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a ▿ b = {c ∈ R≥0 ∣ ∣a − b∣ ≤ c ≤ a + b}.

a ▿ b is the set of numbers c such that ∃ a traingle with sides a, b, c .
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In R≥0 define a multivalued addition:

a ▿ b = {c ∈ R≥0 ∣ ∣a − b∣ ≤ c ≤ a + b}.

a ▿ b is the set of numbers c such that ∃ a traingle with sides a, b, c .

(a, b) ↦ a ▿ b is commutative; has zero 0 ;

is associative,

for each a , there exists unique b such that 0 ∈ a ▿ b .

This b is a .

That is −a = a !

Distributivity: a(b ▿ c) = ab ▿ ac .

R≥0 with addition (a, b) ↦ a ▿ b and usual multiplication is a

hyperfield.
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A set X with a multivalued operation

X ×X → 2X ∖ {∅} ∶ (a, b)↦ a ⊺ b

and a multiplication X ×X →X ∶ (a, b)↦ a ⋅ b is called a hyperfield,

if

● (a, b)↦ a ⊺ b is commutative, associative;

● ∃0 ∈X such that 0 ⊺ a = a for any a ∈X ;

● for ∀a ∈X there exists a unique −a ∈X such that 0 ∈ a ⊺ (−a);
● −(a ⊺ b) = (−a) ⊺ (−b)
● 0 ⋅ a = a ⋅ 0 = 0 for any a ∈X ;

● distributivity: a(b ⊺ c) = ab ⊺ ac for any a, b, c ∈X ;

● X ∖ 0 is a commutative group under the multiplication.
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R≥0 with ⊺ = ▿ and the usual multiplication is a hyperfield.

triangle hyperfield ∇ .

The Krasner hyperfield: K = {0,1} with multivalued addition + and

1 + 1 = {0,1} , 0 + 0 = 0 , 0 + 1 = 1 , 0 ⋅ 0 = 0 ⋅ 1 = 0 , 1 ⋅ 1 = 1 .

The sign hyperfield: S = {0,1,−1} with 1 ⌣ 1 = 1 , −1 ⌣ −1 = −1 ,

1 ⌣ −1 = {1,0,−1} .
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A hyperring is a hyperfield with no division required.

In a hyperring, the multiplication (still univalued)

may even have zero divisors.

A commutative hyperring satisfies all the axioms of hyperfield

except the last one.

If the multiplication in a hyperring is non-commutative,

then two distributivities are postulated:

both a(b ⊺ c) = ab ⊺ ac , and (b ⊺ c)a = ba ⊺ ca .

For any hyperfield X , (n × n)-matrices with elements from X and

with obvious operations form a hyperring.
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A map f ∶X → Y is called a (hyperring) homomorphism if
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A map f ∶X → Y is called a (hyperring) homomorphism if

f(a ⊺ b) ⊂ f(a) ⊺ f(b) and f(ab) = f(a)f(b) for any a, b ∈X .

Examples:

1. C→ ∇ ∶ z ↦ ∣z∣ is a hyperring homomorphism.

2. Generalization. A multiplicative norm K → R≥0 in a ring K

is a hyperring homomorphism K → ∇ .

3. For any field (or hyperfield) X ,

X →K ∶ x↦

⎧⎪⎪
⎨
⎪⎪⎩

1, if x ≠ 0

0, if x = 0
is a hyperring homomorphism.

4. sign ∶ R→ S ∶ x→

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

+1, if x > 0

0, if x = 0

−1, if x < 0.

is a hyperring homomorphism.
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Ideal is a subset I in a hyperring X such that I ⊺ I ⊂ I and XI ⊂ I .

In a hyperfield X any ideal is either 0 or X .

For hyperrings X,Y and a hyperring homomorphism h ∶X → Y ,

the kernel Kerh = {a ∈X ∣ h(a) = 0} is an ideal.

However, the image of a hyperring homomorphism h ∶ X → Y

is not isomorphic to X/Kerh .

Moreover, there are non-injective hyperring homomorphisms

between hyperfields. (e.g., sign ∶ R→ S and z ↦ ∣z∣ ∶ C → ∇ ).

