecture. Any non-singular complex tropical variety is a topological manifold.

Conjecture. If under the dequantization a non-singular complex varieties tends to a non-singular complex tropical variety, then the dequantization provides an isotopy between the varieties.

Dequantizataions
Geometries over
Hyperfields
Complex Tropical
Geometry
Polynomials over a hyperfield
functions

- Polynomials over a
hyperring

Polynomials over a hyperfield

Some polynomial functions

$$
\text { Is } x=x \smile_{\mathbb{R}} 1 \smile_{\mathbb{R}}-1 \text { ? }
$$

Some polynomial functions

Is $x=x \cup_{\mathbb{R}} 1 \cup_{\mathbb{R}}-1$? Somewhere yes, somewhere no.

Some polynomial functions

Is $x=x \cup_{\mathbb{R}} 1 \cup_{\mathbb{R}}-1$? Somewhere yes, somewhere no.

Graph of the function $y=x \smile_{\mathbb{R}} 1 \smile_{\mathbb{R}}-1$.

Some polynomial functions

Some polynomial functions

$$
\text { Is } x^{2} \smile-1=(x \smile 1)(x \smile-1) ?
$$

Some polynomial functions

$$
\text { Is } x^{2} \smile-1=(x \smile 1)(x \smile-1) ? \quad \text { Yes, if } x \in \mathcal{T} \mathbb{R} .
$$

Some polynomial functions

Is $x^{2} \smile-1=(x \smile 1)(x \smile-1)$? Yes, if $x \in \mathcal{T} \mathbb{R}$.

Some polynomial functions

$$
\text { Is } x^{2} \smile-1=(x \smile 1)(x \smile-1) \text { ? Yes, if } x \in \mathcal{T} \mathbb{R} \text {. No for } x=i \text {. }
$$

Some polynomial functions

$$
\begin{aligned}
& \text { Is } x^{2} \smile-1=(x \smile 1)(x \smile-1) ? \quad \text { Yes, if } x \in \mathcal{T} \mathbb{R} \text {. No for } x=i \text {. } \\
& i^{2} \smile-1=-1 \text {, but }(i \smile 1)(i \smile-1)=\{z \in \mathcal{T} \mathbb{C}| | z \mid=1, \operatorname{Re} z \leq 0\} .
\end{aligned}
$$

Some polynomial functions

$$
\begin{aligned}
& \text { Is } x^{2} \smile-1=(x \smile 1)(x \smile-1) ? \quad \text { Yes, if } x \in \mathcal{T} \mathbb{R} \text {. No for } x=i . \\
& i^{2} \smile-1=-1, \text { but }(i \smile 1)(i \smile-1)=\{z \in \mathcal{T} \mathbb{C}| | z \mid=1, \operatorname{Re} z \leq 0\} . \\
& (a \smile b)(c \smile d) \neq a c \smile a d \smile b c \smile b d
\end{aligned}
$$

Some polynomial functions

$$
\begin{aligned}
& \text { Is } x^{2} \smile-1=(x \smile 1)(x \smile-1) ? \quad \text { Yes, if } x \in \mathcal{T} \mathbb{R} \text {. No for } x=i . \\
& i^{2} \smile-1=-1, \text { but }(i \smile 1)(i \smile-1)=\{z \in \mathcal{T} \mathbb{C}| | z \mid=1, \operatorname{Re} z \leq 0\} . \\
& (a \smile b)(c \smile d) \neq a c \smile a d \smile b c \smile b d
\end{aligned}
$$

Thus $\mathcal{T} \mathbb{C}$ is not double distributive.

