Hypergeometries. I

Oleg Viro

August 20, 2013

Hyperalgebra

- Triangle addition
- Hyperfields
- First examples of hyperfields
- Hyperrings
- Hyperring

homomorphisms

- Ideals and their weakness
- New ideals
- Hyperfields of linear orders
- The amoeba

hyperfield

- Tropical addition of complex numbers
- Properties of tropical addition
- Tropical addition of real numbers
- Other subhyperfields
- of $\mathcal{T}\mathbb{C}$
- Hyperring

homomorphisms

- Sign and phase
- What are hyperfields for?

Dequantizataions

Geometries over

Hyperalgebra

In $\mathbb{R}_{\geq 0}$ define a **multivalued addition**:

In $\mathbb{R}_{\geq 0}$ define a **multivalued addition**:

$$a \lor b = \{c \in \mathbb{R}_{\geq 0} \mid |a - b| \le c \le a + b\}.$$

In $\mathbb{R}_{\geq 0}$ define a **multivalued addition**:

```
a \lor b = \{c \in \mathbb{R}_{\geq 0} \mid |a - b| \le c \le a + b\}.
```

 $a \lor b$ is the set of numbers c such that \exists a traingle with sides a, b, c.

In $\mathbb{R}_{\geq 0}$ define a **multivalued addition**:

$$a \lor b = \{c \in \mathbb{R}_{\geq 0} \mid |a - b| \le c \le a + b\}.$$

 $a \lor b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \lor b$ is commutative

In $\mathbb{R}_{\geq 0}$ define a **multivalued addition**:

$$a \lor b = \{c \in \mathbb{R}_{\geq 0} \mid |a - b| \le c \le a + b\}.$$

 $a \lor b$ is the set of numbers c such that \exists a traingle with sides a, b, c. (a, b) $\mapsto a \lor b$ is commutative; has zero 0

In $\mathbb{R}_{\geq 0}$ define a **multivalued addition**:

```
a \lor b = \{c \in \mathbb{R}_{\geq 0} \mid |a - b| \le c \le a + b\}.
```

 $a \lor b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \lor b$ is commutative; has zero 0; is associative

In $\mathbb{R}_{\geq 0}$ define a **multivalued addition**:

 $a \lor b = \{c \in \mathbb{R}_{\geq 0} \mid |a - b| \le c \le a + b\}.$

 $a \lor b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \lor b$ is commutative; has zero 0; is associative, because

 $(a \lor b) \lor c = \{x \mid \exists \text{ quadrilateral with sides } a, b, c, x\} = a \lor (b \lor c).$

In $\mathbb{R}_{\geq 0}$ define a **multivalued addition**:

$$a \lor b = \{c \in \mathbb{R}_{\geq 0} \mid |a - b| \le c \le a + b\}.$$

 $a \lor b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \lor b$ is commutative; has zero 0; is associative, because

 $(a \lor b) \lor c = \{x \mid \exists \text{ quadrilateral with sides } a, b, c, x\} = a \lor (b \lor c).$

$$b \bigvee_{a}^{c} (a_{\nabla}b)_{\nabla}c$$

$$b \int_{a}^{c} a_{\nabla}(b_{\nabla}c)$$

In $\mathbb{R}_{\geq 0}$ define a **multivalued addition**:

```
a \lor b = \{c \in \mathbb{R}_{\geq 0} \mid |a - b| \le c \le a + b\}.
```

 $a \lor b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \lor b$ is commutative; has zero 0; is associative, for each a, there exists unique b such that $0 \in a \lor b$.

In $\mathbb{R}_{\geq 0}$ define a **multivalued addition**:

```
a \lor b = \{c \in \mathbb{R}_{\geq 0} \mid |a - b| \le c \le a + b\}.
```

 $a \lor b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \lor b$ is commutative; has zero 0; is associative, for each a, there exists unique b such that $0 \in a \lor b$.

This b is a.

In $\mathbb{R}_{\geq 0}$ define a **multivalued addition**:

 $a \lor b = \{c \in \mathbb{R}_{\geq 0} \mid |a - b| \le c \le a + b\}.$

 $a \lor b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \lor b$ is commutative; has zero 0; is associative, for each a, there exists unique b such that $0 \in a \lor b$. This h is c.

This b is a. That is -a = a!

In $\mathbb{R}_{\geq 0}$ define a **multivalued addition**:

 $a \lor b = \{c \in \mathbb{R}_{\geq 0} \mid |a - b| \le c \le a + b\}.$

 $a \lor b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \lor b$ is commutative; has zero 0; is associative, for each a, there exists unique b such that $0 \in a \lor b$. This b is a.

That is -a = a!

Distributivity: $a(b \lor c) = ab \lor ac$.

In $\mathbb{R}_{\geq 0}$ define a **multivalued addition**:

 $a \lor b = \{c \in \mathbb{R}_{\geq 0} \mid |a - b| \le c \le a + b\}.$

 $a \lor b$ is the set of numbers c such that \exists a traingle with sides a, b, c. $(a, b) \mapsto a \lor b$ is commutative; has zero 0; is associative, for each a, there exists unique b such that $0 \in a \lor b$. This b is a. That is -a = a!

Distributivity: $a(b \lor c) = ab \lor ac$.

 $\mathbb{R}_{\geq 0}$ with addition $(a, b) \mapsto a \lor b$ and usual multiplication is a **hyperfield**.

Hyperfields

A set X with a multivalued operation $X \times X \rightarrow 2^X \setminus \{\emptyset\} : (a, b) \mapsto a \top b$ and a multiplication $X \times X \rightarrow X : (a, b) \mapsto a \cdot b$ is called a hyperfield, if

- $(a, b) \mapsto a \intercal b$ is commutative, associative;
- $\exists 0 \in X \text{ such that } 0 \top a = a \text{ for any } a \in X;$
- for $\forall a \in X$ there exists a unique $-a \in X$ such that $0 \in a \top (-a)$;
- $-(a \intercal b) = (-a) \intercal (-b)$
- $0 \cdot a = a \cdot 0 = 0$ for any $a \in X$;
- distributivity: a(b + c) = ab + ac for any $a, b, c \in X$;
- $X \times 0$ is a commutative group under the multiplication.

 $\mathbb{R}_{\geq 0}$ with $\tau = \nabla$ and the usual multiplication is a hyperfield.

 $\mathbb{R}_{\geq 0}$ with $\tau = \nabla$ and the usual multiplication is a hyperfield.

triangle hyperfield ∇ .

 $\mathbb{R}_{\geq 0}$ with $\tau = \nabla$ and the usual multiplication is a hyperfield.

triangle hyperfield ∇ .

The Krasner hyperfield: $\mathbf{K} = \{0, 1\}$ with multivalued addition \neg and $1 \lor 1 = \{0, 1\}, 0 \lor 0 = 0, 0 \lor 1 = 1, 0 \cdot 0 = 0 \cdot 1 = 0, 1 \cdot 1 = 1.$

 $\mathbb{R}_{\geq 0}$ with $\tau = \nabla$ and the usual multiplication is a hyperfield.

triangle hyperfield ∇ .

The Krasner hyperfield: $\mathbf{K} = \{0, 1\}$ with multivalued addition \curlyvee and $1 \curlyvee 1 = \{0, 1\}$, $0 \curlyvee 0 = 0$, $0 \curlyvee 1 = 1$, $0 \cdot 0 = 0 \cdot 1 = 0$, $1 \cdot 1 = 1$.

The sign hyperfield: S = $\{0, 1, -1\}$ with $1 \sim 1 = 1$, $-1 \sim -1 = -1$, $1 \sim -1 = \{1, 0, -1\}$.

A hyperring is a hyperfield with no division required.

A hyperring is a hyperfield with no division required. In a hyperring, the multiplication (still univalued) may even have zero divisors.

A hyperring is a hyperfield with no division required.

In a hyperring, the multiplication (still univalued) may even have zero divisors.

A commutative hyperring satisfies all the axioms of hyperfield

except the last one.

A hyperring is a hyperfield with no division required.

In a hyperring, the multiplication (still univalued) may even have zero divisors.

A commutative hyperring satisfies all the axioms of hyperfield

except the last one.

If the multiplication in a hyperring is non-commutative,

then two distributivities are postulated:

both $a(b \top c) = ab \top ac$, and $(b \top c)a = ba \top ca$.

A hyperring is a hyperfield with no division required.

In a hyperring, the multiplication (still univalued) may even have zero divisors.

A commutative hyperring satisfies all the axioms of hyperfield

except the last one.

If the multiplication in a hyperring is non-commutative,

then two distributivities are postulated:

both $a(b \top c) = ab \top ac$, and $(b \top c)a = ba \top ca$.

For any hyperfield X, $(n \times n)$ -matrices with elements from X and with obvious operations form a hyperring.

A map $f: X \to Y$ is called a (hyperring) homomorphism if $f(a \top b) \subset f(a) \top f(b)$ and f(ab) = f(a)f(b) for any $a, b \in X$.

A map $f: X \to Y$ is called a (hyperring) homomorphism if $f(a \top b) \subset f(a) \top f(b)$ and f(ab) = f(a)f(b) for any $a, b \in X$.

Examples:

1. $\mathbb{C} \to \nabla : z \mapsto |z|$ is a hyperring homomorphism.

A map $f: X \to Y$ is called a (hyperring) homomorphism if $f(a + b) \subset f(a) + f(b)$ and f(ab) = f(a)f(b) for any $a, b \in X$.

Examples:

1. $\mathbb{C} \to \nabla : z \mapsto |z|$ is a hyperring homomorphism.

2. Generalization. A multiplicative norm $K \to \mathbb{R}_{\geq 0}$ in a ring K is a hyperring homomorphism $K \to \nabla$.

A map $f: X \to Y$ is called a (hyperring) homomorphism if $f(a \top b) \subset f(a) \top f(b)$ and f(ab) = f(a)f(b) for any $a, b \in X$.

Examples:

1. $\mathbb{C} \to \nabla : z \mapsto |z|$ is a hyperring homomorphism.

- **2. Generalization.** A multiplicative norm $K \to \mathbb{R}_{\geq 0}$ in a ring K is a hyperring homomorphism $K \to \nabla$.
- **3.** For any field (or hyperfield) X,

$$X \to \mathbf{K} : x \mapsto \begin{cases} 1, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \text{ is a hyperring homomorphism.}$$

A map $f: X \to Y$ is called a (hyperring) homomorphism if $f(a \top b) \subset f(a) \top f(b)$ and f(ab) = f(a)f(b) for any $a, b \in X$.

Examples:

1. $\mathbb{C} \to \nabla : z \mapsto |z|$ is a hyperring homomorphism.

- **2. Generalization.** A multiplicative norm $K \to \mathbb{R}_{\geq 0}$ in a ring K is a hyperring homomorphism $K \to \nabla$.
- **3.** For any field (or hyperfield) X,

$$X \to \mathbf{K} : x \mapsto \begin{cases} 1, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \text{ is a hyperring homomorphism.}$$

4. sign : $\mathbb{R} \to \mathbf{S} : x \to \begin{cases} +1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \end{cases}$ is a hyperring homomorphism.
 $-1, & \text{if } x < 0. \end{cases}$

Ideal is a subset I in a hyperring X such that $I \neg I \subset I$ and $XI \subset I$.

Ideal is a subset I in a hyperring X such that $I + I \subset I$ and $XI \subset I$. In a hyperfield X any ideal is either 0 or X.