If X is a hyperfield, h ∶X → Y a hyperring homomorphism,

then Kerh is an ideal in X and hence Kerh = 0.
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The role of Ker f is taken over

by the multiplicative kernel Kerm f = f−1(1) .

Theorem (Krasner 1962) For any hyperfield X and a subgroup S of

X× , the quotient X/mS = {0} ∪X×/S is a hyperfield.

If X is a hyperfield, h ∶X → Y a hyperring homomorphism,

then Imh is isomorphic to X/mKerm f .

Examples.

● ∇ = C/mU(1) ,

● S = R/m{±1} ,

● K = k/mk× for any field k .

Most of interesting hyperfields can be defined in this Krasner way.

For hyperrings the notion of ideal

should be borrowed from Berkovich’s F1 category.
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Let X be a linearly ordered multiplicative group

and Y =X ∪ {0} with 0 ≺ a for any a ∈X .

Define a multivalued addition + :

(a, b)↦ a + b =
⎧⎪⎪
⎨
⎪⎪⎩

max(a, b), if a ≠ b

{x ∈ Y ∣ x ⪯ a}, if a = b.

(Y,+,×) is a hyperfield.

If X is the additive group of real numbers with the usual order,

then Y = R ∪ {−∞} is the tropical hyperfield Y .

If X is the same group with the reversed order,

then Y = R ∪ {+∞} is the value hyperfield V .

If X is the multiplicative group positive real numbers,

then Y is the ultratriangular hyperfield U∇ .

U∇ is isomorphic to Y by exp . It can be obtained like ∇ ,

but with ultrametric triangle instead of triangle inequality.

Ultrametric = isosceles with legs not shorter than the base.
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Another view on the triangular hyperfield ∇ :

By the bijection

R ∪ {−∞}→ R≥0 ∶

⎧⎪⎪
⎨
⎪⎪⎩

x↦ logx, for x ≠ −∞

−∞↦ 0

pull back the hyperfield operations of ∇ .

The hyperfield gotten as the result

is called the amoeba hyperfield and denoted by A .
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0

0

0

0

0

0

ba

a

b

a b

a⌣b

a⌣b

a⌣b

C with the tropical addition and usual multiplication is a hyperfield.

The complex tropical hyperfield T C .
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0 ∈ a ⌣ b ⌣ c ⌣ . . . ⌣ x iff 0 ∈ Conv(a, b, c, . . . , x).

What if the summands have different absolute values?

Then only those with the greatest one matter!

Theorem. The tropical addition ⌣ is upper semi-continuous and maps

a connected set to a connected set

and a compact set to a compact set.

Corollary. The multivalued map defined by a complex tropical

polynomial is upper semi-continuous. It preserves connectedness and

compactness.

If p is a complex tropical polynomial and X ⊂ C is a closed set,

then p−1(X) = {a ∣X ⊂ p(a)} is closed.
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The tropical addition in C induces a tropical addition in R .

0

0 0

0

00

a b

a b

a b

a⌣Rb

a⌣Rb

a⌣Rb

For a, b ∈ R

a ⌣R b =
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The tropical addition in C induces a tropical addition in R .

0

0 0

0

00

a b

a b

a b

a⌣Rb

a⌣Rb

a⌣Rb

For a, b ∈ R

a ⌣R b =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{a}, if ∣a∣ > ∣b∣,

{b}, if ∣a∣ < ∣b∣,

{a}, if a = b,

[−∣a∣, ∣a∣], if a = −b.

Theorem. T R = (R,⌣R,×) is a hyperfield.
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The sign hyperfield S = {0,1,−1} is a subhyperfield of T R ⊂ T C .

The Krasner hyperfield K = {0,1} is not, because T C is idempotent:

a ⌣ a = a for any a ∈ T C , while 1 + 1 = {0,1} in K .

According to Connes and Consani, a ∈ a ⊺a means characteristic one.
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The sign hyperfield S = {0,1,−1} is a subhyperfield of T R ⊂ T C .

