Khovanov homology of framed and signed chord diagrams.

Oleg Viro

December 2, 2006

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Classical link diagrams

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of
knot
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

A knot is a smooth simple closed curve in the 3-space.

Classical link diagrams

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of
framed chord diagram

A knot is a smooth simple closed curve in the 3-space. That is a circle smoothly embedded into \mathbb{R}^{3}.

Classical link diagrams

Knots and links

- Classical link

diagrams

- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of
framed chord diagram

A knot is a smooth simple closed curve in the 3-space.
A link is a union of several disjoint knots.

Classical link diagrams

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A knot is a smooth simple closed curve in the 3-space.
A link is a union of several disjoint knots.
To describe a knot graphically, project it to a plane

Classical link diagrams

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A knot is a smooth simple closed curve in the 3-space. A link is a union of several disjoint knots.
To describe a knot graphically, project it to a plane and decorate at double points to show over- and under-passes.

Classical link diagrams

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A knot is a smooth simple closed curve in the 3-space. A link is a union of several disjoint knots.
To describe a knot graphically, project it to a plane and decorate at double points to show over- and under-passes.

Classical link diagrams

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A knot is a smooth simple closed curve in the 3-space. A link is a union of several disjoint knots.
To describe a knot graphically, project it to a plane and decorate at double points to show over- and under-passes. This gives rise to a knot diagram:

Classical link diagrams

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A knot is a smooth simple closed curve in the 3-space. A link is a union of several disjoint knots.
To describe a knot graphically, project it to a plane and decorate at double points to show over- and under-passes. This gives rise to a knot diagram:

Classical link diagrams

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A knot is a smooth simple closed curve in the 3-space.
A link is a union of several disjoint knots.
To describe a knot graphically, project it to a plane and decorate at double points to show over- and under-passes. This gives rise to a knot diagram:

A link diagram:

1D-picture

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of
knot
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord
diagrams
Khovanov complex of
framed chord diagram

A knot diagram

1D-picture

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of
knot
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

A knot diagram is a 2D picture of knot.

1D-picture

Knots and links

- Classical link

diagrams

- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

A knot diagram is a 2D picture of knot.
In many cases 1D picture serves better.

1D-picture

Knots and links

- Classical link

diagrams

- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

A knot diagram is a 2D picture of knot.
In many cases 1D picture serves better.
1D picture comes from a parameterization.

1D-picture

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

A knot diagram
 is a 2D picture of knot.

In many cases 1D picture serves better.
1D picture comes from a parameterization.

\square

Gauss diagram

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of
knot
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Decorate the source:

\square

Gauss diagram

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Decorate the source:

- with arrows from overpass to underpass,

Gauss diagram

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Decorate the source:

- with arrows from overpass to underpass,

Gauss diagram

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Decorate the source:

- with arrows from overpass to underpass,
- with the signs of crossings

\square

Gauss diagram

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Decorate the source:

- with arrows from overpass to underpass,
- with the signs of crossings

Gauss diagram

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Decorate the source:

- with arrows from overpass to underpass,
- with the signs of crossings

Signs:

Gauss diagram

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Decorate the source:

- with arrows from overpass to underpass,
- with the signs of crossings

Signs: positive

Gauss diagram

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Decorate the source:

- with arrows from overpass to underpass,
- with the signs of crossings

Signs: positive , negative
\square

Gauss diagram

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Decorate the source:

- with arrows from overpass to underpass,
- with the signs of crossings

Signs: positive , negative . The result

Gauss diagram

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Decorate the source:

- with arrows from overpass to underpass,
- with the signs of crossings

Signs: positive , negative . The result,

Gauss diagram

Knots and links

- Classical link
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Decorate the source:

- with arrows from overpass to underpass,
- with the signs of crossings

Signs: positive $/$.

Reconstruction of knot

$\xrightarrow{\text { Knots and links }}$
diagrams

- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Take any such diagram, say,

and try to reconstruct the knot.

Reconstruction of knot

Knots and links - Classical link
diagrams

- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Start with crossings:

Reconstruction of knot

Knots and links

diagrams

- 1D-picture
- Gauss diagram
- Reconstruction of knot

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Start with crossings:

Reconstruction of knot

Knots and links
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of
knot
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

Connect them step by step:

Reconstruction of knot

Knots and links
diagrams
- 1D-picture
\bullet Gauss diagram
- Reconstruction of
knot
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

Connect them step by step:

Reconstruction of knot

Knots and links
diagrams
- 1D-picture
\bullet Gauss diagram
- Reconstruction of
knot
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

The next step does not work!

Reconstruction of knot

Knots and links
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of
knot
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

But let us continue!

Reconstruction of knot

Knots and links
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of
knot
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Reconstruction of knot

Knots and links
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of
knot
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

Reconstruction of knot

Knots and links
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of
knot
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

We did it! But what is the result?

\square

Reconstruction of knot

Knots and links
diagrams
- 1D-picture
- Gauss diagram
- Reconstruction of
knot
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

The result is called a virtual knot diagram.

Knots and links
Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a
poor man
Khovanov homology

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Virtual links

Virtual knot diagrams

Knots and links

Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

A virtual knot diagram has crossings of 2 types:

Virtual knot diagrams

Knots and links

Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a
poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

A virtual knot diagram has crossings of 2 types: classical

Virtual knot diagrams

Knots and links
Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

A virtual knot diagram has crossings of 2 types: classical or real

Virtual knot diagrams

Knots and links
Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

A virtual knot diagram has crossings of 2 types: classical or real decorated like in a knot diagram

Virtual knot diagrams

Knots and links

Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

> A virtual knot diagram has crossings of 2 types: classical or real decorated like in a knot diagram and virtual

Virtual knot diagrams

Knots and links

Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A virtual knot diagram has crossings of 2 types: classical or real decorated like in a knot diagram and virtual not decorated at all.

Virtual knot diagrams

Knots and links

Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A virtual knot diagram has crossings of 2 types: classical or real decorated like in a knot diagram and virtual not decorated at all. Who can help to get rid of virtual crossings?

Virtual knot diagrams

Knots and links

Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A virtual knot diagram has crossings of 2 types: classical or real decorated like in a knot diagram and virtual not decorated at all. Who can help to get rid of virtual crossings?
Handles!

Virtual knot diagrams

Knots and links

Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

A virtual knot diagram has crossings of 2 types: classical or real decorated like in a knot diagram and virtual not decorated at all.
Who can help to get rid of virtual crossings?
Handles!

Diagram on a surface

Knots and links
Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

A knot diagram drawn on orientable surface S

Diagram on a surface

Knots and links
Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord
diagrams
Khovanov complex of
framed chord diagram

A knot diagram drawn on orientable surface S, instead of the plane

Diagram on a surface

Knots and links
Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A knot diagram drawn on orientable surface S, instead of the plane, defines a knot in a thickened surface $S \times I$.

Diagram on a surface

Knots and links

Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A knot diagram drawn on orientable surface S, instead of the plane, defines a knot in a thickened surface $S \times I$. It defines also a Gauss diagram.

Diagram on a surface

Knots and links

Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A knot diagram drawn on orientable surface S, instead of the plane, defines a knot in a thickened surface $S \times I$. It defines also a Gauss diagram. Any Gauss diagram appears in this way.

Diagram on a surface

Knots and links
Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A knot diagram drawn on orientable surface S, instead of the plane, defines a knot in a thickened surface $S \times I$. It defines also a Gauss diagram.
Any Gauss diagram appears in this way.
For each Gauss diagram there is the smallest surface

Diagram on a surface

Knots and links
Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A knot diagram drawn on orientable surface S, instead of the plane, defines a knot in a thickened surface $S \times I$. It defines also a Gauss diagram.
Any Gauss diagram appears in this way.
For each Gauss diagram there is the smallest surface with a knot diagram defining this Gauss diagram.

Diagram on a surface

Knots and links
Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A knot diagram drawn on orientable surface S, instead of the plane, defines a knot in a thickened surface $S \times I$. It defines also a Gauss diagram.
Any Gauss diagram appears in this way.
For each Gauss diagram there is the smallest surface with a knot diagram defining this Gauss diagram.
Virtual knot diagrams emerge as projections to plane

Diagram on a surface

Knots and links
Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A knot diagram drawn on orientable surface S, instead of the plane, defines a knot in a thickened surface $S \times I$. It defines also a Gauss diagram.
Any Gauss diagram appears in this way. For each Gauss diagram there is the smallest surface with a knot diagram defining this Gauss diagram.
Virtual knot diagrams emerge as projections to plane of knot diagrams on a surface.