Ideal is a subset I in a hyperring X such that $I + I \subset I$ and $XI \subset I$. In a hyperfield X any ideal is either 0 or X.

For hyperrings X, Y and a hyperring homomorphism $h : X \to Y$, the kernel $\operatorname{Ker} h = \{a \in X \mid h(a) = 0\}$ is an ideal.

Ideal is a subset I in a hyperring X such that $I + I \subset I$ and $XI \subset I$. In a hyperfield X any ideal is either 0 or X.

For hyperrings X, Y and a hyperring homomorphism $h : X \to Y$, the kernel $\operatorname{Ker} h = \{a \in X \mid h(a) = 0\}$ is an ideal.

However, the image of a hyperring homomorphism $h: X \to Y$ is not isomorphic to $X/\operatorname{Ker} h$.

Ideal is a subset I in a hyperring X such that $I + I \subset I$ and $XI \subset I$. In a hyperfield X any ideal is either 0 or X.

For hyperrings X, Y and a hyperring homomorphism $h : X \to Y$, the kernel Ker $h = \{a \in X \mid h(a) = 0\}$ is an ideal.

However, the image of a hyperring homomorphism $h: X \to Y$ is not isomorphic to $X/\operatorname{Ker} h$.

Moreover, there are non-injective hyperring homomorphisms between hyperfields. (e.g., sign : $\mathbb{R} \to S$ and $z \mapsto |z| : \mathbb{C} \to \nabla$).

Ideal is a subset I in a hyperring X such that $I + I \subset I$ and $XI \subset I$. In a hyperfield X any ideal is either 0 or X.

For hyperrings X, Y and a hyperring homomorphism $h : X \to Y$, the kernel $\operatorname{Ker} h = \{a \in X \mid h(a) = 0\}$ is an ideal.

However, the image of a hyperring homomorphism $h: X \to Y$ is not isomorphic to $X/\operatorname{Ker} h$.

Moreover, there are non-injective hyperring homomorphisms between hyperfields. (e.g., sign: $\mathbb{R} \to S$ and $z \mapsto |z| : \mathbb{C} \to \nabla$).

If X is a hyperfield, $h: X \to Y$ a hyperring homomorphism, then Ker h is an ideal in X and hence Ker h = 0.

⊢

The role of $\operatorname{Ker} f$ is taken over

by the multiplicative kernel $\operatorname{Ker}_m f = f^{-1}(1)$.

The role of Ker f is taken over by the multiplicative kernel Ker_m $f = f^{-1}(1)$. **Theorem (Krasner 1962)** For any hyperfield X and a subgroup S of X^{\times} , the quotient $X/_m S = \{0\} \cup X^{\times}/S$ is a hyperfield.

The role of Ker f is taken over by the multiplicative kernel Ker_m $f = f^{-1}(1)$. **Theorem (Krasner 1962)** For any hyperfield X and a subgroup S of X^{\times} , the quotient $X/_m S = \{0\} \cup X^{\times}/S$ is a hyperfield. If X is a hyperfield, $h: X \to Y$ a hyperring homomorphism,

then Im *h* is isomorphic to $X/_m \operatorname{Ker}_m f$.

The role of $\operatorname{Ker} f$ is taken over

by the multiplicative kernel $\operatorname{Ker}_m f = f^{-1}(1)$.

Theorem (Krasner 1962) For any hyperfield X and a subgroup S of X^{\times} , the quotient $X/_m S = \{0\} \cup X^{\times}/S$ is a hyperfield.

If X is a hyperfield, $h: X \to Y$ a hyperring homomorphism, then $\operatorname{Im} h$ is isomorphic to $X/_m \operatorname{Ker}_m f$.

Examples.

- $\nabla = \mathbb{C}/_m U(1)$,
- $\mathbf{S} = \mathbb{R}/_m\{\pm 1\}$,
- $\mathbf{K} = k/_m k^{\times}$ for any field k.

The role of $\operatorname{Ker} f$ is taken over

by the multiplicative kernel $\operatorname{Ker}_m f = f^{-1}(1)$.

Theorem (Krasner 1962) For any hyperfield X and a subgroup S of X^{\times} , the quotient $X/_m S = \{0\} \cup X^{\times}/S$ is a hyperfield.

If X is a hyperfield, $h: X \to Y$ a hyperring homomorphism, then $\operatorname{Im} h$ is isomorphic to $X/_m \operatorname{Ker}_m f$.

Examples.

- $\nabla = \mathbb{C}/_m U(1)$,
- $\mathbf{S} = \mathbb{R}/_m\{\pm 1\}$,
- $\mathbf{K} = k/_m k^{\times}$ for any field k.

Most of interesting hyperfields can be defined in this Krasner way.

The role of $\operatorname{Ker} f$ is taken over

by the multiplicative kernel $\operatorname{Ker}_m f = f^{-1}(1)$.

Theorem (Krasner 1962) For any hyperfield X and a subgroup S of X^{\times} , the quotient $X/_m S = \{0\} \cup X^{\times}/S$ is a hyperfield.

If X is a hyperfield, $h: X \to Y$ a hyperring homomorphism, then $\operatorname{Im} h$ is isomorphic to $X/_m \operatorname{Ker}_m f$.

Examples.

- $\nabla = \mathbb{C}/_m U(1)$,
- $\mathbf{S} = \mathbb{R}/_m\{\pm 1\}$,
- $\mathbf{K} = k/_m k^{\times}$ for any field k.

Most of interesting hyperfields can be defined in this Krasner way.

For hyperrings the notion of ideal

should be borrowed from Berkovich's \mathbb{F}_1 category.

Let X be a linearly ordered multiplicative group and $Y = X \cup \{0\}$ with $0 \prec a$ for any $a \in X$.

Let X be a linearly ordered multiplicative group and $Y = X \cup \{0\}$ with $0 \prec a$ for any $a \in X$.

Define a multivalued addition γ :

$$(a,b) \mapsto a \lor b = \begin{cases} \max(a,b), & \text{if } a \neq b \\ \{x \in Y \mid x \le a\}, & \text{if } a = b. \end{cases}$$

Let X be a linearly ordered multiplicative group and $Y = X \cup \{0\}$ with $0 \prec a$ for any $a \in X$. Define a multivalued addition \prec :

$$(a,b) \mapsto a \lor b = \begin{cases} \max(a,b), & \text{if } a \neq b \\ \{x \in Y \mid x \le a\}, & \text{if } a = b. \end{cases}$$

 (Y, Υ, X) is a hyperfield.

Let X be a linearly ordered multiplicative group and $Y = X \cup \{0\}$ with 0 < a for any $a \in X$.

Define a multivalued addition γ :

$$(a,b) \mapsto a \lor b = \begin{cases} \max(a,b), & \text{if } a \neq b \\ \{x \in Y \mid x \le a\}, & \text{if } a = b. \end{cases}$$

 (Y, Υ, X) is a hyperfield.

If X is the additive group of real numbers with the usual order,

then $Y = \mathbb{R} \cup \{-\infty\}$ is the **tropical hyperfield** \mathbb{Y} .

Let X be a linearly ordered multiplicative group

and $Y = X \cup \{0\}$ with $0 \prec a$ for any $a \in X$.

Define a multivalued addition γ :

$$(a,b) \mapsto a \lor b = \begin{cases} \max(a,b), & \text{if } a \neq b \\ \{x \in Y \mid x \le a\}, & \text{if } a = b. \end{cases}$$

 (Y, Υ, X) is a hyperfield.

If X is the additive group of real numbers with the usual order,

then $Y = \mathbb{R} \cup \{-\infty\}$ is the **tropical hyperfield** \mathbb{Y} .

If X is the same group with the reversed order,

then $Y = \mathbb{R} \cup \{+\infty\}$ is the value hyperfield \mathbb{V} .

Let X be a linearly ordered multiplicative group

and $Y = X \cup \{0\}$ with $0 \prec a$ for any $a \in X$.

Define a multivalued addition γ :

$$(a,b) \mapsto a \lor b = \begin{cases} \max(a,b), & \text{if } a \neq b \\ \{x \in Y \mid x \le a\}, & \text{if } a = b. \end{cases}$$

 (Y, Υ, X) is a hyperfield.

If X is the additive group of real numbers with the usual order,

then $Y = \mathbb{R} \cup \{-\infty\}$ is the **tropical hyperfield** \mathbb{Y} .

If X is the same group with the reversed order,

then $Y = \mathbb{R} \cup \{+\infty\}$ is the value hyperfield \mathbb{V} .

If X is the multiplicative group positive real numbers,

then Y is the ultratriangular hyperfield $U\nabla$.

Let X be a linearly ordered multiplicative group

and $Y = X \cup \{0\}$ with $0 \prec a$ for any $a \in X$.

Define a multivalued addition γ :

$$(a,b) \mapsto a \lor b = \begin{cases} \max(a,b), & \text{if } a \neq b \\ \{x \in Y \mid x \le a\}, & \text{if } a = b. \end{cases}$$

 (Y, Υ, X) is a hyperfield.

If X is the additive group of real numbers with the usual order,

then $Y = \mathbb{R} \cup \{-\infty\}$ is the **tropical hyperfield** \mathbb{Y} .

If X is the same group with the reversed order,

then $Y = \mathbb{R} \cup \{+\infty\}$ is the value hyperfield \mathbb{V} .

If X is the multiplicative group positive real numbers,

then Y is the **ultratriangular hyperfield** $U\nabla$. $U\nabla$ is isomorphic to Y by exp.

Let X be a linearly ordered multiplicative group

and $Y = X \cup \{0\}$ with $0 \prec a$ for any $a \in X$.

Define a multivalued addition γ :

$$(a,b) \mapsto a \lor b = \begin{cases} \max(a,b), & \text{if } a \neq b \\ \{x \in Y \mid x \le a\}, & \text{if } a = b. \end{cases}$$

 (Y, Υ, X) is a hyperfield.

If X is the additive group of real numbers with the usual order,

then $Y = \mathbb{R} \cup \{-\infty\}$ is the **tropical hyperfield** \mathbb{Y} .

If X is the same group with the reversed order,

then $Y = \mathbb{R} \cup \{+\infty\}$ is the value hyperfield \mathbb{V} . If X is the multiplicative group positive real numbers, then Y is the ultratriangular hyperfield $U\nabla$.

 $U\nabla$ is isomorphic to \mathbb{Y} by exp. It can be obtained like ∇ , but with ultrametric triangle instead of triangle inequality.

Let X be a linearly ordered multiplicative group

and $Y = X \cup \{0\}$ with $0 \prec a$ for any $a \in X$.

Define a multivalued addition γ :

$$(a,b) \mapsto a \lor b = \begin{cases} \max(a,b), & \text{if } a \neq b \\ \{x \in Y \mid x \le a\}, & \text{if } a = b. \end{cases}$$

 (Y, Υ, X) is a hyperfield.

If X is the additive group of real numbers with the usual order,

then $Y = \mathbb{R} \cup \{-\infty\}$ is the **tropical hyperfield** \mathbb{Y} .

If X is the same group with the reversed order,

then $Y = \mathbb{R} \cup \{+\infty\}$ is the value hyperfield \mathbb{V} .

If X is the multiplicative group positive real numbers,

then Y is the ultratriangular hyperfield $U\nabla$.

U∇ is isomorphic to Y by exp. It can be obtained like ∇, but with ultrametric triangle instead of triangle inequality.
 Ultrametric = isosceles with legs not shorter than the base.