Theorem. Any X ⊂ C containing 0 and 1 ,

closed under multiplication, invariant under z ↦ −z ,

and such that X ∖ {0} is invariant under z ↦ z−1

inherits from T C the structure of hyperfield.

In particular, the phase hyperfield Φ = S1 ∪ 0 = {z ∈ C ∶ ∣z∣2 = ∣z∣} .

The exponential copy (R≥0,max,×) of tropical semifield T

is a subsemifield of hyperfields T R ⊂ T C .

The inclusion (R≥0,max,×)↪ T R is a homomorphism.
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A map f ∶X → Y is called a (hyperring) homomorphism if

f(a ⊺ b) ⊂ f(a) ⊺ f(b) and f(ab) = f(a)f(b) for any a, b ∈X .

Example. C → ∇ ∶ z ↦ ∣z∣ is a hyperring homomorphism.

Generalization. A multiplicative norm K → R≥0 in a ring K

is a hyperring homomorphism K → ∇ .

A multiplicative non-archimedean norm K → R

is a hyperring homomorphism from K → U∇ .

non-archimedian = satisfies the ultra-metric triangle inequality

∣a + b∣ ≤max(a, b) for any a, b ∈K .



Hyperring homomorphisms

Table of Contents 16 / 35

Hyperring is a hyperfield with no division required.

A map f ∶X → Y is called a (hyperring) homomorphism if

f(a ⊺ b) ⊂ f(a) ⊺ f(b) and f(ab) = f(a)f(b) for any a, b ∈X .

Example. C → ∇ ∶ z ↦ ∣z∣ is a hyperring homomorphism.

Generalization. A multiplicative norm K → R≥0 in a ring K

is a hyperring homomorphism K → ∇ .

A multiplicative non-archimedean norm K → R

is a hyperring homomorphism from K → U∇ .

A valuation K → R ∪ {∞} for a ring K

is a hyperring homomorphism K → V .



Hyperring homomorphisms

Table of Contents 16 / 35

Hyperring is a hyperfield with no division required.

A map f ∶X → Y is called a (hyperring) homomorphism if

f(a ⊺ b) ⊂ f(a) ⊺ f(b) and f(ab) = f(a)f(b) for any a, b ∈X .

Example. C → ∇ ∶ z ↦ ∣z∣ is a hyperring homomorphism.

Generalization. A multiplicative norm K → R≥0 in a ring K

is a hyperring homomorphism K → ∇ .

A multiplicative non-archimedean norm K → R

is a hyperring homomorphism from K → U∇ .

A valuation K → R ∪ {∞} for a ring K

is a hyperring homomorphism K → V .

Valuations are nothing but hyperring homomorphisms to V!
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The map
sign ∶ R→ {0,1,−1} ∶ x↦

⎧⎪⎪
⎨
⎪⎪⎩

x
∣x∣ , if x ≠ 0

0, if x = 0
is a hyperring homomorphism R→ S and T R→ S .

The map
phase ∶ C→ S1 ∪ {0} ∶ x↦

⎧⎪⎪
⎨
⎪⎪⎩

x
∣x∣ , if x ≠ 0

0, if x = 0
is a hyperring homomorphism C→ Φ and T C→ Φ .
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Fields are too rigid.

Hyperfields admit more deformations.

Krasner approximated fields of characteristic p > 0
by hyperfields of characteristic 0.

Characteristic 1?

Traditional tropical geometry is a geometry of (degenerated) amoebas.

Hyperfields recover real and complex varieties in tropical geometry.
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= (a1/h + b1/h)h

Rh = (R≥0,+h,×) is a copy of semifield (R≥0,+,×) and

Rh ∶ Ph → (R≥0,+,×) is an isomorphism.

limh→0(a1/h + b1/h)h =max(a, b) .

Ph is a dequantization of (R≥0,+,×) to (R≥0,max,×) .
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Pull back the ▿ -addition: a ▿h b = R−1h (Rh(a) ▿Rh(b))
= {c ∈ R≥0 ∣ ∣a1/h − b1/h∣h ≤ c ≤ (a1/h + b1/h)h}

∇h = (R≥0,▿h, ⋅) is a copy of ∇ and Rh ∶ ∇h → ∇ is an isomorphism.