Diagram on a surface

Knots and links
Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A knot diagram drawn on orientable surface S, instead of the plane, defines a knot in a thickened surface $S \times I$. It defines also a Gauss diagram.
Any Gauss diagram appears in this way.
For each Gauss diagram there is the smallest surface with a knot diagram defining this Gauss diagram.
Virtual knot diagrams emerge as projections to plane of knot diagrams on a surface.
The surfaces is not unique:

Diagram on a surface

Knots and links
Virtual links

- Virtual knot diagrams
- Diagram on a surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A knot diagram drawn on orientable surface S, instead of the plane, defines a knot in a thickened surface $S \times I$. It defines also a Gauss diagram.
Any Gauss diagram appears in this way.
For each Gauss diagram there is the smallest surface with a knot diagram defining this Gauss diagram.
Virtual knot diagrams emerge as projections to plane of knot diagrams on a surface.
The surfaces is not unique: one can add handles.

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Moves

Knots and links

Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Gauss diagrams of a poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

What happens to a link diagram, when the link moves?

Moves

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

What happens to a link diagram, when the link moves? Link diagram moves, too.

Moves

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

What happens to a link diagram, when the link moves? Link diagram moves, too.

Reidemeister moves:

Moves

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

What happens to a link diagram, when the link moves? Link diagram moves, too.

Reidemeister moves:
(R1):

Moves

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

What happens to a link diagram, when the link moves? Link diagram moves, too.

Reidemeister moves:

(R1): \quad

Moves

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

What happens to a link diagram, when the link moves?

Link diagram moves, too.
Reidemeister moves:
(R1): $\&<$

Moves

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

What happens to a link diagram, when the link moves? Link diagram moves, too.

Reidemeister moves:

(R1): $\&<$
(R2):

Moves

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

What happens to a link diagram, when the link moves? Link diagram moves, too.

Reidemeister moves:

Moves

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

What happens to a link diagram, when the link moves?
Link diagram moves, too.
Reidemeister moves:

Moves

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

What happens to a link diagram, when the link moves?
Link diagram moves, too.
Reidemeister moves:

(R3):

Moves

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

What happens to a link diagram, when the link moves?
Link diagram moves, too.
Reidemeister moves:

Moves

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

What happens to a link diagram, when the link moves?
Link diagram moves, too.
Reidemeister moves:
(R1):

$$
\dagger
$$

Moves of virtual link diagram

Knots and links

Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A virtual link diagram
(i.e., a plane projection of a link diagram on a surface)

Moves of virtual link diagram

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A virtual link diagram moves like this:

Moves of virtual link diagram

Knots and links

Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A virtual link diagram moves like this:
Reidemeister moves:

Moves of virtual link diagram

Knots and links
Virtual links

Moves
 - Moves
 - Moves of virtual link
 diagram
 - Moves of Gauss
 diagrams
 - Combinatorial incarnation of knot
 theory
 - Topological meaning
 of virtual knot theory

- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A virtual link diagram moves like this:
Reidemeister moves:

$$
\begin{aligned}
& \text { Virtual moves: } \\
& 1-\infty) 1-x x-x \\
& \text { C }
\end{aligned}
$$

Moves of virtual link diagram

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A virtual link diagram moves like this:

Reidemeister moves:

$$
\begin{aligned}
& \text { Virtual moves: } \\
& \rangle \rightarrow \infty \quad \mid=\varnothing \\
& x<1 x
\end{aligned}
$$

All virtual moves can be replaced by detour moves:

Moves of Gauss diagrams

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Gauss diagrams has nothing to do with virtual crossings!

Moves of Gauss diagrams

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Gauss diagrams has nothing to do with virtual crossings! They do not change under virtual moves.

Moves of Gauss diagrams

Knots and links
Virtual links
Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Reidemeister moves acts on Gauss diagram:

Moves of Gauss diagrams

Knots and links
Virtual links
Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Reidemeister moves acts on Gauss diagram:

Move's name	Reidemeister move	Its action on Gauss diagram
Positive first move	$\rangle \Delta z>$	
Nega- tive first move		

Moves of Gauss diagrams

Knots and links
Virtual links
Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Reidemeister moves acts on Gauss diagram:

Move's name	Reidemeister move	Its action on Gauss diagram
Positive first move	$\rangle \Delta$) $4200+$)
Negative first move		

Moves of Gauss diagrams

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Reidemeister moves acts on Gauss diagram:

Move's name	Reidemeister move	Its action on Gauss diagram
Positive first move	$\rangle \Delta$) $4200+$)
Negative first move	$\rangle \Delta z$	

Moves of Gauss diagrams

Knots and links
Virtual links
Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Reidemeister moves acts on Gauss diagram:

Move's name	Reidemeister move	Its action on Gauss diagram
Positive first move	$\rangle \operatorname{soc} 1$	
Negative first move	$\rangle \operatorname{sio}$	$)=000$

Moves of Gauss diagrams

Knots and links
Virtual links
Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Reidemeister moves acts on Gauss diagram:

Move's name	Reidemeister move	Its action on Gauss diagram
Second move	$)(\Delta z \quad$ 久	
Third move		

Moves of Gauss diagrams

Knots and links
Virtual links
Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Reidemeister moves acts on Gauss diagram:

Move's name	Reidemeister move	Its action on Gauss diagram
Second move	$)(\pi$	
Third move		

Moves of Gauss diagrams

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

Reidemeister moves acts on Gauss diagram:

Move's name	Reidemeister move	Its action on Gauss diagram
Second move	$)(\cos$	
Third move	$y(\lambda=10=$	

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Moves of Gauss diagrams

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

Reidemeister moves acts on Gauss diagram:

Move's name	Reidemeister move	Its action on Gauss diagram
Second move	$)\left(\operatorname{sic} \chi^{\prime}\right.$	() $\left.\operatorname{sic}^{(1)} \xrightarrow[-\varepsilon]{\varepsilon}\right)$
Third move	$(\lambda \lll \lambda)$	

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Combinatorial incarnation of knot theory

Knots and links

Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Combinatorial incarnation of knot theory

Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Classical Links $\quad \rightarrow \quad$ Link diagrams

Combinatorial incarnation of knot theory

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Classical Links $\quad \rightarrow \quad$ Link diagrams
Isotopies
Reidemeister moves

Combinatorial incarnation of knot theory

Knots and links
Virtual links
Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Classical Links	\rightarrow	Link diagrams
Isotopies	\rightarrow	Reidemeister moves

Combinatorial incarnations of virtual knot theory

Combinatorial incarnation of knot theory

Knots and links
Virtual links
Moves
Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial
incarnation of knot
theory
ofopological meaning
of virtual knot theory
- Isotopy problem
Kauffman bracket
Gauss diagrams of a poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of
framed chord diagram

Classical Links
Isotopies

Combinatorial incarnations of virtual knot theory

\(\left.$$
\begin{array}{llll}\text { Gauss } \\
\text { Diagrams } & \leftarrow & \begin{array}{l}\text { Virtual Links } \\
(?)\end{array} & \rightarrow\end{array}
$$ \begin{array}{l}Virtual Link

Diagrams\end{array}\right]\)| Virtual | | |
| :--- | :--- | :--- |
| Reidemeister | | |
| Istopies (?) | \leftarrow | Reidemeister
 and Detour
 moves |

Topological meaning of virtual knot theory

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Third incarnation of virtual knot theory is provided by Kuperberg's theorem.

Topological meaning of virtual knot theory

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Third incarnation of virtual knot theory is provided by Kuperberg's theorem.

| Virtual links up to
 virtual isotopies |
| :--- | :--- |$=$| lrreducible | links in |
| :--- | :--- |
| thickened | orientable |
| surfaces | up to ori- |
| entation | preserving |
| homeomorphisms. | |

Topological meaning of virtual knot theory

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Third incarnation of virtual knot theory is provided by Kuperberg's theorem.

| Virtual links up to
 virtual isotopies |
| :--- | :--- |$=$| lrreducible links in
 thickened
 orientable | |
| :--- | :--- |
| surfaces up to ori- | |
| entation | preserving |
| homeomorphisms. | |

Implies that virtual links generalize classical ones.