The amoeba hyperfield

Another view on the triangular hyperfield ∇ :

The amoeba hyperfield

Another view on the triangular hyperfield ∇ : By the bijection

$$\mathbb{R} \cup \{-\infty\} \to \mathbb{R}_{\geq 0} : \begin{cases} x \mapsto \log x, & \text{for } x \neq -\infty \\ -\infty \mapsto 0 \end{cases}$$

pull back the hyperfield operations of ∇ .

The amoeba hyperfield

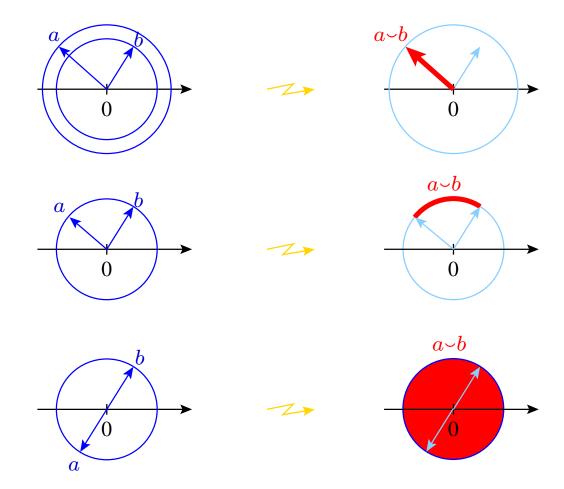
Another view on the triangular hyperfield ∇ : By the bijection

$$\mathbb{R} \cup \{-\infty\} \to \mathbb{R}_{\geq 0} : \begin{cases} x \mapsto \log x, & \text{for } x \neq -\infty \\ -\infty \mapsto 0 \end{cases}$$

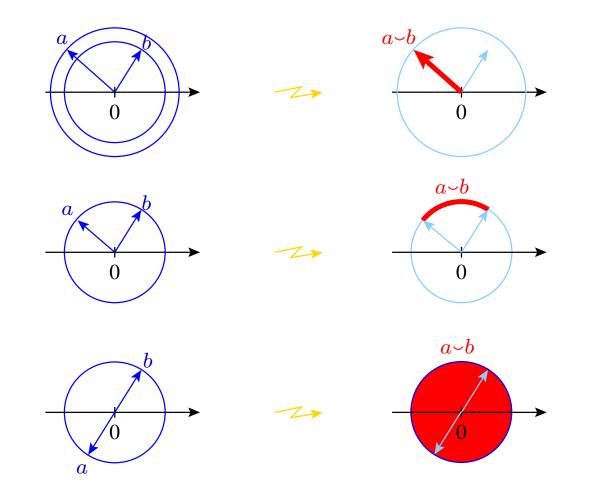
pull back the hyperfield operations of ∇ . The hyperfield gotten as the result

is called the **amoeba hyperfield** and denoted by \mathcal{A} .

Tropical addition of complex numbers

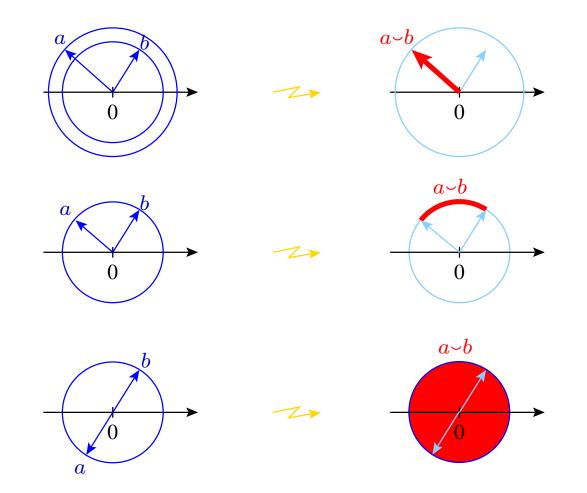


Tropical addition of complex numbers



 \mathbb{C} with the tropical addition and usual multiplication is a hyperfield.

Tropical addition of complex numbers



 \mathbb{C} with the tropical addition and usual multiplication is a hyperfield. The **complex tropical hyperfield** $\mathcal{T}\mathbb{C}$.

How do several complex numbers with the same absolute values give zero?

 $0 \in a \sim b \sim c \sim \ldots \sim x$ iff $0 \in \operatorname{Conv}(a, b, c, \ldots, x)$.

 $0 \in a \sim b \sim c \sim \ldots \sim x$ iff $0 \in \operatorname{Conv}(a, b, c, \ldots, x)$.

What if the summands have different absolute values?

 $0 \in a \sim b \sim c \sim \ldots \sim x$ iff $0 \in \operatorname{Conv}(a, b, c, \ldots, x)$.

What if the summands have different absolute values?

Then only those with the greatest one matter!

 $0 \in a \sim b \sim c \sim \ldots \sim x$ iff $0 \in \operatorname{Conv}(a, b, c, \ldots, x)$.

What if the summands have different absolute values? Then only those with the greatest one matter!

Theorem. The tropical addition \checkmark is upper semi-continuous and maps a connected set to a connected set and a compact set to a compact set.

 $0 \in a \sim b \sim c \sim \ldots \sim x$ iff $0 \in \operatorname{Conv}(a, b, c, \ldots, x)$.

What if the summands have different absolute values? Then only those with the greatest one matter!

Theorem. The tropical addition \checkmark is upper semi-continuous and maps a connected set to a connected set and a compact set to a compact set.

Corollary. The multivalued map defined by a complex tropical polynomial is upper semi-continuous. It preserves connectedness and compactness.

 $0 \in a \sim b \sim c \sim \ldots \sim x$ iff $0 \in \operatorname{Conv}(a, b, c, \ldots, x)$.

What if the summands have different absolute values? Then only those with the greatest one matter!

Theorem. The tropical addition \checkmark is upper semi-continuous and maps a connected set to a connected set and a compact set to a compact set.

Corollary. The multivalued map defined by a complex tropical polynomial is upper semi-continuous. It preserves connectedness and compactness.

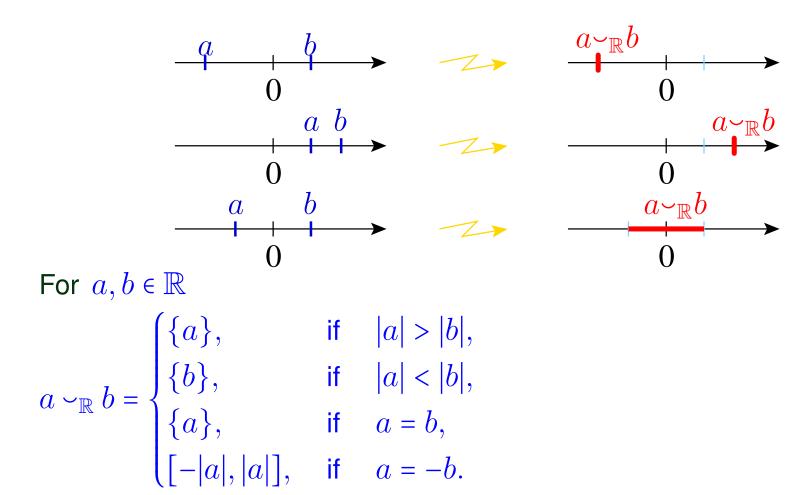
If p is a complex tropical polynomial and $X \subset \mathbb{C}$ is a closed set, then $p^{-1}(X) = \{a \mid X \subset p(a)\}$ is closed.

The tropical addition in $\mathbb C$ induces a tropical addition in $\mathbb R$.

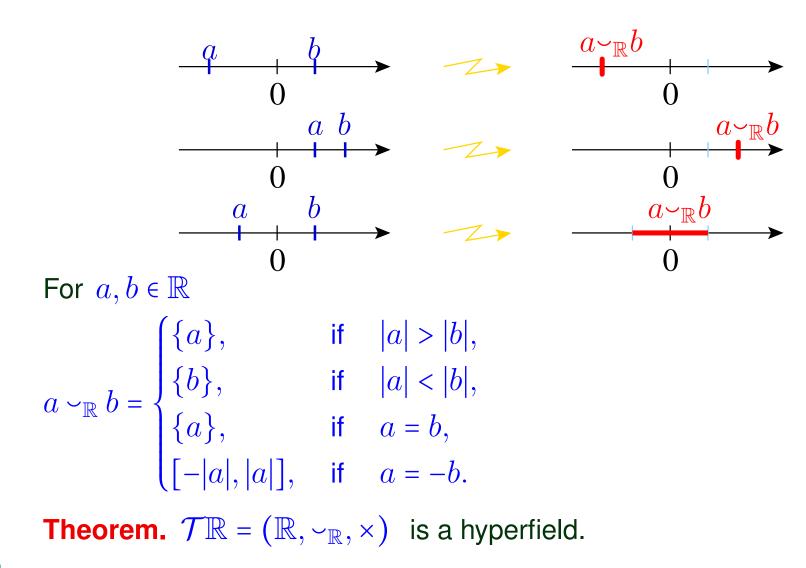
The tropical addition in \mathbb{C} induces a tropical addition in \mathbb{R} .



The tropical addition in $\mathbb C$ induces a tropical addition in $\mathbb R$.



The tropical addition in $\mathbb C$ induces a tropical addition in $\mathbb R$.



Other subhyperfields of \mathcal{TC}

The sign hyperfield $\mathbf{S} = \{0, 1, -1\}$ is a subhyperfield of $\mathcal{T}\mathbb{R} \subset \mathcal{T}\mathbb{C}$.

Other subhyperfields of \mathcal{TC}

The sign hyperfield $S = \{0, 1, -1\}$ is a subhyperfield of $\mathcal{T}\mathbb{R} \subset \mathcal{T}\mathbb{C}$.

The Krasner hyperfield $\mathbf{K} = \{0, 1\}$ is not, because $\mathcal{T}\mathbb{C}$ is idempotent: $a \sim a = a$ for any $a \in \mathcal{T}\mathbb{C}$, while $1 \neq 1 = \{0, 1\}$ in \mathbf{K} .

The sign hyperfield $S = \{0, 1, -1\}$ is a subhyperfield of $\mathcal{T}\mathbb{R} \subset \mathcal{T}\mathbb{C}$.

The Krasner hyperfield $\mathbf{K} = \{0, 1\}$ is not, because \mathcal{TC} is idempotent: $a \sim a = a$ for any $a \in \mathcal{TC}$, while $1 \neq 1 = \{0, 1\}$ in \mathbf{K} .

According to Connes and Consani, $a \in a \top a$ means characteristic one.

The sign hyperfield $S = \{0, 1, -1\}$ is a subhyperfield of $\mathcal{T}\mathbb{R} \subset \mathcal{T}\mathbb{C}$.

Theorem. Any $X \subset \mathbb{C}$ containing 0 and 1, closed under multiplication, invariant under $z \mapsto -z$, and such that $X \setminus \{0\}$ is invariant under $z \mapsto z^{-1}$ inherits from \mathcal{TC} the structure of hyperfield.

The sign hyperfield $S = \{0, 1, -1\}$ is a subhyperfield of $T\mathbb{R} \subset T\mathbb{C}$.

Theorem. Any $X \subset \mathbb{C}$ containing 0 and 1, closed under multiplication, invariant under $z \mapsto -z$, and such that $X \setminus \{0\}$ is invariant under $z \mapsto z^{-1}$ inherits from \mathcal{TC} the structure of hyperfield.