If a ≠ b , then

limh→0 ∣a1/h − b1/h∣h = limh→0(a1/h + b1/h)h =max(a, b),
if a = b , then ∣a1/h − b1/h∣h = 0 , while limh→0(a1/h + b1/h)h = a .

The endpoints of segment a ▿h b tend

to the endpoints of segment a + b as h→ 0 .

Let a ▿0 b ∶= a + b .

∇h is a dequantization of ∇ to U∇ .
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Ch = C+h,× is a copy of C and Sh ∶ Ch → C is an isomorphism.

In a sense, limh→0(z +h w) = z ⌣w :

let Γ ⊂ R≥0 ×C3 be a graph of +h for all h > 0 ,

Γ = {(h, a, b, c) ∈ C3 ∣ a +h b = c} .

Then Cl(Γ) ∩ (0 ×C3) is the graph of ⌣ .

Ch is a dequantization of C to T C .
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C ≡ Ch

h→0
ÐÐÐ→ C0 = T C

x↦∣x∣
×××Ö

×××Ö
x↦∣x∣

∇ ≡ ∇h ÐÐÐ→
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A ÐÐÐ→
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Y0 = Y

Amoebas Tropical Geometry



Geometries over

Hyperfields

Hyperalgebra

Dequantizataions

Geometries over

Hyperfields

● Amoeba geometries

● Tropical Geometry

● Graphs and curves

Complex Tropical

Geometry

Polynomials over a

hyperfield

Table of Contents 24 / 35



Amoeba geometries

Table of Contents 25 / 35

The amoeba of a complex variety X ⊂ (C ∖ 0)n

is the image of X under Log ∶ (C ∖ 0)n → Rn .



Amoeba geometries

Table of Contents 25 / 35

The amoeba of a complex variety X ⊂ (C ∖ 0)n

is the image of X under Log ∶ (C ∖ 0)n → Rn .

The image is contained in the variety over A

defined by the same equations as X .



Amoeba geometries

Table of Contents 25 / 35

The amoeba of a complex variety X ⊂ (C ∖ 0)n

is the image of X under Log ∶ (C ∖ 0)n → Rn .

The image is contained in the variety over A

defined by the same equations as X .

Often, they coincide.



Amoeba geometries

Table of Contents 25 / 35

The amoeba of a complex variety X ⊂ (C ∖ 0)n

is the image of X under Log ∶ (C ∖ 0)n → Rn .

The image is contained in the variety over A

defined by the same equations as X .

Often, they coincide. When?



Amoeba geometries

Table of Contents 25 / 35

The amoeba of a complex variety X ⊂ (C ∖ 0)n

is the image of X under Log ∶ (C ∖ 0)n → Rn .

The image is contained in the variety over A

defined by the same equations as X .

Often, they coincide. When?

What is the geometry of varieties over the amoeba hyperfield A ?



Amoeba geometries

Table of Contents 25 / 35

The amoeba of a complex variety X ⊂ (C ∖ 0)n

is the image of X under Log ∶ (C ∖ 0)n → Rn .

The image is contained in the variety over A

defined by the same equations as X .

Often, they coincide. When?

What is the geometry of varieties over the amoeba hyperfield A ?

This question has many meanings



Amoeba geometries

Table of Contents 25 / 35

The amoeba of a complex variety X ⊂ (C ∖ 0)n

is the image of X under Log ∶ (C ∖ 0)n → Rn .

The image is contained in the variety over A

defined by the same equations as X .

Often, they coincide. When?

What is the geometry of varieties over the amoeba hyperfield A ?

This question has many meanings:

semialgebraic geometry over R , geometry over A



Amoeba geometries

Table of Contents 25 / 35

The amoeba of a complex variety X ⊂ (C ∖ 0)n

is the image of X under Log ∶ (C ∖ 0)n → Rn .

The image is contained in the variety over A

defined by the same equations as X .