Topological meaning of virtual knot theory

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Third incarnation of virtual knot theory is provided by Kuperberg's theorem.

| Virtual links up to
 virtual isotopies |
| :--- | :--- |$=$| lrreducible links in
 thickened
 orientable | |
| :--- | :--- |
| surfaces up to ori- | |
| entation | preserving |
| homeomorphisms. | |

Implies that virtual links generalize classical ones.
Bridges combinatorics

Topological meaning of virtual knot theory

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Third incarnation of virtual knot theory is provided by Kuperberg's theorem.

| Virtual links up to
 virtual isotopies |
| :--- | :--- |$=$| lrreducible links in
 thickened
 orientable | |
| :--- | :--- |
| surfaces up to ori- | |
| entation | preserving |
| homeomorphisms. | |

Implies that virtual links generalize classical ones.
Bridges combinatorics (= 1D topology)

Topological meaning of virtual knot theory

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Third incarnation of virtual knot theory is provided by Kuperberg's theorem.

| Virtual links up to
 virtual isotopies |
| :--- | :--- |$=$| lrreducible links in
 thickened
 orientable | |
| :--- | :--- |
| surfaces up to ori- | |
| entation | preserving |
| homeomorphisms. | |

Implies that virtual links generalize classical ones.
Bridges combinatorics with (3D-) topology.

Isotopy problem

Knots and links
Virtual links
Moves

- Moves
- Moves of virtual link diagram
- Moves of Gauss diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Isotopy Problem:

Isotopy problem

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Isotopy Problem: Are given two classical links isotopic?

Isotopy problem

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Isotopy Problem: Are given two classical links isotopic?

 Combinatorial reformulation:
Isotopy problem

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot
theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Isotopy Problem: Are given two classical links isotopic?
Combinatorial reformulation:
Can given two Gauss diagrams be related by moves?

Isotopy problem

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Isotopy Problem: Are given two classical links isotopic?
Combinatorial reformulation:
Can given two Gauss diagrams be related by moves?
Virtual Isotopy Problem:

Isotopy problem

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Isotopy Problem: Are given two classical links isotopic?
Combinatorial reformulation:
Can given two Gauss diagrams be related by moves?
Virtual Isotopy Problem:
Can given two Gauss diagrams be related by moves?

Isotopy problem

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning
of virtual knot theory
- Isotopy problem

Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Isotopy Problem: Are given two classical links isotopic?
Combinatorial reformulation:
Can given two Gauss diagrams be related by moves?
Virtual Isotopy Problem:
Can given two Gauss diagrams be related by moves?
Invariants needed!

Isotopy problem

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Isotopy Problem: Are given two classical links isotopic?
Combinatorial reformulation:
Can given two Gauss diagrams be related by moves?
Virtual Isotopy Problem:
Can given two Gauss diagrams be related by moves?
Invariants needed!
The most classical link invariant is the link group.

Isotopy problem

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

Isotopy Problem: Are given two classical links isotopic?
Combinatorial reformulation:
Can given two Gauss diagrams be related by moves?
Virtual Isotopy Problem:
Can given two Gauss diagrams be related by moves?
Invariants needed!
The most classical link invariant is the link group, the fundamental group of the link complement $\mathbb{R}^{3} \backslash$ link.

Isotopy problem

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Isotopy Problem: Are given two classical links isotopic?
Combinatorial reformulation:
Can given two Gauss diagrams be related by moves?
Virtual Isotopy Problem:
Can given two Gauss diagrams be related by moves?
Invariants needed!
The most classical link invariant is the link group.
It was generalized.

Isotopy problem

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

Isotopy Problem: Are given two classical links isotopic?
Combinatorial reformulation:
Can given two Gauss diagrams be related by moves?
Virtual Isotopy Problem:
Can given two Gauss diagrams be related by moves?
Invariants needed!
The most classical link invariant is the link group.
It was generalized, even in two ways!

Isotopy problem

Knots and links
Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

Isotopy Problem: Are given two classical links isotopic?
Combinatorial reformulation:
Can given two Gauss diagrams be related by moves?
Virtual Isotopy Problem:
Can given two Gauss diagrams be related by moves?
Invariants needed!
The most classical link invariant is the link group.
It was generalized: upper and lower!

Isotopy problem

Virtual links

Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

Isotopy Problem: Are given two classical links isotopic?
Combinatorial reformulation:
Can given two Gauss diagrams be related by moves?
Virtual Isotopy Problem:
Can given two Gauss diagrams be related by moves?
Invariants needed!
The most classical link invariant is the link group.
It was generalized: upper and lower!
In terms of links in a thickened surface this is the fundamental group of the complement, but with one of two sides of the boundary contracted to a point.

Isotopy problem

Virtual links
Moves

- Moves
- Moves of virtual link
diagram
- Moves of Gauss
diagrams
- Combinatorial incarnation of knot theory
- Topological meaning of virtual knot theory
- Isotopy problem

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Isotopy Problem: Are given two classical links isotopic?
Combinatorial reformulation:
Can given two Gauss diagrams be related by moves?
Virtual Isotopy Problem:
Can given two Gauss diagrams be related by moves?
Invariants needed!
The most classical link invariant is the link group.
It was generalized: upper and lower!
In terms of links in a thickened surface this is the fundamental group of the complement, but with one of two sides of the boundary contracted to a point.

Kauffman bracket is more practical and elementary invariant.

Virtual links
Moves

Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology

Kauffman bracket

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Kauffman bracket

Knots and links
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of
framed chord diagram

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

Kauffman bracket

Knots and links
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of
framed chord diagram

$$
\langle\text { Link diagram }\rangle \in \mathbb{Z}\left[A, A^{-1}\right]
$$

(a Laurent polynomial in A with integer coefficients).

Kauffman bracket

Knots and links
Virtual links
Moves

Kauffman bracket
- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.
II
- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

- Kauffman bracket

$$
\langle\text { Link diagram }\rangle \in \mathbb{Z}\left[A, A^{-1}\right]
$$

\langle unknot $\rangle=$

Kauffman bracket

Knots and links
Virtual links
Moves

Kauffman bracket
- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.
I Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.
- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

〈unknot> $=$

$$
\langle\text { Link diagram }\rangle \in \mathbb{Z}\left[A, A^{-1}\right]
$$

$$
\langle\bigcirc\rangle=
$$

Kauffman bracket

Knots and links
Virtual links
Moves

Kauffman bracket
- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.
I Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man
Khovanov homology Orientation of chord diagrams Khovanov complex of framed chord diagram

- Kauffman bracket

$$
\langle\text { Link diagram }\rangle \in \mathbb{Z}\left[A, A^{-1}\right]
$$

$$
\langle\text { unknot }\rangle=\quad\langle\bigcirc\rangle=-A^{2}-A^{-2}
$$

Kauffman bracket

Knots and links
Virtual links
Moves

Kauffman bracket
- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.
I Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man
Khovanov homology Orientation of chord diagrams Khovanov complex of framed chord diagram

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

〈unknot> $=$

$$
\langle\bigcirc\rangle=-A^{2}-A^{-2}
$$

Kauffman bracket

Knots and links
Virtual links
Moves

Kauffman bracket
- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.
II
- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.
- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology

〈unknot> $=$
\langle Hopf link〉 $=$

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$\langle\mathrm{O}\rangle=-A^{2}-A^{-2}$
$\langle Q\rangle=$

Kauffman bracket

Knots and links
Virtual links
Moves

Kauffman bracket
－Kauffman bracket
－Kauffman state sum．I
－Kauffman state sum．
I Example
－Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man Khovanov homology Orientation of chord diagrams Khovanov complex of framed chord diagram

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

〈unknot〉 $=$

$\langle\bigcirc\rangle=-A^{2}-A^{-2}$
\langle Hopf link〉 $=$
$\langle @\rangle=A^{6}+A^{2}+A^{-2}+A^{-6}$

Kauffman bracket

Knots and links
Virtual links
Moves

Kauffman bracket
- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.
II
- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{array}{lrl}
\langle\text { unknot }\rangle= & \langle\bigcirc\rangle & =-A^{2}-A^{-2} \\
& \text { Hopf link }\rangle= & \langle\bigcirc\rangle \\
\begin{array}{ll}
\text { empty link }\rangle= &
\end{array} & \rangle & =
\end{array}
$$

Kauffman bracket

Knots and links
Virtual links
Moves

Kauffman bracket
－Kauffman bracket
－Kauffman state sum．I
－Kauffman state sum．
II
－Example
－Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{aligned}
& \text { 〈unknot> }= \\
& \langle\bigcirc\rangle=-A^{2}-A^{-2} \\
& \langle\text { Hopf link〉 }= \\
& \langle @\rangle=A^{6}+A^{2}+A^{-2}+A^{-6} \\
& \langle\text { empty link }\rangle=\quad\langle \rangle=1
\end{aligned}
$$

Kauffman bracket

Knots and links
Virtual links
Moves

Kauffman bracket
- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.
॥ Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{array}{lcl}
\langle\text { unknot }\rangle= & \langle O\rangle & =-A^{2}-A^{-2} \\
\langle\text { Hopf link }\rangle= & \langle Q\rangle=A^{6}+A^{2}+A^{-2}+A^{-6} \\
\langle\text { empty link }\rangle= & \rangle & =1 \\
\langle\text { trefoil }\rangle= & &
\end{array}
$$