In particular, the phase hyperfield $\Phi = S^1 \cup 0 = \{z \in \mathbb{C} : |z|^2 = |z|\}$.

The sign hyperfield $S = \{0, 1, -1\}$ is a subhyperfield of $T\mathbb{R} \subset T\mathbb{C}$.

Theorem. Any $X \subset \mathbb{C}$ containing 0 and 1, closed under multiplication, invariant under $z \mapsto -z$, and such that $X \setminus \{0\}$ is invariant under $z \mapsto z^{-1}$ inherits from \mathcal{TC} the structure of hyperfield.

In particular, the phase hyperfield $\Phi = S^1 \cup 0 = \{z \in \mathbb{C} : |z|^2 = |z|\}$.

The exponential copy $(\mathbb{R}_{\geq 0}, \max, \times)$ of tropical semifield \mathbb{T} is a subsemifield of hyperfields $\mathcal{T}\mathbb{R} \subset \mathcal{T}\mathbb{C}$.

The sign hyperfield $S = \{0, 1, -1\}$ is a subhyperfield of $\mathcal{T}\mathbb{R} \subset \mathcal{T}\mathbb{C}$.

Theorem. Any $X \subset \mathbb{C}$ containing 0 and 1, closed under multiplication, invariant under $z \mapsto -z$, and such that $X \setminus \{0\}$ is invariant under $z \mapsto z^{-1}$ inherits from \mathcal{TC} the structure of hyperfield.

In particular, the phase hyperfield $\Phi = S^1 \cup 0 = \{z \in \mathbb{C} : |z|^2 = |z|\}$.

The exponential copy $(\mathbb{R}_{\geq 0}, \max, \times)$ of tropical semifield \mathbb{T} is a subsemifield of hyperfields $\mathcal{T}\mathbb{R} \subset \mathcal{T}\mathbb{C}$.

The inclusion $(\mathbb{R}_{\geq 0}, \max, \times) \hookrightarrow \mathcal{T}\mathbb{R}$ is a homomorphism.

Hyperring is a hyperfield with no division required. A map $f: X \to Y$ is called a (hyperring) homomorphism if $f(a \intercal b) \subset f(a) \intercal f(b)$ and f(ab) = f(a)f(b) for any $a, b \in X$.

Hyperring is a hyperfield with no division required. A map $f: X \to Y$ is called a (hyperring) homomorphism if $f(a \intercal b) \subset f(a) \intercal f(b)$ and f(ab) = f(a)f(b) for any $a, b \in X$.

Example. $\mathbb{C} \to \nabla : z \mapsto |z|$ is a hyperring homomorphism.

Hyperring is a hyperfield with no division required. A map $f: X \to Y$ is called a (hyperring) homomorphism if $f(a \intercal b) \subset f(a) \intercal f(b)$ and f(ab) = f(a)f(b) for any $a, b \in X$. **Example.** $\mathbb{C} \to \nabla : z \mapsto |z|$ is a hyperring homomorphism. **Generalization.** A multiplicative norm $K \to \mathbb{R}_{\geq 0}$ in a ring Kis a hyperring homomorphism $K \to \nabla$.

Hyperring is a hyperfield with no division required. A map $f: X \to Y$ is called a (hyperring) homomorphism if $f(a + b) \subset f(a) + f(b)$ and f(ab) = f(a)f(b) for any $a, b \in X$. **Example.** $\mathbb{C} \to \nabla : z \mapsto |z|$ is a hyperring homomorphism. **Generalization.** A multiplicative norm $K \to \mathbb{R}_{\geq 0}$ in a ring Kis a hyperring homomorphism $K \to \nabla$. A multiplicative non-archimedean norm $K \to \mathbb{R}$ is a hyperring homomorphism from $K \to U\nabla$.

non-archimedian = satisfies the ultra-metric triangle inequality $|a + b| \le \max(a, b)$ for any $a, b \in K$.

Hyperring is a hyperfield with no division required. A map $f: X \to Y$ is called a (hyperring) homomorphism if $f(a + b) \subset f(a) + f(b)$ and f(ab) = f(a)f(b) for any $a, b \in X$. **Example.** $\mathbb{C} \to \nabla : z \mapsto |z|$ is a hyperring homomorphism. **Generalization.** A multiplicative norm $K \to \mathbb{R}_{>0}$ in a ring K is a hyperring homomorphism $K \rightarrow \nabla$. A multiplicative non-archimedean norm $K \to \mathbb{R}$ is a hyperring homomorphism from $K \to U\nabla$. A valuation $K \to \mathbb{R} \cup \{\infty\}$ for a ring K is a hyperring homomorphism $K \to \mathbb{V}$.

Hyperring is a hyperfield with no division required. A map $f: X \to Y$ is called a (hyperring) homomorphism if $f(a + b) \subset f(a) + f(b)$ and f(ab) = f(a)f(b) for any $a, b \in X$. **Example.** $\mathbb{C} \to \nabla : z \mapsto |z|$ is a hyperring homomorphism. **Generalization.** A multiplicative norm $K \to \mathbb{R}_{>0}$ in a ring K is a hyperring homomorphism $K \rightarrow \nabla$. A multiplicative non-archimedean norm $K \to \mathbb{R}$ is a hyperring homomorphism from $K \to U\nabla$. A valuation $K \to \mathbb{R} \cup \{\infty\}$ for a ring Kis a hyperring homomorphism $K \to \mathbb{V}$.

Valuations are nothing but hyperring homomorphisms to $\mathbb{V}!$

Sign and phase

Sign and phase

The map

$$\begin{array}{l} \mathbf{S} \\ \operatorname{sign} : \mathbb{R} \to \{0, 1, -1\} : x \mapsto \begin{cases} \frac{x}{|x|}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases} \\ \text{is a hyperring homomorphism } \mathbb{R} \to \mathbf{S} \text{ and } \mathcal{T}\mathbb{R} \to \mathbf{S}. \end{array}$$

Sign and phase

The map

$$sign: \mathbb{R} \to \{0, 1, -1\} : x \mapsto \begin{cases} \frac{x}{|x|}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$$
is a hyperring homomorphism $\mathbb{R} \to \mathbf{S}$ and $\mathcal{T}\mathbb{R} \to \mathbf{S}$.
The map

$$phase: \mathbb{C} \to S^1 \cup \{0\} : x \mapsto \begin{cases} \frac{x}{|x|}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$$
is a hyperring homomorphism $\mathbb{C} \to \Phi$ and $\mathcal{T}\mathbb{C} \to \Phi$.

Fields are too rigid.

Fields are too rigid.

Hyperfields admit more deformations.

Fields are too rigid.

Hyperfields admit more deformations.

Krasner approximated fields of characteristic p > 0

by hyperfields of characteristic 0.

Fields are too rigid.

Hyperfields admit more deformations.

Krasner approximated fields of characteristic p > 0by **hyper**fields of characteristic 0.

Characteristic 1?

Traditional tropical geometry is a geometry of (degenerated) amoebas.

Fields are too rigid.

Hyperfields admit more deformations.

Krasner approximated fields of characteristic p > 0by **hyper**fields of characteristic 0.

Characteristic 1?

Traditional tropical geometry is a geometry of (degenerated) amoebas.

Hyperfields recover real and complex varieties in tropical geometry.

Hyperalgebra

Dequantizataions

• Litvinov-Maslov dequantization

• Dequantization $\nabla \rightarrow U\nabla$

• Dequantization $\mathbb C$ to $\mathcal T\mathbb C$

• Dequantizations commute

Geometries over Hyperfields

Complex Tropical Geometry

Polynomials over a hyperfield

Dequantizataions

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

These are multiplicative homomorphisms.

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

These are multiplicative homomorphisms, but they do not respect addition.

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

Pull back the addition:

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

Pull back the addition: $a +_h b = R_h^{-1}(R_h(a) + R_h(b))$ = $(a^{1/h} + b^{1/h})^h$

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

Pull back the addition: $a +_h b = R_h^{-1}(R_h(a) + R_h(b))$ = $(a^{1/h} + b^{1/h})^h$

 $R_h = (\mathbb{R}_{\geq 0}, +_h, \times)$ is a copy of semifield $(\mathbb{R}_{\geq 0}, +, \times)$ and $R_h : P_h \to (\mathbb{R}_{\geq 0}, +, \times)$ is an isomorphism.

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

Pull back the addition: $a +_h b = R_h^{-1}(R_h(a) + R_h(b))$ = $(a^{1/h} + b^{1/h})^h$

$$\begin{split} R_h &= (\mathbb{R}_{\geq 0}, +_h, \times) \text{ is a copy of semifield } (\mathbb{R}_{\geq 0}, +, \times) \text{ and} \\ R_h &: P_h \to (\mathbb{R}_{\geq 0}, +, \times) \text{ is an isomorphism.} \\ \lim_{h \to 0} (a^{1/h} + b^{1/h})^h &= \max(a, b) \,. \end{split}$$

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

Pull back the addition: $a +_h b = R_h^{-1}(R_h(a) + R_h(b))$ = $(a^{1/h} + b^{1/h})^h$

 $R_h = (\mathbb{R}_{\geq 0}, +_h, \times)$ is a copy of semifield $(\mathbb{R}_{\geq 0}, +, \times)$ and $R_h : P_h \to (\mathbb{R}_{\geq 0}, +, \times)$ is an isomorphism.

 $\lim_{h\to 0} (a^{1/h} + b^{1/h})^h = \max(a, b) \,.$

 P_h is a degeneration of $(\mathbb{R}_{\geq 0}, +, \times)$ to $(\mathbb{R}_{\geq 0}, \max, \times)$.

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

Pull back the addition: $a +_h b = R_h^{-1}(R_h(a) + R_h(b))$ = $(a^{1/h} + b^{1/h})^h$

 $R_h = (\mathbb{R}_{\geq 0}, +_h, \times)$ is a copy of semifield $(\mathbb{R}_{\geq 0}, +, \times)$ and $R_h : P_h \to (\mathbb{R}_{\geq 0}, +, \times)$ is an isomorphism.

 $\lim_{h\to 0} (a^{1/h} + b^{1/h})^h = \max(a, b) \, .$

 P_h is a dequantization of $(\mathbb{R}_{\geq 0}, +, \times)$ to $(\mathbb{R}_{\geq 0}, \max, \times)$.

Dequantization $\nabla \rightarrow \mathbf{U} \nabla$

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

These are multiplicative homomorphisms.

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

These are multiplicative homomorphisms, but they do not respect $(a, b) \mapsto a \lor b$.

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

Pull back the v-addition:

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

Pull back the \triangledown -addition: $a \triangledown_h b = R_h^{-1}(R_h(a) \triangledown R_h(b))$ = $\{c \in \mathbb{R}_{\geq 0} \mid |a^{1/h} - b^{1/h}|^h \le c \le (a^{1/h} + b^{1/h})^h\}$

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

Pull back the \triangledown -addition: $a \triangledown_h b = R_h^{-1}(R_h(a) \triangledown R_h(b))$ = $\{c \in \mathbb{R}_{\geq 0} \mid |a^{1/h} - b^{1/h}|^h \le c \le (a^{1/h} + b^{1/h})^h\}$

 $\nabla_h = (\mathbb{R}_{\geq 0}, \nabla_h, \cdot)$ is a copy of ∇ and $R_h : \nabla_h \to \nabla$ is an isomorphism.