Some polynomial functions

$$
\begin{aligned}
& \text { Is } x^{2} \smile-1=(x \smile 1)(x \smile-1) ? \quad \text { Yes, if } x \in \mathcal{T} \mathbb{R} \text {. No for } x=i . \\
& i^{2} \smile-1=-1, \text { but }(i \smile 1)(i \smile-1)=\{z \in \mathcal{T} \mathbb{C}| | z \mid=1, \operatorname{Re} z \leq 0\} . \\
& (a \smile b)(c \smile d) \neq a c \smile a d \smile b c \smile b d
\end{aligned}
$$

Thus $\mathcal{T} \mathbb{C}$ is not double distributive.
A hyperring X is said to be double distributive if
$\left(a_{1} \uparrow \ldots \uparrow a_{n}\right)\left(b_{1} \uparrow \ldots \uparrow b_{m}\right)=a_{1} b_{1} \uparrow \ldots \uparrow a_{1} b_{m} \uparrow \ldots \uparrow a_{n} b_{1} \uparrow \ldots \uparrow a_{n} b_{m}$

Some polynomial functions

$$
\begin{aligned}
& \text { Is } x^{2} \smile-1=(x \smile 1)(x \smile-1) ? \quad \text { Yes, if } x \in \mathcal{T} \mathbb{R} \text {. No for } x=i . \\
& i^{2} \smile-1=-1, \text { but }(i \smile 1)(i \smile-1)=\{z \in \mathcal{T} \mathbb{C}| | z \mid=1, \operatorname{Re} z \leq 0\} . \\
& (a \smile b)(c \smile d) \neq a c \smile a d \smile b c \smile b d .
\end{aligned}
$$

Thus $\mathcal{T} \mathbb{C}$ is not double distributive.
A hyperring X is said to be double distributive if
$\left(a_{1} \uparrow \ldots \uparrow a_{n}\right)\left(b_{1} \uparrow \ldots \uparrow b_{m}\right)=a_{1} b_{1} \uparrow \ldots \uparrow a_{1} b_{m} \uparrow \ldots \uparrow a_{n} b_{1} \uparrow \ldots \uparrow a_{n} b_{m}$
Some hyperfields are double distributive, some are not.
In particular, $\mathcal{T} \mathbb{R}, \mathbf{K}, \mathrm{S}$ and \mathbb{Y} are double distributive. while $\mathcal{T} \mathbb{C}, \Phi$ and ∇ are not.

Polynomials over a hyperring

Let R be a hyperring. What is a polynomial over R ?

Polynomials over a hyperring

Let R be a hyperring. What is a polynomial over R ?
A finite formal sum of monomials?

Polynomials over a hyperring

Let R be a hyperring. What is a polynomial over R ?
A finite formal sum of monomials?
Or any formal expression formed out of the unknowns and constants
by operations of sum and product?

Polynomials over a hyperring

Let R be a hyperring. What is a polynomial over R ?
A finite formal sum of monomials?
Or any formal expression formed out of the unknowns and constants
by operations of sum and product?
If R is a double distributive hyperring, it does not matter.

Polynomials over a hyperring

Let R be a hyperring. What is a polynomial over R ?
A finite formal sum of monomials?
Or any formal expression formed out of the unknowns and constants
by operations of sum and product?
If R is a double distributive hyperring, it does not matter.
What is the product of polynomials?

Polynomials over a hyperring

Let R be a hyperring. What is a polynomial over R ?
A finite formal sum of monomials?
Or any formal expression formed out of the unknowns and constants
by operations of sum and product?
If R is a double distributive hyperring, it does not matter.
What is the product of polynomials?
Over a double distributive hyperfield, the product of finite sum of monomials is a finite sum of monomials.

Polynomials over a hyperring

Let R be a hyperring. What is a polynomial over R ?
A finite formal sum of monomials?
Or any formal expression formed out of the unknowns and constants
by operations of sum and product?
If R is a double distributive hyperring, it does not matter.
What is the product of polynomials?
Over a double distributive hyperfield, the product of finite sum of monomials is a finite sum of monomials.

What is the sum of polynomials p, q over R ?
Is it just p T q ?

Polynomials over a hyperring

Let R be a hyperring. What is a polynomial over R ?
A finite formal sum of monomials?
Or any formal expression formed out of the unknowns and constants
by operations of sum and product?
If R is a double distributive hyperring, it does not matter.
What is the product of polynomials?
Over a double distributive hyperfield, the product of finite sum of monomials is a finite sum of monomials.