Kauffman bracket

Knots and links
Virtual links
Moves

Kauffman bracket
- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.
॥ Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{array}{lrl}
\langle\text { unknot }\rangle= & \langle O\rangle & =-A^{2}-A^{-2} \\
\begin{array}{ll}
\text { Hopf link }\rangle= &
\end{array} & \langle\Theta\rangle & =A^{6}+A^{2}+A^{-2}+A^{-6} \\
\langle\text { empty link }\rangle= & \rangle & =1 \\
\langle\text { trefoil }\rangle= & \langle\Theta\rangle & =
\end{array}
$$

Kauffman bracket

Knots and links
Virtual links
Moves

Kauffman bracket
－Kauffman bracket
－Kauffman state sum．I
－Kauffman state sum．
II
－Kxample
－Kauffman state sum
diagrams
Gauss diagrams of a poor man
Khovanov homology Orientation of chord diagrams Khovanov complex of framed chord diagram

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{aligned}
& \text { 〈unknot〉 }= \\
& \langle\mathrm{O}\rangle=-A^{2}-A^{-2} \\
& \langle\text { Hopf link〉 }= \\
& \langle Q\rangle=A^{6}+A^{2}+A^{-2}+A^{-6} \\
& \text { 〈empty link〉 }= \\
& \langle\text { trefoil }\rangle= \\
& \rangle=1 \\
& \langle\vartheta\rangle=A^{7}+A^{3}+A^{-1}-A^{-9}
\end{aligned}
$$

Kauffman bracket

Moves

Kauffman bracket
－Kauffman bracket
－Kauffman state sum．I
－Kauffman state sum．
II Example
－Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams Khovanov complex of framed chord diagram

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{aligned}
& \text { 〈unknot〉 }= \\
& \langle\mathrm{O}\rangle=-A^{2}-A^{-2} \\
& \text { 〈Hopf link〉 }= \\
& \langle @\rangle=A^{6}+A^{2}+A^{-2}+A^{-6} \\
& \langle\text { empty link〉 }= \\
& \langle\text { trefoil }\rangle= \\
& \rangle=1 \\
& \langle\vartheta\rangle=A^{7}+A^{3}+A^{-1}-A^{-9}
\end{aligned}
$$

\langle figure－eight knot＞$=$

Kauffman bracket

Moves

Kauffman bracket
－Kauffman bracket
－Kauffman state sum．I
－Kauffman state sum．
II
－Example
－Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of
framed chord diagram

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{aligned}
& \text { 〈unknot〉 }= \\
& \langle\mathrm{O}\rangle=-A^{2}-A^{-2} \\
& \text { 〈Hopf link〉 }= \\
& \langle @\rangle=A^{6}+A^{2}+A^{-2}+A^{-6} \\
& \langle\text { empty link〉 }= \\
& \langle\text { trefoil }\rangle= \\
& \rangle=1 \\
& \langle\varnothing\rangle=A^{7}+A^{3}+A^{-1}-A^{-9} \\
& \langle\text { figure-eight knot }\rangle=\langle\oint\rangle=
\end{aligned}
$$

Kauffman bracket

Moves

Kauffman bracket
－Kauffman bracket
－Kauffman state sum．I
－Kauffman state sum．
II Example
－Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{aligned}
& \text { 〈unknot〉 }= \\
& \langle\mathrm{O}\rangle=-A^{2}-A^{-2} \\
& \text { 〈Hopf link〉 }= \\
& \langle @\rangle=A^{6}+A^{2}+A^{-2}+A^{-6} \\
& \langle\text { empty link〉 }= \\
& \langle\text { trefoil }\rangle= \\
& \rangle=1 \\
& \langle\vartheta\rangle=A^{7}+A^{3}+A^{-1}-A^{-9} \\
& \langle\text { figure-eight knot }\rangle=\langle\AA\rangle=-A^{10}-A^{-10}
\end{aligned}
$$

Kauffman bracket

Knots and links
Virtual links
Moves

Kauffman bracket
－Kauffman bracket
－Kauffman state sum．I
－Kauffman state sum．
II Example
－Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{aligned}
& \text { 〈unknot> }= \\
& \langle\bigcirc\rangle=-A^{2}-A^{-2} \\
& \text { 〈Hopf link〉 }= \\
& \langle @\rangle=A^{6}+A^{2}+A^{-2}+A^{-6} \\
& \langle\text { empty link〉 }= \\
& \langle\text { trefoil }\rangle= \\
& \rangle=1 \\
& \langle\vartheta\rangle=A^{7}+A^{3}+A^{-1}-A^{-9} \\
& \langle\text { figure-eight knot }\rangle=\langle\delta\rangle=-A^{10}-A^{-10}
\end{aligned}
$$

Kauffman bracket is defined by the following properties：

Kauffman bracket

Knots and links
Virtual links
Moves
－Kauffman bracket
－Kauffman state sum．I
－Kauffman state sum．
II
－Example
－Kauffman state sum model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

$$
\langle\text { Link diagram }\rangle \in \mathbb{Z}\left[A, A^{-1}\right]
$$

$$
\begin{aligned}
& \text { 〈unknot> }= \\
& \langle\bigcirc\rangle=-A^{2}-A^{-2} \\
& \langle\text { Hopf link〉 }= \\
& \langle @\rangle=A^{6}+A^{2}+A^{-2}+A^{-6} \\
& \langle\text { empty link〉 }= \\
& \langle\text { trefoil }\rangle= \\
& \rangle=1 \\
& \langle\vartheta\rangle=A^{7}+A^{3}+A^{-1}-A^{-9} \\
& \langle\text { figure-eight knot }\rangle=\langle\delta\rangle=-A^{10}-A^{-10}
\end{aligned}
$$

Kauffman bracket is defined by the following properties：
1．$\langle\bigcirc\rangle=-A^{2}-A^{-2}$ ，

Kauffman bracket

Knots and links
Virtual links
Moves
Kauffman bracket
－Kauffman bracket
－Kauffman state sum．I
－Kauffman state sum．
II
－Example
－Kauffman state sum model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram
\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{aligned}
& \text { 〈unknot> }= \\
& \langle\bigcirc\rangle=-A^{2}-A^{-2} \\
& \text { 〈Hopf link〉 }= \\
& \langle @\rangle=A^{6}+A^{2}+A^{-2}+A^{-6} \\
& \langle\text { empty link }\rangle= \\
& \rangle=1 \\
& \langle\text { trefoil }\rangle= \\
& \langle\vartheta\rangle=A^{7}+A^{3}+A^{-1}-A^{-9} \\
& \langle\text { figure-eight knot }\rangle=\langle\delta\rangle=-A^{10}-A^{-10}
\end{aligned}
$$

Kauffman bracket is defined by the following properties：
1．$\langle\bigcirc\rangle=-A^{2}-A^{-2}$ ，
2．$\langle D \amalg \bigcirc\rangle=\left(-A^{2}-A^{-2}\right)\langle D\rangle$ ，

Kauffman bracket

Moves

Kauffman bracket

－Kauffman bracket
－Kauffman state sum．I
－Kauffman state sum．
II
－Example
－Kauffman state sum model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram
\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$
\langle unknot $\rangle=$

$$
\begin{aligned}
\langle\bigcirc\rangle & =-A^{2}-A^{-2} \\
\langle\bigotimes\rangle & =A^{6}+A^{2}+A^{-2}+A^{-6} \\
\rangle & =1 \\
\langle\Theta\rangle & =A^{7}+A^{3}+A^{-1}-A^{-9}
\end{aligned}
$$

〈Hopf link〉 $=$
\langle empty link〉 $=$
\langle trefoil $\rangle=$
\langle figure－eight knot $\rangle=\langle\delta\rangle=-A^{10}-A^{-10}$
Kauffman bracket is defined by the following properties：
1．$\langle\bigcirc\rangle=-A^{2}-A^{-2}$ ，
2．$\langle D \amalg \bigcirc\rangle=\left(-A^{2}-A^{-2}\right)\langle D\rangle$ ，
3．$\langle X\rangle=A\langle \rangle\langle \rangle+A^{-1}\langle\bigwedge\rangle$（Kauffman Skein Relation）．