Dequantization $\nabla \rightarrow U \nabla$

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

Pull back the \triangledown -addition: $a \triangledown_h b = R_h^{-1}(R_h(a) \triangledown R_h(b))$ = $\{c \in \mathbb{R}_{\geq 0} \mid |a^{1/h} - b^{1/h}|^h \le c \le (a^{1/h} + b^{1/h})^h\}$

 $\begin{aligned} \nabla_h &= \left(\mathbb{R}_{\geq 0}, \triangledown_h, \cdot\right) \text{ is a copy of } \nabla \text{ and } R_h : \nabla_h \to \nabla \text{ is an isomorphism.} \\ \text{If } a \neq b \text{, then} \\ \lim_{h \to 0} |a^{1/h} - b^{1/h}|^h &= \lim_{h \to 0} (a^{1/h} + b^{1/h})^h = \max(a, b), \\ \text{if } a = b \text{, then } |a^{1/h} - b^{1/h}|^h = 0 \text{, while } \lim_{h \to 0} (a^{1/h} + b^{1/h})^h = a \text{.} \end{aligned}$

Dequantization $\nabla \rightarrow U \nabla$

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

Pull back the \triangledown -addition: $a \triangledown_h b = R_h^{-1}(R_h(a) \triangledown R_h(b))$ = $\{c \in \mathbb{R}_{\geq 0} \mid |a^{1/h} - b^{1/h}|^h \le c \le (a^{1/h} + b^{1/h})^h\}$

 $\nabla_h = (\mathbb{R}_{\geq 0}, \nabla_h, \cdot)$ is a copy of ∇ and $R_h : \nabla_h \to \nabla$ is an isomorphism. If $a \neq b$, then $\lim_{h \to 0} |a^{1/h} - b^{1/h}|^h = \lim_{h \to 0} (a^{1/h} + b^{1/h})^h = \max(a, b),$ if a = b, then $|a^{1/h} - b^{1/h}|^h = 0$, while $\lim_{h \to 0} (a^{1/h} + b^{1/h})^h = a$. The endpoints of segment $a \nabla_h b$ tend to the endpoints of segment $a \vee b$ as $h \to 0$.

Dequantization $\nabla \rightarrow U \nabla$

For
$$h > 0$$
, consider a map $R_h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 $x \mapsto \begin{cases} x^{\frac{1}{h}}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$

Pull back the \triangledown -addition: $a \triangledown_h b = R_h^{-1}(R_h(a) \triangledown R_h(b))$ = $\{c \in \mathbb{R}_{\geq 0} \mid |a^{1/h} - b^{1/h}|^h \le c \le (a^{1/h} + b^{1/h})^h\}$

 $\begin{aligned} \nabla_h &= \left(\mathbb{R}_{\geq 0}, \nabla_h, \cdot\right) \text{ is a copy of } \nabla \text{ and } R_h : \nabla_h \to \nabla \text{ is an isomorphism.} \\ \text{If } a \neq b \text{, then} \\ \lim_{h \to 0} |a^{1/h} - b^{1/h}|^h &= \lim_{h \to 0} (a^{1/h} + b^{1/h})^h = \max(a, b), \\ \text{if } a = b \text{, then } |a^{1/h} - b^{1/h}|^h &= 0 \text{, while } \lim_{h \to 0} (a^{1/h} + b^{1/h})^h = a \text{.} \\ \text{The endpoints of segment } a \nabla_h b \text{ tend} \\ \text{to the endpoints of segment } a \vee b \text{ as } h \to 0 \text{.} \end{aligned}$

Let $a \lor_0 b \coloneqq a \lor b$.

∇_h is a dequantization of ∇ to $U\nabla$.

Table of Contents

For
$$h > 0$$
 consider a map $S_h: \mathbb{C} \to \mathbb{C}$
 $z \mapsto \begin{cases} |z|^{\frac{1}{h}} \frac{z}{|z|}, & \text{if } z \neq 0; \\ 0, & \text{if } z = 0. \end{cases}$

For
$$h > 0$$
 consider a map $S_h \colon \mathbb{C} \to \mathbb{C}$
 $z \mapsto \begin{cases} |z|^{\frac{1}{h}} \frac{z}{|z|}, & \text{if } z \neq 0; \\ 0, & \text{if } z = 0. \end{cases}$

These are multiplicative isomorphisms.

For
$$h > 0$$
 consider a map $S_h \colon \mathbb{C} \to \mathbb{C}$
$$z \mapsto \begin{cases} |z|^{\frac{1}{h}} \frac{z}{|z|}, & \text{if } z \neq 0; \\ 0, & \text{if } z = 0. \end{cases}$$

These are multiplicative isomorphisms, but they do not respect the addition.

For
$$h > 0$$
 consider a map $S_h \colon \mathbb{C} \to \mathbb{C}$
 $z \mapsto \begin{cases} |z|^{\frac{1}{h}} \frac{z}{|z|}, & \text{if } z \neq 0; \\ 0, & \text{if } z = 0. \end{cases}$

Pull back the addition via S_h :

For
$$h > 0$$
 consider a map $S_h \colon \mathbb{C} \to \mathbb{C}$
 $z \mapsto \begin{cases} |z|^{\frac{1}{h}} \frac{z}{|z|}, & \text{if } z \neq 0; \\ 0, & \text{if } z = 0. \end{cases}$

Pull back the addition via S_h :

 $z +_h w = S_h^{-1}(S_h(z) + S_h(w))$

For
$$h > 0$$
 consider a map $S_h \colon \mathbb{C} \to \mathbb{C}$
 $z \mapsto \begin{cases} |z|^{\frac{1}{h}} \frac{z}{|z|}, & \text{if } z \neq 0; \\ 0, & \text{if } z = 0. \end{cases}$

Pull back the addition via S_h :

 $z +_h w = S_h^{-1}(S_h(z) + S_h(w))$

 $\mathbb{C}_h = \mathbb{C}_{+_h,\times}$ is a copy of \mathbb{C} and $S_h : \mathbb{C}_h \to \mathbb{C}$ is an isomorphism.

For
$$h > 0$$
 consider a map $S_h \colon \mathbb{C} \to \mathbb{C}$
 $z \mapsto \begin{cases} |z|^{\frac{1}{h}} \frac{z}{|z|}, & \text{if } z \neq 0; \\ 0, & \text{if } z = 0. \end{cases}$

Pull back the addition via S_h :

 $z +_h w = S_h^{-1}(S_h(z) + S_h(w))$

 $\mathbb{C}_h = \mathbb{C}_{+_h,\times}$ is a copy of \mathbb{C} and $S_h : \mathbb{C}_h \to \mathbb{C}$ is an isomorphism. In a sense, $\lim_{h\to 0} (z + w) = z - w$.

For
$$h > 0$$
 consider a map $S_h \colon \mathbb{C} \to \mathbb{C}$
 $z \mapsto \begin{cases} |z|^{\frac{1}{h}} \frac{z}{|z|}, & \text{if } z \neq 0; \\ 0, & \text{if } z = 0. \end{cases}$

Pull back the addition via S_h :

 $z +_h w = S_h^{-1}(S_h(z) + S_h(w))$

$$\begin{split} \mathbb{C}_h &= \mathbb{C}_{+_h,\times} \text{ is a copy of } \mathbb{C} \text{ and } S_h : \mathbb{C}_h \to \mathbb{C} \text{ is an isomorphism.} \\ \text{In a sense, } \lim_{h \to 0} (z +_h w) &= z \sim w : \\ \text{let } \Gamma \subset \mathbb{R}_{\geq 0} \times \mathbb{C}^3 \text{ be a graph of } +_h \text{ for all } h > 0 \text{ ,} \\ \Gamma &= \{(h, a, b, c) \in \mathbb{C}^3 \mid a +_h b = c\} \text{ .} \end{split}$$

For
$$h > 0$$
 consider a map $S_h: \mathbb{C} \to \mathbb{C}$
 $z \mapsto \begin{cases} |z|^{\frac{1}{h}} \frac{z}{|z|}, & \text{if } z \neq 0; \\ 0, & \text{if } z = 0. \end{cases}$

Pull back the addition via S_h :

$$z +_h w = S_h^{-1}(S_h(z) + S_h(w))$$

$$\begin{split} \mathbb{C}_h &= \mathbb{C}_{+_h,\times} \text{ is a copy of } \mathbb{C} \text{ and } S_h : \mathbb{C}_h \to \mathbb{C} \text{ is an isomorphism.} \\ \text{In a sense, } \lim_{h \to 0} (z +_h w) &= z \sim w : \\ \text{let } \Gamma \subset \mathbb{R}_{\geq 0} \times \mathbb{C}^3 \text{ be a graph of } +_h \text{ for all } h > 0 \text{ ,} \\ \Gamma &= \{(h, a, b, c) \in \mathbb{C}^3 \mid a +_h b = c\} \text{ .} \end{split}$$

Then $\operatorname{Cl}(\Gamma) \cap (0 \times \mathbb{C}^3)$ is the graph of \sim .

For
$$h > 0$$
 consider a map $S_h: \mathbb{C} \to \mathbb{C}$
 $z \mapsto \begin{cases} |z|^{\frac{1}{h}} \frac{z}{|z|}, & \text{if } z \neq 0; \\ 0, & \text{if } z = 0. \end{cases}$

Pull back the addition via S_h :

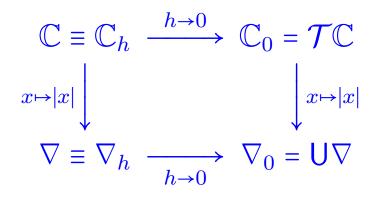
$$z +_h w = S_h^{-1}(S_h(z) + S_h(w))$$

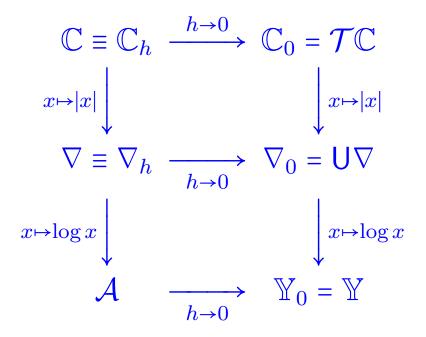
$$\begin{split} \mathbb{C}_h &= \mathbb{C}_{+_h, \times} \text{ is a copy of } \mathbb{C} \text{ and } S_h : \mathbb{C}_h \to \mathbb{C} \text{ is an isomorphism.} \\ \text{In a sense, } \lim_{h \to 0} (z +_h w) &= z \sim w : \\ \text{let } \Gamma \subset \mathbb{R}_{\geq 0} \times \mathbb{C}^3 \text{ be a graph of } +_h \text{ for all } h > 0 \text{ ,} \\ \Gamma &= \{(h, a, b, c) \in \mathbb{C}^3 \mid a +_h b = c\} \text{ .} \end{split}$$

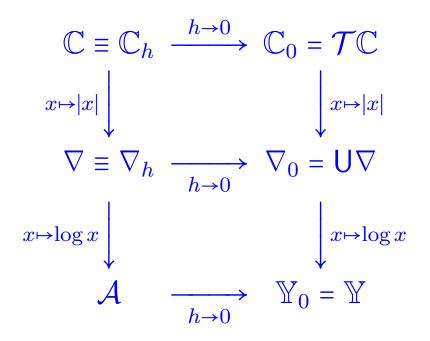
Then $\operatorname{Cl}(\Gamma) \cap (0 \times \mathbb{C}^3)$ is the graph of \checkmark .

\mathbb{C}_h is a dequantization of \mathbb{C} to $\mathcal{T}\mathbb{C}$.