What is the sum of polynomials p, q over R ?
Is it just p T q ?
Is it univalued?

Polynomials over a hyperring

Let R be a hyperring. What is a polynomial over R ?
A finite formal sum of monomials?
Or any formal expression formed out of the unknowns and constants
by operations of sum and product?
If R is a double distributive hyperring, it does not matter.
What is the product of polynomials?
Over a double distributive hyperfield, the product of finite sum of monomials is a finite sum of monomials.

What is the sum of polynomials p, q over R ?
Is it just p T q ?
Is it univalued?
Do polynomials over R form a true ring?

Polynomials over a hyperring

Let R be a hyperring. What is a polynomial over R ?
A finite formal sum of monomials?
Or any formal expression formed out of the unknowns and constants
by operations of sum and product?
If R is a double distributive hyperring, it does not matter.
What is the product of polynomials?
Over a double distributive hyperfield, the product of finite sum of monomials is a finite sum of monomials.

What is the sum of polynomials p, q over R ? Is it just $p_{T} q$?
Is it univalued? Do polynomials over R form a true ring?
No, the subtraction is not available: $x_{\top}-x \neq 0$, but $p_{\top}-p \ni 0$ for $\forall p$.

Polynomials over a hyperring

Let R be a hyperring. What is a polynomial over R ?
A finite formal sum of monomials?
Or any formal expression formed out of the unknowns and constants
by operations of sum and product?
If R is a double distributive hyperring, it does not matter.
What is the product of polynomials?
Over a double distributive hyperfield, the product of finite sum of monomials is a finite sum of monomials.

What is the sum of polynomials p, q over R ? Is it just $p+q$?
Is it univalued? Do polynomials over R form a true ring?
No, the subtraction is not available: $x_{\top}^{\top}-x \neq 0$, but $p_{\top}-p \ni 0$ for $\forall p$.
Extend $p_{T} q$, by putting $p_{\mathrm{I}} q=\left\{r \mid \Gamma_{r} \subset \Gamma_{p T q}\right\}$.

Polynomials over a hyperring

Let R be a hyperring. What is a polynomial over R ?
A finite formal sum of monomials?
Or any formal expression formed out of the unknowns and constants
by operations of sum and product?
If R is a double distributive hyperring, it does not matter.
What is the product of polynomials?
Over a double distributive hyperfield,
the product of finite sum of monomials is a finite sum of monomials.
What is the sum of polynomials p, q over R ? Is it just $p+q$?
Is it univalued? Do polynomials over R form a true ring?
No, the subtraction is not available: $x_{\top}-x \neq 0$, but $p_{\top}-p \ni 0$ for $\forall p$.
Extend $p_{T} q$, by putting $p_{\mathrm{I}} q=\left\{r \mid \Gamma_{r} \subset \Gamma_{p T q}\right\}$.
$R\left[x_{1}, \ldots, x_{n}\right]$ is a hyperring with addition I and usual multiplication.

Table of Contents

Hyperalgebra
Triangle addition
Hyperfields
First examples of hyperfields
Hyperrings
Hyperring homomorphisms
Ideals and their weakness
New ideals
Hyperfields of linear orders
The amoeba hyperfield

Dequantizataions

Litvinov-Maslov dequantization Dequantization $\nabla \rightarrow \mathrm{U} \nabla$
Dequantization \mathbb{C} to $\mathcal{T} \mathbb{C}$
Dequantizations commute

Tropical addition of complex numbers
Properties of tropical addition

Tropical addition of real numbers
Other subhyperfields of $\mathcal{T} \mathbb{C}$

Table of Contents

Geometries over Hyperfields
Amoeba geometries
Tropical Geometry Graphs and curves
Complex Tropical Geometry
Complex tropical line
Complex tropical varieties

Polynomials over a hyperfield

Some polynomial functions
Polynomials over a hyperring