Kauffman bracket

Moves

－Kauffman state sum．I
－Kauffman state sum．
II
－Example
－Kauffman state sum model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram
\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$
\langle unknot $\rangle=$

$$
\begin{aligned}
\langle\bigcirc\rangle & =-A^{2}-A^{-2} \\
\langle\circlearrowleft\rangle & =A^{6}+A^{2}+A^{-2}+A^{-6} \\
\rangle & =1 \\
\langle\vartheta\rangle & =A^{7}+A^{3}+A^{-1}-A^{-9}
\end{aligned}
$$

〈Hopf link〉 $=$
\langle empty link〉 $=$
\langle trefoil $\rangle=$
\langle figure－eight knot $\rangle=\langle\delta\rangle=-A^{10}-A^{-10}$
Kauffman bracket is defined by the following properties：
1．$\langle\bigcirc\rangle=-A^{2}-A^{-2}$ ，
2．$\langle D \amalg \bigcirc\rangle=\left(-A^{2}-A^{-2}\right)\langle D\rangle$ ，
3．$\langle X\rangle=A\langle \rangle\langle \rangle+A^{-1}\langle\bigwedge\rangle$（Kauffman Skein Relation）．
Uniqueness is obvious．

Kauffman bracket

Moves

$$
\langle\text { Link diagram }\rangle \in \mathbb{Z}\left[A, A^{-1}\right]
$$

$$
\begin{aligned}
& \text { 〈unknot〉 }= \\
& \langle\mathrm{O}\rangle=-A^{2}-A^{-2} \\
& \text { 〈Hopf link〉 = } \\
& \langle @\rangle=A^{6}+A^{2}+A^{-2}+A^{-6} \\
& \text { 〈empty link〉 }= \\
& \rangle=1 \\
& \langle\text { trefoil }\rangle= \\
& \langle 叉\rangle=A^{7}+A^{3}+A^{-1}-A^{-9} \\
& \langle\text { figure-eight knot }\rangle=\langle\mathscr{S}\rangle=-A^{10}-A^{-10}
\end{aligned}
$$

Kauffman bracket is defined by the following properties：
1．$\langle\bigcirc\rangle=-A^{2}-A^{-2}$ ，
2．$\langle D \amalg \bigcirc\rangle=\left(-A^{2}-A^{-2}\right)\langle D\rangle$ ，
3．$\langle X\rangle=A\langle \rangle\langle \rangle+A^{-1}\langle\bigwedge\rangle$（Kauffman Skein Relation）．
Uniqueness is obvious．
Invariant under R2 and R3，under R1 multiplies by $-A^{ \pm 3}$ ．

Kauffman state sum. I

Knots and links
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of
framed chord diagram

A state of diagram is a distribution of markers over all crossings.

Kauffman state sum. I

Knots and links
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

A state of diagram is a distribution of markers over all crossings.

Kauffman state sum. I

Knots and links
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

A state of diagram is a distribution of markers over all crossings.

and its states:

$$
+
$$

Kauffman state sum. I

Knots and links

Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A state of diagram is a distribution of markers over all crossings.

and its states:

Kauffman state sum. I

Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A state of diagram is a distribution of markers over all crossings.

Kauffman state sum. I

Knots and links

Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A state of diagram is a distribution of markers over all crossings.

\square

Kauffman state sum. I

Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A state of diagram is a distribution of markers over all crossings.

Kauffman state sum. I

Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A state of diagram is a distribution of markers over all crossings.

Kauffman state sum. I

Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

A state of diagram is a distribution of markers over all crossings.

Totally 2^{c} states, where c is the number of crossings.
\square

Kauffman state sum. II

Knots and links
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of
framed chord diagram

Three numbers associated to a state s :

Kauffman state sum. II

Knots and links
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of
framed chord diagram

Three numbers associated to a state s :

1. the number $a(s)$ of positive markers

Kauffman state sum. II

Knots and links
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of
framed chord diagram

Three numbers associated to a state s :

1. the number $a(s)$ of positive markers
2. the number $b(s)$ of negative markers

Kauffman state sum. II

Knots and links
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Three numbers associated to a state s :

1. the number $a(s)$ of positive markers
2. the number $b(s)$ of negative markers
3. the number $|s|$ of components of the curve obtained by smoothing along the markers:

Kauffman state sum. II

Knots and links
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Three numbers associated to a state s :

1. the number $a(s)$ of positive markers
2. the number $b(s)$ of negative markers
3. the number $|s|$ of components of the curve obtained by smoothing along the markers:

Kauffman state sum. II

Knots and links
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Three numbers associated to a state s :

1. the number $a(s)$ of positive markers
2. the number $b(s)$ of negative markers
3. the number $|s|$ of components of the curve obtained by smoothing along the markers:

Kauffman state sum. II

Knots and links
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Three numbers associated to a state s :

1. the number $a(s)$ of positive markers
2. the number $b(s)$ of negative markers
3. the number $|s|$ of components of the curve obtained by smoothing along the markers:

$$
|s|=2
$$

Kauffman state sum. II

Knots and links
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Three numbers associated to a state s :

1. the number $a(s)$ of positive markers
2. the number $b(s)$ of negative markers
3. the number $|s|$ of components of the curve obtained by smoothing along the markers:

$|s|=2$
State Sum: $\langle D\rangle=\sum_{s \text { state of } D} A^{a(s)-b(s)}\left(-A^{2}-A^{-2}\right)^{|s|}$

Example

Knots and links
Virtual links

Moves

Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Kauffman bracket
Kauffman bracket
- Kauffman state sum. I
Kauffman state sum.
- Example
(Kauffman state sum
diagrams
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

Hopf link,
$+$

Example

Knots and links
Virtual links

Moves
Kauffman bracket
- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.
II
- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord diagrams
Khovanov complex of framed chord diagram

Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I

Hopf link,

 $\langle\rightarrow\rangle=$

Example

Knots and links

Virtual links

Moves
Kauffman bracket

- Kauffman bracket- Kauffman state sum. I
- Kauffman state sum.II- Example- Kauffman state sum
model for Gauss
diagramsGauss diagrams of apoor manKhovanov homologyOrientation of chorddiagrams
Khovanov complex offramed chord diagram

Hopf link,

$\langle @\rangle+\langle @\rangle+\langle @\rangle+\langle @\rangle=$

Example

Knots and links

Virtual links

```
Moves
Kauffman bracket
- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.
|
- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a
poor man
Khovanov homology
Orientation of chord
diagrams
Khovanov complex of
framed chord diagram
```

Hopf link,

$A^{2}\left(-A^{2}-A^{-2}\right)^{2}+2\left(-A^{2}-A^{-2}\right)+A^{-2}\left(-A^{2}-A^{-2}\right)^{2}=$

Example

Knots and links

Virtual links

Moves

Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology

Orientation of chord

diagrams
Khovanov complex of
framed chord diagram

Hopf link,

$A^{2}\left(-A^{2}-A^{-2}\right)^{2}+2\left(-A^{2}-A^{-2}\right)+A^{-2}\left(-A^{2}-A^{-2}\right)^{2}=$ $A^{6}+A^{2}+A^{-2}+A^{-6}$

Kauffman state sum model for Gauss diagrams

$\underline{\text { Knots and links }}$
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Crossing \mapsto arrow.

Kauffman state sum model for Gauss diagrams

$\underline{\text { Knots and links }}$
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Crossing \mapsto arrow.

Smoothing of a crossing \mapsto a surgery along the arrow.

Kauffman state sum model for Gauss diagrams

Knots and links
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum model for Gauss diagrams

Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Crossing \mapsto arrow.

Smoothing of a crossing \mapsto a surgery along the arrow.

positive marker, positive crossing

negative marker, negative crossing

Kauffman state sum model for Gauss diagrams

$\underline{\text { Knots and links }}$
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum
model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Crossing \mapsto arrow.

Smoothing of a crossing \mapsto a surgery along the arrow.

positive marker, positive crossing

negative marker, positive crossing

negative marker, negative crossing

positive marker, negative crossing

Kauffman state sum model for Gauss diagrams

$\underline{\text { Knots and links }}$
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum model for Gauss
diagrams
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Crossing \mapsto arrow.

Smoothing of a crossing \mapsto a surgery along the arrow.

positive marker, positive crossing
negative marker, positive crossing

positive marker, positive crossing
 Smoothing depends only of the signs of marker and crossing.

Kauffman state sum model for Gauss diagrams

$\underline{\text { Knots and links }}$
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum model for Gauss diagrams

Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Crossing \mapsto arrow.

Smoothing of a crossing \mapsto a surgery along the arrow.

positive marker, positive crossing

negative marker, positive crossing Smoothing depends only of the signs of marker and crossing.
No need in direction of the arrow!

Kauffman state sum model for Gauss diagrams

$\underline{K n o t s ~ a n d ~ l i n k s ~}$
Virtual links
Moves
Kauffman bracket

- Kauffman bracket
- Kauffman state sum. I
- Kauffman state sum.