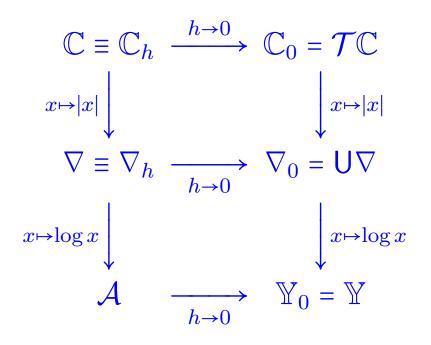
$$\mathbb{C} \equiv \mathbb{C}_h \xrightarrow{h \to 0} \mathbb{C}_0 = \mathcal{T}\mathbb{C}$$



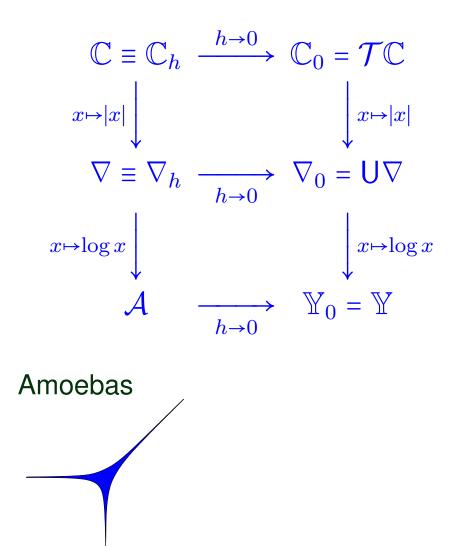


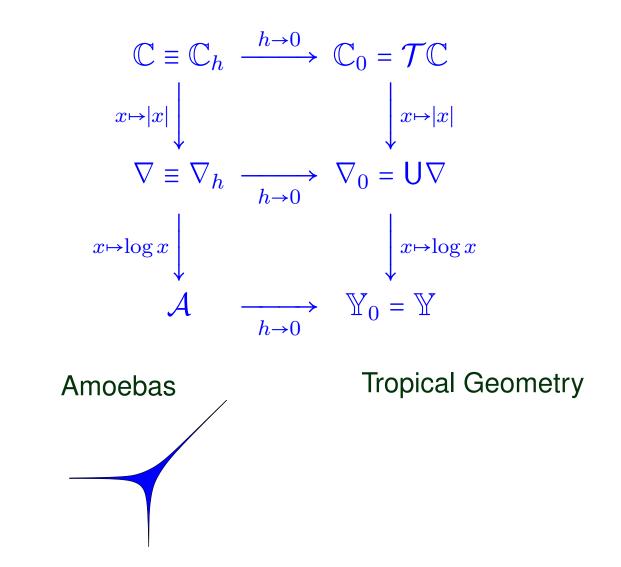


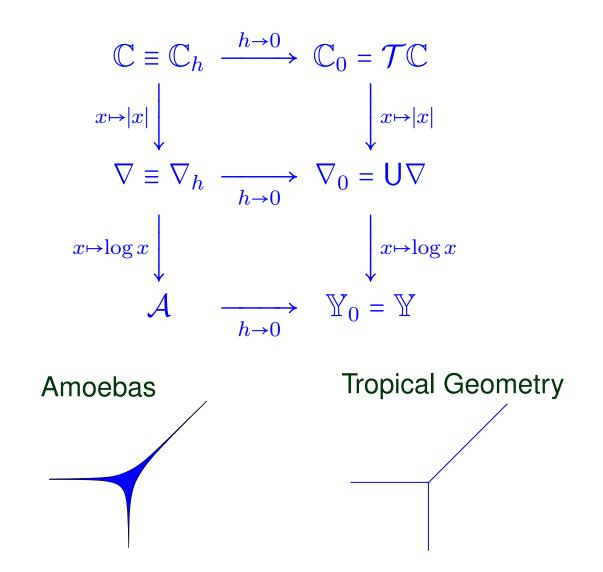
Complex Algebraic Geometry



Amoebas

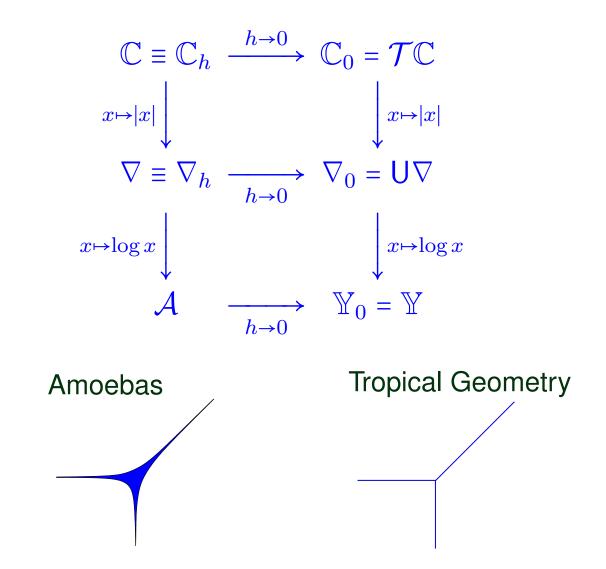






Complex Algebraic Geometry

Complex Tropical Geometry



Hyperalgebra

Dequantizataions

Geometries over Hyperfields

• Amoeba geometries

• Tropical Geometry

• Graphs and curves

Complex Tropical Geometry

Polynomials over a hyperfield

Geometries over Hyperfields

The **amoeba** of a complex variety $X \subset (\mathbb{C} \setminus 0)^n$ is the image of X under $\text{Log} : (\mathbb{C} \setminus 0)^n \to \mathbb{R}^n$.

The **amoeba** of a complex variety $X \in (\mathbb{C} \setminus 0)^n$ is the image of X under $\text{Log} : (\mathbb{C} \setminus 0)^n \to \mathbb{R}^n$. The image is contained in the variety over \mathcal{A} defined by the same equations as X.

The **amoeba** of a complex variety $X \in (\mathbb{C} \setminus 0)^n$ is the image of X under $\text{Log} : (\mathbb{C} \setminus 0)^n \to \mathbb{R}^n$. The image is contained in the variety over \mathcal{A} defined by the same equations as X.

Often, they coincide.

The **amoeba** of a complex variety $X \in (\mathbb{C} \setminus 0)^n$ is the image of X under $\text{Log} : (\mathbb{C} \setminus 0)^n \to \mathbb{R}^n$. The image is contained in the variety over \mathcal{A} defined by the same equations as X.

Often, they coincide. When?

The **amoeba** of a complex variety $X \subset (\mathbb{C} \setminus 0)^n$ is the image of X under $\text{Log} : (\mathbb{C} \setminus 0)^n \to \mathbb{R}^n$. The image is contained in the variety over \mathcal{A} defined by the same equations as X.

Often, they coincide. When? What is the geometry of varieties over the amoeba hyperfield \mathcal{A} ?

The **amoeba** of a complex variety $X \in (\mathbb{C} \setminus 0)^n$ is the image of X under $\text{Log} : (\mathbb{C} \setminus 0)^n \to \mathbb{R}^n$. The image is contained in the variety over \mathcal{A} defined by the same equations as X.

Often, they coincide. When? What is the geometry of varieties over the amoeba hyperfield \mathcal{A} ? This question has many meanings

The **amoeba** of a complex variety $X \in (\mathbb{C} \setminus 0)^n$ is the image of X under $\text{Log} : (\mathbb{C} \setminus 0)^n \to \mathbb{R}^n$. The image is contained in the variety over \mathcal{A} defined by the same equations as X.

Often, they coincide. When? What is the geometry of varieties over the amoeba hyperfield \mathcal{A} ? This question has many meanings:

semialgebraic geometry over \mathbb{R} , geometry over \mathcal{A}

The **amoeba** of a complex variety $X \in (\mathbb{C} \setminus 0)^n$ is the image of X under $\text{Log} : (\mathbb{C} \setminus 0)^n \to \mathbb{R}^n$. The image is contained in the variety over \mathcal{A} defined by the same equations as X.

Often, they coincide. When? What is the geometry of varieties over the amoeba hyperfield \mathcal{A} ? This question has many meanings: semialgebraic geometry over \mathbb{R} , geometry over \mathcal{A} ,

```
the variety may be analytic over \mathcal{A}.
```

Analytic functions over \mathcal{A} have graphs

that are closed sets with non-empty interior.

The **amoeba** of a complex variety $X \in (\mathbb{C} \setminus 0)^n$ is the image of X under $\text{Log} : (\mathbb{C} \setminus 0)^n \to \mathbb{R}^n$. The image is contained in the variety over \mathcal{A} defined by the same equations as X.

Often, they coincide. When? What is the geometry of varieties over the amoeba hyperfield \mathcal{A} ? This question has many meanings: semialgebraic geometry over \mathbb{R} , geometry over \mathcal{A} , the variety may be **analytic** over \mathcal{A} . Analytic functions over \mathcal{A} have graphs

that are closed sets with non-empty interior.

What are the boundaries?

Usually tropical geometry is defined as an algebraic geometry over $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \max, +), \text{ not over } \mathbb{Y}.$

Usually tropical geometry is defined as an algebraic geometry over $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \max, +), \text{ not over } \mathbb{Y}.$ A polynomial over \mathbb{T} is a convex PL-function with integral slopes.

Usually tropical geometry is defined as an algebraic geometry over $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \max, +), \text{ not over } \mathbb{Y}.$ A polynomial over \mathbb{T} is a convex PL-function with integral slopes. Indeed, a monomial $ax_1^{k_1} \dots x_n^{k_n}$ is $a + k_1x_1 + \dots + k_nx_n$.

Usually tropical geometry is defined as an algebraic geometry over $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \max, +), \text{ not over } \mathbb{Y}.$ A polynomial over \mathbb{T} is a convex PL-function with integral slopes. Indeed, a monomial $ax_1^{k_1} \dots x_n^{k_n}$ is $a + k_1x_1 + \dots + k_nx_n$, that is, a linear function $a + \langle k, x \rangle$.

Usually tropical geometry is defined as an algebraic geometry over $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \max, +), \text{ not over } \mathbb{Y}.$ A polynomial over \mathbb{T} is a convex PL-function with integral slopes. Indeed, a monomial $ax_1^{k_1} \dots x_n^{k_n}$ is $a + k_1x_1 + \dots + k_nx_n$, that is, a linear function $a + \langle k, x \rangle$. A polynomial is a finite sum of monomials.

Usually tropical geometry is defined as an algebraic geometry over $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \max, +), \text{ not over } \mathbb{Y}.$ A polynomial over \mathbb{T} is a convex PL-function with integral slopes. Indeed, a monomial $ax_1^{k_1} \dots x_n^{k_n}$ is $a + k_1x_1 + \dots + k_nx_n$, that is, a linear function $a + \langle k, x \rangle$. A polynomial is a finite sum of monomials,

that is the maximum of finite collection of linear functions.

Usually tropical geometry is defined as an algebraic geometry over $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \max, +), \text{ not over } \mathbb{Y}.$

A polynomial over \mathbb{T} is a convex PL-function with integral slopes.

A polynomial $\max_{k=(k_1,\ldots,k_n)}(a_k+k_1x_1+\cdots+k_nx_n)$ over \mathbb{T}

does not vanish, because the zero in \mathbb{T} is $-\infty$.