Often, they coincide. When?

What is the geometry of varieties over the amoeba hyperfield A ?

This question has many meanings:

semialgebraic geometry over R , geometry over A ,

the variety may be analytic over A .

Analytic functions over A have graphs

that are closed sets with non-empty interior.



Amoeba geometries

Table of Contents 25 / 35

The amoeba of a complex variety X ⊂ (C ∖ 0)n

is the image of X under Log ∶ (C ∖ 0)n → Rn .

The image is contained in the variety over A

defined by the same equations as X .

Often, they coincide. When?

What is the geometry of varieties over the amoeba hyperfield A ?

This question has many meanings:

semialgebraic geometry over R , geometry over A ,

the variety may be analytic over A .

Analytic functions over A have graphs

that are closed sets with non-empty interior.

What are the boundaries?
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Usually tropical geometry is defined as an algebraic geometry over

T = (R ∪ {−∞},max,+) , not over Y .

A polynomial over T is a convex PL-function with integral slopes.

Indeed, a monomial axk1
1 . . . xkn

n is a + k1x1 + ⋅ ⋅ ⋅ + knxn ,

that is, a linear function a + ⟨k, x⟩ .
A polynomial is a finite sum of monomials,

that is the maximum of finite collection of linear functions.



Tropical Geometry

Table of Contents 26 / 35

Usually tropical geometry is defined as an algebraic geometry over

T = (R ∪ {−∞},max,+) , not over Y .

A polynomial over T is a convex PL-function with integral slopes.

A polynomial maxk=(k1,...,kn)(ak + k1x1 + ⋅ ⋅ ⋅ + knxn) over T

does not vanish, because the zero in T is −∞ .



Tropical Geometry

Table of Contents 26 / 35

Usually tropical geometry is defined as an algebraic geometry over

T = (R ∪ {−∞},max,+) , not over Y .

A polynomial over T is a convex PL-function with integral slopes.

A polynomial maxk=(k1,...,kn)(ak + k1x1 + ⋅ ⋅ ⋅ + knxn) over T

does not vanish, because the zero in T is −∞ .

Tricky definition. A hypersurface defined by tropical polynomial

maxk=(k1,...,kn)(ak + k1x1 + ⋅ ⋅ ⋅ + knxn) is the set of points, at which the

maximum is attained by at least two of the linear functions.



Tropical Geometry

Table of Contents 26 / 35

Usually tropical geometry is defined as an algebraic geometry over

T = (R ∪ {−∞},max,+) , not over Y .

A polynomial over T is a convex PL-function with integral slopes.

A polynomial maxk=(k1,...,kn)(ak + k1x1 + ⋅ ⋅ ⋅ + knxn) over T

does not vanish, because the zero in T is −∞ .

Tricky definition. A hypersurface defined by tropical polynomial

maxk=(k1,...,kn)(ak + k1x1 + ⋅ ⋅ ⋅ + knxn) is the set of points, at which the

maximum is attained by at least two of the linear functions.

The easiest way to understand this: replace T by Y .



Tropical Geometry

Table of Contents 26 / 35

Usually tropical geometry is defined as an algebraic geometry over

T = (R ∪ {−∞},max,+) , not over Y .

A polynomial over T is a convex PL-function with integral slopes.

A polynomial maxk=(k1,...,kn)(ak + k1x1 + ⋅ ⋅ ⋅ + knxn) over T

does not vanish, because the zero in T is −∞ .

Tricky definition. A hypersurface defined by tropical polynomial

maxk=(k1,...,kn)(ak + k1x1 + ⋅ ⋅ ⋅ + knxn) is the set of points, at which the

maximum is attained by at least two of the linear functions.

The easiest way to understand this: replace T by Y .

The only difference between T and Y :

T is an idempotent semiring, max(x, x) = x for any x ∈ T .

Y is a hyperfield of characteristic 2, x + x = {y ∣ y ≤ x} for any x ∈ Y .



Tropical Geometry

Table of Contents 26 / 35

Usually tropical geometry is defined as an algebraic geometry over

T = (R ∪ {−∞},max,+) , not over Y .