II

- Example
- Kauffman state sum model for Gauss diagrams

Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of framed chord diagram

Crossing \mapsto arrow.

Smoothing of a crossing \mapsto a surgery along the arrow.

positive marker, positive crossing

negative marker, positive crossing positive marker, negative crossing Smoothing depends only of the signs of marker and crossing.
No need in direction of the arrow!
Kauffman state sum is defined for signed chord diagrams.

Kauffman bracket

Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology

Gauss diagrams of a poor man

Orientation of chord

Signed chord diagrams

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord
+ diagrams
Khovanov complex of
fromed phord dianrom

$$
\text { A chord diagram }\left(B, c_{1}, \ldots, c_{n}\right)
$$

Signed chord diagrams

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord diagrams
- State of signed chord diagram
- Smoothing of a signed chord diagram
- Framing
- Framed chord diagrams
- Signed to framed
- Orientable thickenings of non-orientable surfaces
- Abstract construction of an orientable thickening
- A link in orientable thickening of a non-orientable surface

Khovanov homology
Orientation of chord
diagrams

Signed chord diagrams

Knots and links

Virtual links

Moves

Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface

Khovanov homology
Orientation of chord
diagrams
Khovanov complex of
romod abord disarom

A chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$
(a closed 1-manifold B (base), and disjoint chords c_{1}, \ldots, c_{n} with end points on the base.)

Signed chord diagrams

Knots and links
Virtual links

Moves

Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord
+ diagrams
Khovanov complex of
romod phord diaprom

A chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$ (a closed 1-manifold B (base), and disjoint chords c_{1}, \ldots, c_{n} with end points on the base.)

- in which B is oriented and

Signed chord diagrams

Knots and links
Virtual links

Moves

Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord

A chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$ (a closed 1-manifold B (base), and disjoint chords c_{1}, \ldots, c_{n} with end points on the base.)

- in which B is oriented and
- each chord is equipped with a sign

Signed chord diagrams

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a non-orientable surface

Khovanov homology

A chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$ (a closed 1-manifold B (base), and disjoint chords c_{1}, \ldots, c_{n} with end points on the base.)

- in which B is oriented and
- each chord is equipped with a sign
is called a signed chord diagram.

State of signed chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology

Orientation of chord

- diagrams

Khovanov complex of

A state of the signed chord diagram
 is a distribution of another collection of signs over the set of all chords.

State of signed chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology

Orientation of chord

+ diagrams
Khovanov complex of

A state of the signed chord diagram
is a distribution of another collection of signs over the set of all chords.
These are marker signs,

State of signed chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology

Orientation of chord

A state of the signed chord diagram
is a distribution of another collection of signs over the set of all chords.
These are marker signs, the original signs are structure signs.

Smoothing of a signed chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord
| diagrams
Khovanov complex of

A smoothing of a chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$ is the result of Morse modifications of index 1 performed on B along each of its chords.

Smoothing of a signed chord diagram

Virtual links

Moves

Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord

A smoothing of a chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$ is the result of Morse modifications of index 1 performed on B along each of its chords.

Smoothing of a signed chord diagram

Knots and links
Virtual links

Moves

Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord

A smoothing of a chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$ is the result of Morse modifications of index 1 performed on B along each of its chords.

Smoothing of a signed chord diagram

Virtual links

Moves

Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord

Smoothing of a signed chord diagram

Moves

Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord

A smoothing of a chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$ is the result of Morse modifications of index 1 performed on B along each of its chords.

Smoothing of a signed chord diagram

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a non-orientable surface

Khovanov homology

A smoothing of a chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$ is the result of Morse modifications of index 1 performed on B along each of its chords.

Morse modification at a chord depends on its signs.

Smoothing of a signed chord diagram

Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a non-orientable surface

Khovanov homology
Morse modification at a chord depends on its signs.
Denote by σ the product of the structure and the marker signs.
A smoothing of a chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$ is the result of Morse modifications of index 1 performed on B along each of its chords.

Smoothing of a signed chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a non-orientable surface

Khovanov homology
A smoothing of a chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$ is the result of Morse modifications of index 1 performed on B along each of its chords.

Morse modification at a chord depends on its signs. Denote by σ the product of the structure and the marker signs. If $\sigma=+$, the Morse modification preserves the structure orientation.

Smoothing of a signed chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a non-orientable surface

Khovanov homology
A smoothing of a chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$ is the result of Morse modifications of index 1 performed on B along each of its chords.

Morse modification at a chord depends on its signs. Denote by σ the product of the structure and the marker signs. If $\sigma=+$, the Morse modification preserves the structure orientation.
If $\sigma=-$, the Morse modification destroys the orientation.

Framing

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord
1 diagrams
Khovanov complex of
fromen abord diocrom

A sign of an arrow in Gauss diagram of a classical link depends on orientation of the link.

Framing

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord diagrams
- State of signed chord diagram
- Smoothing of a signed chord diagram
- Framing
- Framed chord diagrams
- Signed to framed
- Orientable thickenings of non-orientable surfaces
- Abstract construction of an orientable thickening
- A link in orientable thickening of a non-orientable surface

Khovanov homology
Orientation of chord
diagrams

Framing

Knots and links

Virtual links

Moves

Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface

Khovanov homology
Orientation of chord
| diagrams
A sign of an arrow in Gauss diagram of a classical link depends on orientation of the link.

Framing

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord

A sign of an arrow in Gauss diagram of a classical link depends on orientation of the link.

If the link is not oriented, specify the framing on the chords giving positive smoothing.

Framing

Moves

Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord

A sign of an arrow in Gauss diagram of a classical link depends on orientation of the link.

If the link is not oriented, specify the framing on the chords giving positive smoothing.

Framing

Moves

Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a non-orientable surface

Khovanov homology
Orientation of chord

A sign of an arrow in Gauss diagram of a classical link depends on orientation of the link.

If the link is not oriented, specify the framing on the chords giving positive smoothing.

Framed chord diagrams

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord
+ diagrams
Khovanov complex of
fromed bord Nianrom

$$
\text { A chord diagram }\left(B, c_{1}, \ldots, c_{n}\right)
$$

Framed chord diagrams

Knots and links

Virtual links

Moves

Kauffman bracket

Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface

Khovanov homology
Orientation of chord
diagrams

Framed chord diagrams

Knots and links

Virtual links

Moves

Kauffman bracket

Gauss diagrams of a

 poor man- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord
diagrams

Framed chord diagrams

Knots and links

Virtual links

Moves

Kauffman bracket

Gauss diagrams of a

 poor man- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord
diagrams

Framed chord diagrams

Knots and links

Virtual links
Moves

Kauffman bracket

Gauss diagrams of a

 poor man- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord

A chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$
in which each chord is equipped with a framing is called a framed chord diagram.

Framed chord diagrams

Virtual links

Moves

Kauffman bracket

Gauss diagrams of a

poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface

Khovanov homology

A chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$ in which each chord is equipped with a framing is called a framed chord diagram.

Kauffman bracket state sum is defined for a framed chord diagram.

Framed chord diagrams

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a non-orientable surface

Khovanov homology
A chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$ in which each chord is equipped with a framing is called a framed chord diagram.

Kauffman bracket state sum is defined for a framed chord diagram.
A state is a distribution of signs over the set of chords.

Framed chord diagrams

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a non-orientable surface

Khovanov homology

A chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$
in which each chord is equipped with a framing is called a framed chord diagram.

Kauffman bracket state sum is defined for a framed chord diagram.
A state is a distribution of signs over the set of chords.
The smoothing defined by a state is according to the faming along the chords marked with + and the opposite one otherwise.

Signed to framed

Knots and links

Virtual links

Moves

Kauffman bracket

Gauss diagrams of a

 poor man- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord
\mid diagrams

A signed chord diagram turns canonically to a framed one:

Signed to framed

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology

Orientation of chord

$\underline{\text { diagrams }}$
Khovanov complex of

A signed chord diagram turns canonically to a framed one: On a chord with + take the framing surgery along which preserves the orientation

Signed to framed

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology

Orientation of chord

A signed chord diagram turns canonically to a framed one: On a chord with + take the framing surgery along which preserves the orientation, on a chord with - take the framing surgery along which reverses the orientation.

Signed to framed

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology

Orientation of chord

A signed chord diagram turns canonically to a framed one: On a chord with + take the framing surgery along which preserves the orientation, on a chord with - take the framing surgery along which reverses the orientation.
Forget the orientation.