Usually tropical geometry is defined as an algebraic geometry over $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \max, +), \text{ not over } \mathbb{Y}.$ A polynomial over \mathbb{T} is a convex PL-function with integral slopes. A polynomial $\max_{k=(k_1,\ldots,k_n)}(a_k + k_1x_1 + \cdots + k_nx_n)$ over \mathbb{T} does not vanish, because the zero in \mathbb{T} is $-\infty$. **Tricky definition.** A hypersurface defined by tropical polynomial $\max_{k=(k_1,\ldots,k_n)}(a_k + k_1x_1 + \cdots + k_nx_n)$ is the set of points, at which the maximum is attained by at least two of the linear functions.

Usually tropical geometry is defined as an algebraic geometry over $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \max, +), \text{ not over } \mathbb{Y}.$ A polynomial over \mathbb{T} is a convex PL-function with integral slopes. A polynomial $\max_{k=(k_1,\ldots,k_n)}(a_k + k_1x_1 + \cdots + k_nx_n)$ over \mathbb{T} does not vanish, because the zero in \mathbb{T} is $-\infty$. **Tricky definition.** A hypersurface defined by tropical polynomial $\max_{k=(k_1,\ldots,k_n)}(a_k + k_1x_1 + \cdots + k_nx_n)$ is the set of points, at which the maximum is attained by at least two of the linear functions.

The easiest way to understand this: replace \mathbb{T} by \mathbb{Y} .

Usually tropical geometry is defined as an algebraic geometry over $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \max, +), \text{ not over } \mathbb{Y}.$ A polynomial over \mathbb{T} is a convex PL-function with integral slopes. A polynomial $\max_{k=(k_1,\ldots,k_n)}(a_k + k_1x_1 + \cdots + k_nx_n)$ over \mathbb{T} does not vanish, because the zero in \mathbb{T} is $-\infty$. **Tricky definition.** A hypersurface defined by tropical polynomial $\max_{k=(k_1,\ldots,k_n)}(a_k + k_1x_1 + \cdots + k_nx_n)$ is the set of points, at which the

maximum is attained by at least two of the linear functions.

The easiest way to understand this: replace \mathbb{T} by \mathbb{Y} .

The only difference between \mathbb{T} and \mathbb{Y} :

T is an **idempotent semiring**, $\max(x, x) = x$ for any $x \in \mathbb{T}$. Y is a hyperfield of characteristic 2, $x \lor x = \{y \mid y \le x\}$ for any $x \in \mathbb{Y}$.

Usually tropical geometry is defined as an algebraic geometry over $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \max, +), \text{ not over } \mathbb{Y}.$ A polynomial over \mathbb{T} is a convex PL-function with integral slopes. A polynomial $\max_{k=(k_1,...,k_n)}(a_k + k_1x_1 + \dots + k_nx_n)$ over \mathbb{T} does not vanish, because the zero in \mathbb{T} is $-\infty$. **Tricky definition.** A hypersurface defined by tropical polynomial

 $\max_{k=(k_1,...,k_n)}(a_k + k_1x_1 + \cdots + k_nx_n)$ is the set of points, at which the maximum is attained by at least two of the linear functions.

The easiest way to understand this: replace \mathbb{T} by \mathbb{Y} .

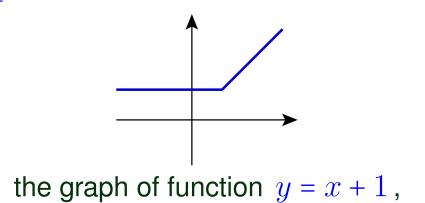
The only difference between \mathbb{T} and \mathbb{Y} :

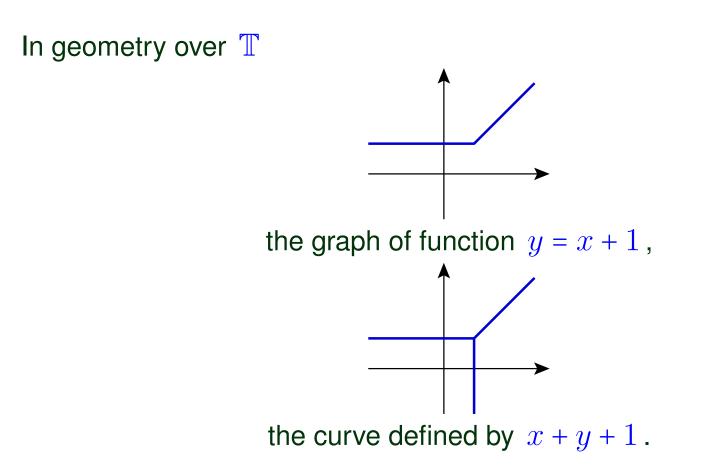
 \mathbb{T} is an **idempotent semiring**, $\max(x, x) = x$ for any $x \in \mathbb{T}$. \mathbb{Y} is a hyperfield of characteristic 2, $x \lor x = \{y \mid y \le x\}$ for any $x \in \mathbb{Y}$.

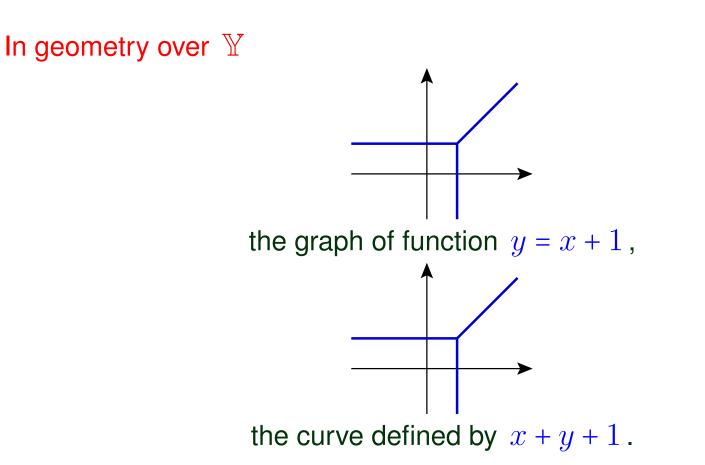
 $-\infty \in \mathsf{Y}_{k=(k_1,\ldots,k_n)}(a_k + k_1x_1 + \cdots + k_nx_n)$ where the maximum $\max_{k=(k_1,\ldots,k_n)}(a_k + k_1x_1 + \cdots + k_nx_n)$ is attained at least twice.

In geometry over \mathbb{T}

In geometry over \mathbb{T}







Hyperalgebra

Dequantizataions

Geometries over Hyperfields

Complex Tropical Geometry

• Complex tropical line

• Complex tropical varieties

Polynomials over a hyperfield

Complex Tropical Geometry

$$\{(x,y)\in\mathbb{C}^2\mid 0\in x\backsim y\backsim 1\}$$

 $\{(x,y) \in \mathbb{C}^2 \mid 0 \in x \sim y \sim 1\}$

The amoeba (the image under $\text{Log}: (\mathbb{C} \setminus 0)^2 \to \mathbb{R}^2$) is the tropical line

 $\{(x,y) \in \mathbb{C}^2 \mid 0 \in x \sim y \sim 1\}$

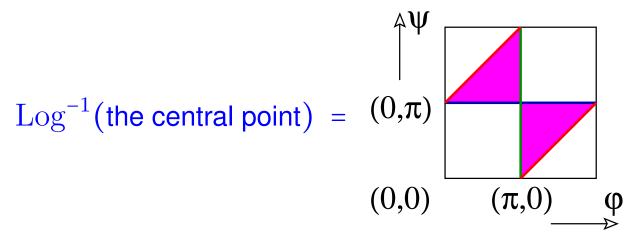
The amoeba (the image under $\text{Log}: (\mathbb{C} \setminus 0)^2 \to \mathbb{R}^2$) is the tropical line

 $Log^{-1}(a ray)$ is a holomorphic cylinder.

 $\{(x,y) \in \mathbb{C}^2 \mid 0 \in x \backsim y \backsim 1\}$

The amoeba (the image under $\text{Log}: (\mathbb{C} \setminus 0)^2 \to \mathbb{R}^2$) is the tropical line

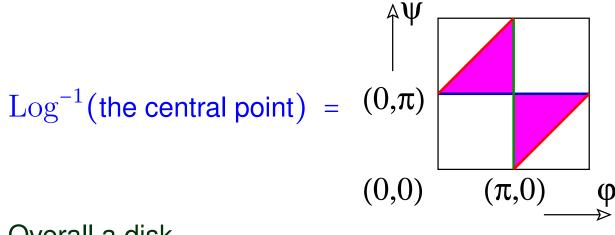
 $Log^{-1}(a ray)$ is a holomorphic cylinder.



 $\{(x,y) \in \mathbb{C}^2 \mid 0 \in x \backsim y \backsim 1\}$

The amoeba (the image under $\text{Log}: (\mathbb{C} \setminus 0)^2 \to \mathbb{R}^2$) is the tropical line

 $Log^{-1}(a ray)$ is a holomorphic cylinder.



Overall a disk.

Table of Contents

 $\{(x,y) \in \mathbb{C}^2 \mid 0 \in x \backsim y \backsim 1\}$

The amoeba (the image under $\text{Log}: (\mathbb{C} \setminus 0)^2 \to \mathbb{R}^2$) is the tropical line

 $Log^{-1}(a ray)$ is a holomorphic cylinder.

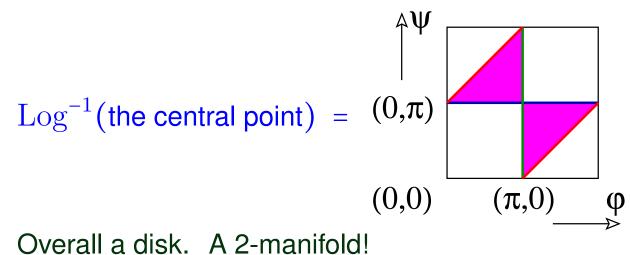


Table of Contents

Any complex toric variety is a complex tropical variety.

Any complex toric variety is a complex tropical variety.

A non-singular complex tropical plane projective curve (defined by a pure polynomial) is homeomorphic and isotopic to a non-singular complex plane projective curve of the same degree.

Any complex toric variety is a complex tropical variety.

A non-singular complex tropical plane projective curve (defined by a pure polynomial) is homeomorphic and isotopic to a non-singular complex plane projective curve of the same degree.

Conjecture. Any non-singular complex tropical variety is a topological manifold.

Any complex toric variety is a complex tropical variety.

A non-singular complex tropical plane projective curve (defined by a pure polynomial) is homeomorphic and isotopic to a non-singular complex plane projective curve of the same degree.

Conjecture. Any non-singular complex tropical variety is a topological manifold.

Conjecture. If under the dequantization a non-singular complex varieties tends to a non-singular complex tropical variety, then the dequantization provides an isotopy between the varieties.