A polynomial over T is a convex PL-function with integral slopes.

A polynomial maxk=(k1,...,kn)(ak + k1x1 + ⋅ ⋅ ⋅ + knxn) over T

does not vanish, because the zero in T is −∞ .

Tricky definition. A hypersurface defined by tropical polynomial

maxk=(k1,...,kn)(ak + k1x1 + ⋅ ⋅ ⋅ + knxn) is the set of points, at which the

maximum is attained by at least two of the linear functions.

The easiest way to understand this: replace T by Y .

The only difference between T and Y :

T is an idempotent semiring, max(x, x) = x for any x ∈ T .

Y is a hyperfield of characteristic 2, x + x = {y ∣ y ≤ x} for any x ∈ Y .

−∞ ∈ Yk=(k1,...,kn)(ak + k1x1 + ⋅ ⋅ ⋅ + knxn) where the maximum

maxk=(k1,...,kn)(ak + k1x1 + ⋅ ⋅ ⋅ + knxn) is attained at least twice.
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{(x, y) ∈ C2 ∣ 0 ∈ x ⌣ y ⌣ 1}
The amoeba (the image under Log ∶ (C ∖ 0)2 → R2 ) is the tropical line

Log−1(a ray) is a holomorphic cylinder.

Log−1(the central point) =

(0,0)

ψ

ϕ(π,0)

(0,π)

Overall a disk. A 2-manifold!
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Any complex toric variety is a complex tropical variety.

A non-singular complex tropical plane projective curve (defined by a

pure polynomial) is homeomorphic and isotopic to a non-singular

complex plane projective curve of the same degree.

Conjecture. Any non-singular complex tropical variety is a topological

manifold.

Conjecture. If under the dequantization a non-singular complex

varieties tends to a non-singular complex tropical variety, then the

dequantization provides an isotopy between the varieties.
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Is x2 ⌣ −1 = (x ⌣ 1)(x ⌣ −1) ? Yes, if x ∈ T R . No for x = i .

i2 ⌣ −1 = −1 , but (i ⌣ 1)(i ⌣ −1) = {z ∈ T C ∣ ∣z∣ = 1,Re z ≤ 0} .

(a ⌣ b)(c ⌣ d) ≠ ac ⌣ ad ⌣ bc ⌣ bd

Thus T C is not double distributive.

A hyperring X is said to be double distributive if

(a1 ⊺ . . . ⊺ an)(b1 ⊺ . . . ⊺ bm) = a1b1 ⊺ . . . ⊺ a1bm ⊺ . . . ⊺ anb1 ⊺ . . . ⊺ anbm

Some hyperfields are double distributive, some are not.

In particular, T R , K , S and Y are double distributive.

while T C , Φ and ∇ are not.
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Let R be a hyperring. What is a polynomial over R ?

A finite formal sum of monomials?

Or any formal expression formed out of the unknowns and constants

by operations of sum and product?

If R is a double distributive hyperring, it does not matter.

What is the product of polynomials?

Over a double distributive hyperfield,

the product of finite sum of monomials is a finite sum of monomials.

What is the sum of polynomials p, q over R ? Is it just p ⊺ q ?

Is it univalued? Do polynomials over R form a true ring?

No, the subtraction is not available: x ⊺ −x ≠ 0 , but p ⊺ −p ∋ 0 for ∀p .

Extend p ⊺ q , by putting p ⊺ q = {r ∣ Γr ⊂ Γp⊺q} .
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What is the product of polynomials?

Over a double distributive hyperfield,

the product of finite sum of monomials is a finite sum of monomials.

What is the sum of polynomials p, q over R ? Is it just p ⊺ q ?

Is it univalued? Do polynomials over R form a true ring?

No, the subtraction is not available: x ⊺ −x ≠ 0 , but p ⊺ −p ∋ 0 for ∀p .

Extend p ⊺ q , by putting p ⊺ q = {r ∣ Γr ⊂ Γp⊺q} .

R[x1, . . . , xn] is a hyperring with addition ⊺ and usual multiplication.
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