Orientable thickenings of non-orientable surfaces

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology

Orientation of chord

1 diagrams
Khovanov complex of

Non-orientable surface can be thickened to an oriented 3-manifold!

Orientable thickenings of non-orientable surfaces

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord
diagrams
Khovanov complex of
mon abord ding

Non-orientable surface can be thickened to an oriented 3-manifold!
Example:
Thicken a Möbius band M in \mathbb{R}^{3}.

Orientable thickenings of non-orientable surfaces

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a
poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord
Non-orientable surface can be thickened to an oriented 3-manifold!
Example:
Thicken a Möbius band M in \mathbb{R}^{3}.

Orientable thickenings of non-orientable surfaces

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a non-orientable surface

Khovanov homology
Orientation of chord

Non-orientable surface can be thickened to an oriented 3-manifold!

Example:

Thicken a Möbius band M in \mathbb{R}^{3}.

A neighborhood of M in \mathbb{R}^{3} is orientable and fibers over M.

Abstract construction of an orientable thickening

Knots and links
Thicken a non-orientable surface S :

Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord
$\underline{\text { diagrams }}$
Khovanov complex of

Abstract construction of an orientable thickening

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord
$\underline{\text { diagrams }}$
Khovanov complex of
fromnd abord dinaram

Thicken a non-orientable surface S :

1. Find an orientation change line C (like International date line) on S.

Abstract construction of an orientable thickening

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord
diagrams
Khovanov complex of
Bed abord dingro

Thicken a non-orientable surface S :

1. Find an orientation change line C (like International date line) on S.

Abstract construction of an orientable thickening

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord

Thicken a non-orientable surface S :

1. Find an orientation change line C (like International date line) on S.

2. Cut S along $C: S \mapsto S \& C$

Abstract construction of an orientable thickening

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a non-orientable surface

Khovanov homology
Orientation of chord

Thicken a non-orientable surface S :

1. Find an orientation change line C (like International date line) on S.

2. Cut S along $C: S \mapsto S \& C$

3. Thicken: $(S \& C) \times \mathbb{R}$.

Abstract construction of an orientable thickening

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a non-orientable surface

Khovanov homology
Orientation of chord

Thicken a non-orientable surface S :

1. Find an orientation change line C (like International date line) on S.

2. Cut S along C : $S \mapsto S \& C$

3. Thicken: $(S \& C) \times \mathbb{R}$.
4. Paste over the sides of the cut $\left(x_{+}, t\right) \sim\left(x_{-},-t\right)$.

A link in orientable thickening of a non-orientable surface

Knots and links

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord
$\underline{\text { diagrams }}$
Khovanov complex of
romon ahord discrom

A diagram on the surface.

A link in orientable thickening of a non-orientable surface

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord

A diagram on the surface.
Reidemeister moves plus two more moves:
5) Ca ab J and

A link in orientable thickening of a non-orientable surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology

A diagram on the surface.
Reidemeister moves plus two more moves:

Twisted Gauss diagram

Gauss diagram with a finite = set of dots marked on the circle.

A link in orientable thickening of a non-orientable surface

Moves
Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a non-orientable surface

Khovanov homology
Orientation of chord \mid diagrams

Khovanov complex of

- romed abord lisargm

A diagram on the surface.
Reidemeister moves plus two more moves:

Twisted Gauss diagram

Two more moves:

A link in orientable thickening of a non-orientable surface

Moves

Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a non-orientable surface

Khovanov homology
A diagram on the surface.
Reidemeister moves plus two more moves:

Twisted Gauss Gauss diagram with a finite diagram $=$ set of dots marked on the circle.

Two more moves:

Forgetting dots and arrows turns a twisted Gauss diagram into a signed chord diagram.

A link in orientable thickening of a non-orientable surface

Moves

Kauffman bracket
Gauss diagrams of a poor man

- Signed chord
diagrams
- State of signed chord
diagram
- Smoothing of a
signed chord diagram
- Framing
- Framed chord
diagrams
- Signed to framed
- Orientable
thickenings of
non-orientable surfaces
- Abstract construction
of an orientable
thickening
- A link in orientable
thickening of a
non-orientable surface
Khovanov homology
Orientation of chord diagrams

Khovanov complex of

A diagram on the surface.
Reidemeister moves plus two more moves:

Twisted Gauss diagram

Gauss diagram with a finite = set of dots marked on the circle.

Two more moves:

Forgetting dots and arrows turns a twisted Gauss diagram into a signed chord diagram. (together with moves)

A link in orientable thickening of a non-orientable surface

A diagram on the surface.
Reidemeister moves plus two more moves:

Twisted Gauss diagram
= set of dots marked on the circle.

Two more moves:

Forgetting dots and arrows turns a twisted Gauss diagram into a signed chord diagram. Corollary (Bourgoin). Links in orientable thickenings of surfaces have well-defined Kauffman bracket.

Virtual links

Moves

Kauffman bracket

Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Khovanov homology

Khovanov homology

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Khovanov homology categorifies Jones polynomial.

Khovanov homology

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Khovanov homology categorifies Jones polynomial. Here we will deal with a version of Khovanov homology, which categorifies Kauffman bracket.

$\underline{K h o v a n o v ~ h o m o l o g y ~}$

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Khovanov homology categorifies Jones polynomial. Here we will deal with a version of Khovanov homology, which categorifies Kauffman bracket.

$$
D \mapsto H_{p, q}(D), \quad\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q} \text { rk } H_{p, q}(D) .
$$

Khovanov homology

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Khovanov homology categorifies Jones polynomial. Here we will deal with a version of Khovanov homology, which categorifies Kauffman bracket.
$D \mapsto H_{p, q}(D), \quad\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q}$ rk $H_{p, q}(D)$. Relation to the original Khovanov homology:

$\underline{K h o v a n o v ~ h o m o l o g y ~}$

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Khovanov homology categorifies Jones polynomial. Here we will deal with a version of Khovanov homology, which categorifies Kauffman bracket.
$D \mapsto H_{p, q}(D), \quad\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q}$ rk $H_{p, q}(D)$. Relation to the original Khovanov homology:

$$
H_{p, q}(D)=\mathcal{H}^{\frac{w(D)-q-2 p}{2}, \frac{3 w(D)-q}{2}}(D)
$$

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Khovanov homology categorifies Jones polynomial. Here we will deal with a version of Khovanov homology, which categorifies Kauffman bracket.
$D \mapsto H_{p, q}(D), \quad\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q}$ rk $H_{p, q}(D)$. Relation to the original Khovanov homology:
$H_{p, q}(D)=\mathcal{H}^{\frac{w(D)-q-2 p}{2}, \frac{3 w(D)-q}{2}}(D)$, or
$\mathcal{H}^{i, j}(D)=H_{j-i-w(D), 3 w(D)-2 j}(D)$.

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Khovanov homology categorifies Jones polynomial. Here we will deal with a version of Khovanov homology, which categorifies Kauffman bracket.
$D \mapsto H_{p, q}(D), \quad\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q}$ rk $H_{p, q}(D)$. Relation to the original Khovanov homology:
$H_{p, q}(D)=\mathcal{H}^{\frac{w(D)-q-2 p}{2}, \frac{3 w(D)-q}{2}}(D)$, or
$\mathcal{H}^{i, j}(D)=H_{j-i-w(D), 3 w(D)-2 j}(D)$.
In other words: $H_{p, q}(D)=\mathcal{H}^{i, j}(D)$ iff
$q+2 j=3 w(D)$ and $j-i+p=w(D)$.

Enhanced states

Knots and links

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Enhance states involved in the Kauffman state sum by attaching a sign to each component of the smoothing along the state.

Enhanced states

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Enhance states involved in the Kauffman state sum by attaching a sign to each component of the smoothing along the state.

gives rise to 4 enhanced states

Enhanced states

Moves

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Enhance states involved in the Kauffman state sum by attaching a sign to each component of the smoothing along the state.

gives rise to 4 enhanced states

Khovanov complex

Knots and links
Virtual links
Moves
Kauffman bracket

Gauss diagrams of a

 poor manKhovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual
links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

$$
\begin{aligned}
& \text { For enhanced state } S \text {, set } \tau(S)=\#(\text { pluses })-\#(\text { minuses }) \\
& \text { and }\langle S\rangle=(-1)^{\tau(S)} A^{a(S)-b(S)-2 \tau(S)}
\end{aligned}
$$

Khovanov complex

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

$$
\begin{aligned}
& \text { For enhanced state } S \text {, set } \tau(S)=\#(\text { pluses })-\# \text { (minuses) } \\
& \text { and }\langle S\rangle=(-1)^{\tau(S)} A^{a(S)-b(S)-2 \tau(S)} \\
& \qquad\langle D\rangle=\sum_{S \text { enhanced state of } D}\langle S\rangle
\end{aligned}
$$

Khovanov complex

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

For enhanced state S, set $\tau(S)=\#$ (pluses) - \#(minuses) and $\langle S\rangle=(-1)^{\tau(S)} A^{a(S)-b(S)-2 \tau(S)}$.

$$
\langle D\rangle=\sum_{S \text { enhanced state of } D}\langle S\rangle
$$

Let $C_{p, q}(D)$ be a free abelian group generated by enhanced states S of D with:
$\tau(S)=p$ and $a(S)-b(S)-2 \tau(S)=q$.