Hyperalgebra

Dequantizataions

Geometries over Hyperfields

Complex Tropical Geometry

Polynomials over a hyperfield

• Some polynomial functions

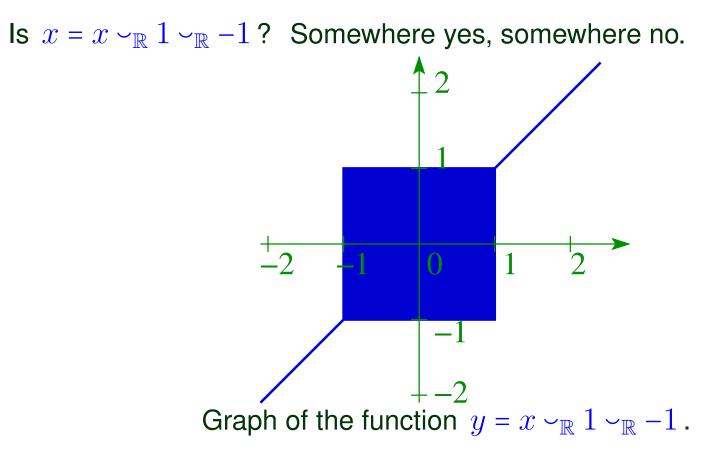
Polynomials over a

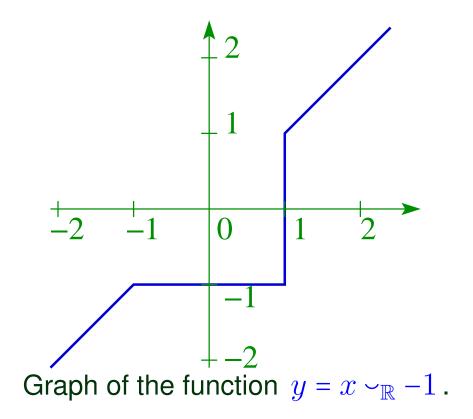
hyperring

Polynomials over a hyperfield

Is $x = x \sim_{\mathbb{R}} 1 \sim_{\mathbb{R}} -1$?

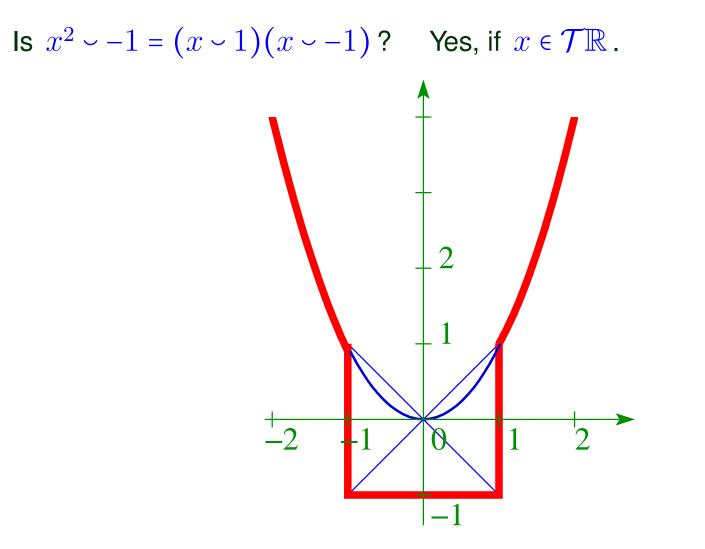
Is $x = x \sim_{\mathbb{R}} 1 \sim_{\mathbb{R}} -1$? Somewhere yes, somewhere no.





Is
$$x^2 \sim -1 = (x \sim 1)(x \sim -1)$$
?

Is $x^2 \sim -1 = (x \sim 1)(x \sim -1)$? Yes, if $x \in \mathcal{T}\mathbb{R}$.



Is $x^2 \sim -1 = (x \sim 1)(x \sim -1)$? Yes, if $x \in \mathcal{T}\mathbb{R}$. No for x = i.

Is
$$x^2 \sim -1 = (x \sim 1)(x \sim -1)$$
? Yes, if $x \in \mathcal{T}\mathbb{R}$. No for $x = i$.
 $i^2 \sim -1 = -1$, but $(i \sim 1)(i \sim -1) = \{z \in \mathcal{T}\mathbb{C} \mid |z| = 1, \text{Re } z \le 0\}$

Is
$$x^2 \sim -1 = (x \sim 1)(x \sim -1)$$
? Yes, if $x \in \mathcal{T}\mathbb{R}$. No for $x = i$.
 $i^2 \sim -1 = -1$, but $(i \sim 1)(i \sim -1) = \{z \in \mathcal{T}\mathbb{C} \mid |z| = 1, \operatorname{Re} z \leq 0\}$
 $(a \sim b)(c \sim d) \neq ac \sim ad \sim bc \sim bd$

Is
$$x^2 \sim -1 = (x \sim 1)(x \sim -1)$$
? Yes, if $x \in \mathcal{T}\mathbb{R}$. No for $x = i$.
 $i^2 \sim -1 = -1$, but $(i \sim 1)(i \sim -1) = \{z \in \mathcal{T}\mathbb{C} \mid |z| = 1, \operatorname{Re} z \leq 0\}$.
 $(a \sim b)(c \sim d) \neq ac \sim ad \sim bc \sim bd$

Thus \mathcal{TC} is not double distributive.

Is
$$x^2 \sim -1 = (x \sim 1)(x \sim -1)$$
? Yes, if $x \in \mathcal{T}\mathbb{R}$. No for $x = i$.
 $i^2 \sim -1 = -1$, but $(i \sim 1)(i \sim -1) = \{z \in \mathcal{T}\mathbb{C} \mid |z| = 1, \operatorname{Re} z \leq 0\}$.
 $(a \sim b)(c \sim d) \neq ac \sim ad \sim bc \sim bd$

Thus \mathcal{TC} is not double distributive.

A hyperring X is said to be double distributive if $(a_1 \top \ldots \top a_n)(b_1 \top \ldots \top b_m) = a_1b_1 \top \ldots \top a_1b_m \top \ldots \top a_nb_1 \top \ldots \top a_nb_m$

Some polynomial functions

Is $x^2 \sim -1 = (x \sim 1)(x \sim -1)$? Yes, if $x \in \mathcal{T}\mathbb{R}$. No for x = i. $i^2 \sim -1 = -1$, but $(i \sim 1)(i \sim -1) = \{z \in \mathcal{T}\mathbb{C} \mid |z| = 1, \operatorname{Re} z \leq 0\}$. $(a \sim b)(c \sim d) \neq ac \sim ad \sim bc \sim bd$

Thus \mathcal{TC} is not double distributive.

A hyperring X is said to be double distributive if $(a_1 \top \ldots \top a_n)(b_1 \top \ldots \top b_m) = a_1b_1 \top \ldots \top a_1b_m \top \ldots \top a_nb_1 \top \ldots \top a_nb_m$

Some hyperfields are double distributive, some are not. In particular, $\mathcal{T}\mathbb{R}$, \mathbf{K} , \mathbf{S} and \mathbb{Y} are double distributive.

while \mathcal{TC} , Φ and ∇ are not.

Let R be a hyperring. What is a polynomial over R?

Let R be a hyperring. What is a polynomial over R? A finite formal sum of monomials?

Let R be a hyperring. What is a polynomial over R?

A finite formal sum of monomials?

Or any formal expression formed out of the unknowns and constants by operations of sum and product?

Let R be a hyperring. What is a polynomial over R? A finite formal sum of monomials? Or any formal expression formed out of the unknowns and constants by operations of sum and product? If R is a double distributive hyperring, it does not matter.

Let R be a hyperring. What is a polynomial over R? A finite formal sum of monomials? Or any formal expression formed out of the unknowns and constants by operations of sum and product? If R is a double distributive hyperring, it does not matter.

What is the product of polynomials?

Let R be a hyperring. What is a polynomial over R?

A finite formal sum of monomials?

Or any formal expression formed out of the unknowns and constants by operations of sum and product?

If R is a double distributive hyperring, it does not matter.

What is the product of polynomials?

Over a double distributive hyperfield,

the product of finite sum of monomials is a finite sum of monomials.

Let R be a hyperring. What is a polynomial over R? A finite formal sum of monomials? Or any formal expression formed out of the unknowns and constants by operations of sum and product? If R is a double distributive hyperring, it does not matter. What is the product of polynomials? Over a double distributive hyperfield, the product of finite sum of monomials is a finite sum of monomials. What is the sum of polynomials p, q over R? Is it just p op q?

Let R be a hyperring. What is a polynomial over R? A finite formal sum of monomials? Or any formal expression formed out of the unknowns and constants by operations of sum and product? If R is a double distributive hyperring, it does not matter. What is the product of polynomials?

Over a double distributive hyperfield,

the product of finite sum of monomials is a finite sum of monomials.

What is the sum of polynomials p, q over R? Is it just p + q? Is it univalued?

Let R be a hyperring. What is a polynomial over R? A finite formal sum of monomials? Or any formal expression formed out of the unknowns and constants by operations of sum and product? If R is a double distributive hyperring, it does not matter. What is the product of polynomials? Over a double distributive hyperfield, the product of finite sum of monomials is a finite sum of monomials. What is the sum of polynomials p, q over R? Is it just $p \top q$? Do polynomials over R form a true ring? Is it univalued?

Let R be a hyperring. What is a polynomial over R? A finite formal sum of monomials? Or any formal expression formed out of the unknowns and constants by operations of sum and product? If R is a double distributive hyperring, it does not matter. What is the product of polynomials? Over a double distributive hyperfield, the product of finite sum of monomials is a finite sum of monomials. What is the sum of polynomials p, q over R? Is it just $p \top q$? Is it univalued? Do polynomials over R form a true ring? No, the subtraction is not available: $x = -x \neq 0$, but $p = -p \neq 0$ for $\forall p$.

Let R be a hyperring. What is a polynomial over R? A finite formal sum of monomials? Or any formal expression formed out of the unknowns and constants by operations of sum and product? If R is a double distributive hyperring, it does not matter. What is the product of polynomials? Over a double distributive hyperfield, the product of finite sum of monomials is a finite sum of monomials. What is the sum of polynomials p, q over R? Is it just $p \top q$? Do polynomials over R form a true ring? Is it univalued? No, the subtraction is not available: $x = -x \neq 0$, but $p = -p \neq 0$ for $\forall p$. Extend $p \top q$, by putting $p \top q = \{r \mid \Gamma_r \subset \Gamma_{p \top q}\}$.

Let R be a hyperring. What is a polynomial over R? A finite formal sum of monomials? Or any formal expression formed out of the unknowns and constants by operations of sum and product? If R is a double distributive hyperring, it does not matter. What is the product of polynomials? Over a double distributive hyperfield, the product of finite sum of monomials is a finite sum of monomials. What is the sum of polynomials p, q over R? Is it just $p \top q$? Do polynomials over R form a true ring? Is it univalued?

No, the subtraction is not available: $x - x \neq 0$, but $p - p \neq 0$ for $\forall p$.

Extend $p \intercal q$, by putting $p \intercal q = \{r \mid \Gamma_r \subset \Gamma_{p \intercal q}\}$.

 $R[x_1, \ldots, x_n]$ is a hyperring with addition $\underline{\tau}$ and usual multiplication.

Table of Contents

Hyperalgebra

- Triangle addition
- Hyperfields
- First examples of hyperfields
- Hyperrings
- Hyperring homomorphisms
- Ideals and their weakness
- New ideals
- Hyperfields of linear orders
- The amoeba hyperfield

Tropical addition of complex numbers Properties of tropical addition

Tropical addition of real numbers Other subhyperfields of \mathcal{TC} Table of **Hyperring homomorphisms**

Dequantizataions

Litvinov-Maslov dequantization Dequantization $\nabla \rightarrow U\nabla$ Dequantization \mathbb{C} to $\mathcal{T}\mathbb{C}$ Dequantizations commute

Table of Contents

Geometries over Hyperfields

Amoeba geometries Tropical Geometry Graphs and curves

Complex Tropical Geometry

Complex tropical line Complex tropical varieties

Polynomials over a hyperfield

Some polynomial functions Polynomials over a hyperring