Khovanov complex

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

For enhanced state S, set $\tau(S)=\#$ (pluses) - \#(minuses) and $\langle S\rangle=(-1)^{\tau(S)} A^{a(S)-b(S)-2 \tau(S)}$.

$$
\langle D\rangle=\sum_{S \text { enhanced state of } D}\langle S\rangle
$$

Let $C_{p, q}(D)$ be a free abelian group generated by enhanced states S of D with:
$\tau(S)=p$ and $a(S)-b(S)-2 \tau(S)=q$.
Then $\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q} \operatorname{rk} C_{p, q}(D)$.

Khovanov complex

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

For enhanced state S, set $\tau(S)=\#$ (pluses) $-\#$ (minuses) and $\langle S\rangle=(-1)^{\tau(S)} A^{a(S)-b(S)-2 \tau(S)}$.

$$
\langle D\rangle=\sum_{S \text { enhanced state of } D}\langle S\rangle
$$

Let $C_{p, q}(D)$ be a free abelian group generated by enhanced states S of D with:
$\tau(S)=p$ and $a(S)-b(S)-2 \tau(S)=q$.
Then $\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q}$ rk $C_{p, q}(D)$.
Any differential $\partial: C_{p, q}(D) \rightarrow C_{p-1, q}(D)$ gives homology $H_{p, q}(D)$ with $\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q} \operatorname{rk} H_{p, q}(D)$.

Khovanov complex

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

For enhanced state S, set $\tau(S)=\#$ (pluses) $-\#$ (minuses) and $\langle S\rangle=(-1)^{\tau(S)} A^{a(S)-b(S)-2 \tau(S)}$.

$$
\langle D\rangle=\sum_{S \text { enhanced state of } D}\langle S\rangle
$$

Let $C_{p, q}(D)$ be a free abelian group generated by enhanced states S of D with:
$\tau(S)=p$ and $a(S)-b(S)-2 \tau(S)=q$.
Then $\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q}$ rk $C_{p, q}(D)$.
Any differential $\partial: C_{p, q}(D) \rightarrow C_{p-1, q}(D)$ gives homology $H_{p, q}(D)$ with $\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q} \operatorname{rk} H_{p, q}(D)$.
Invariance of $H_{p, q}(D)$ under Reidemeister moves wanted!

Khovanov complex

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

For enhanced state S, set $\tau(S)=\#$ (pluses) $-\#$ (minuses) and $\langle S\rangle=(-1)^{\tau(S)} A^{a(S)-b(S)-2 \tau(S)}$.

$$
\langle D\rangle=\sum_{S \text { enhanced state of } D}\langle S\rangle
$$

Let $C_{p, q}(D)$ be a free abelian group generated by enhanced states S of D with:
$\tau(S)=p$ and $a(S)-b(S)-2 \tau(S)=q$.
Then $\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q}$ rk $C_{p, q}(D)$.
Any differential $\partial: C_{p, q}(D) \rightarrow C_{p-1, q}(D)$ gives homology $H_{p, q}(D)$ with $\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q} \operatorname{rk} H_{p, q}(D)$.
Invariance of $H_{p, q}(D)$ under Reidemeister moves wanted!
$\partial(S)=\sum \pm T$ with T, which differ from S by a single marker and appropriate signs on the circles passing near the vertex.

Khovanov complex

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

For enhanced state S, set $\tau(S)=\#$ (pluses) $-\#$ (minuses) and $\langle S\rangle=(-1)^{\tau(S)} A^{a(S)-b(S)-2 \tau(S)}$.

$$
\langle D\rangle=\sum_{S \text { enhanced state of } D}\langle S\rangle
$$

Let $C_{p, q}(D)$ be a free abelian group generated by enhanced states S of D with:
$\tau(S)=p$ and $a(S)-b(S)-2 \tau(S)=q$.
Then $\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q}$ rk $C_{p, q}(D)$.
Any differential $\partial: C_{p, q}(D) \rightarrow C_{p-1, q}(D)$ gives homology $H_{p, q}(D)$ with $\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q} \operatorname{rk} H_{p, q}(D)$.
Invariance of $H_{p, q}(D)$ under Reidemeister moves wanted!
$\partial(S)=\sum \pm T$ with T, which differ from S by a single marker and appropriate signs on the circles passing near the vertex.
$(|T|-|S|)=1$ is needed to have $\tau(T)=\tau(S)-1$.

More algebraic construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual
links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Let \mathcal{A} be an algebra over \mathbb{Z} generated by 1 and X with $X^{2}=0$.

More algebraic construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual
links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Let \mathcal{A} be an algebra over \mathbb{Z} generated by 1 and X with $X^{2}=0$.
Grading: $\operatorname{deg}(1)=0, \operatorname{deg}(X)=2$.

More algebraic construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Let \mathcal{A} be an algebra over \mathbb{Z} generated by 1 and X with $X^{2}=0$.
Grading: $\operatorname{deg}(1)=0, \operatorname{deg}(X)=2$.
Comultiplication:
$\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}, \Delta(1)=X \otimes 1+1 \otimes X$,
$\Delta(X)=X \otimes X$.

More algebraic construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Let \mathcal{A} be an algebra over \mathbb{Z} generated by 1 and X with $X^{2}=0$.
Grading: $\operatorname{deg}(1)=0, \operatorname{deg}(X)=2$.
Comultiplication:
$\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}, \Delta(1)=X \otimes 1+1 \otimes X$,
$\Delta(X)=X \otimes X$.
For a state s of a link diagram D
associate a copy of \mathcal{A} with each component of D_{s}.

More algebraic construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Let \mathcal{A} be an algebra over \mathbb{Z} generated by 1 and X with $X^{2}=0$.
Grading: $\operatorname{deg}(1)=0, \operatorname{deg}(X)=2$.
Comultiplication:
$\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}, \Delta(1)=X \otimes 1+1 \otimes X$,
$\Delta(X)=X \otimes X$.
For a state s of a link diagram D
associate a copy of \mathcal{A} with each component of D_{s}. Denote by V_{s} the tensor product of these copies of \mathcal{A}.

More algebraic construction

Knots and links
Virtual links

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Let \mathcal{A} be an algebra over \mathbb{Z} generated by 1 and X with $X^{2}=0$.
Grading: $\operatorname{deg}(1)=0, \operatorname{deg}(X)=2$.
Comultiplication:
$\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}, \Delta(1)=X \otimes 1+1 \otimes X$, $\Delta(X)=X \otimes X$.
For a state s of a link diagram D
associate a copy of \mathcal{A} with each component of D_{s}. Denote by V_{s} the tensor product of these copies of \mathcal{A}. Equip V_{s} with the second grading equal to the first grading shifted by $a(s)-b(s)-|s|$.

More algebraic construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Let \mathcal{A} be an algebra over \mathbb{Z} generated by 1 and X with $X^{2}=0$.
Grading: $\operatorname{deg}(1)=0, \operatorname{deg}(X)=2$.
Comultiplication:
$\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}, \Delta(1)=X \otimes 1+1 \otimes X$,
$\Delta(X)=X \otimes X$.
For a state s of a link diagram D
associate a copy of \mathcal{A} with each component of D_{s}. Denote by V_{s} the tensor product of these copies of \mathcal{A}. Equip V_{s} with the second grading equal to the first grading shifted by $a(s)-b(s)-|s|$.

Then

$$
\oplus_{p, q} C_{p, q}(D)=\oplus_{s} V_{s}
$$

More algebraic construction

Knots and links
Virtual links

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Let \mathcal{A} be an algebra over \mathbb{Z} generated by 1 and X with $X^{2}=0$.
Grading: $\operatorname{deg}(1)=0, \operatorname{deg}(X)=2$.
Comultiplication:
$\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}, \Delta(1)=X \otimes 1+1 \otimes X$,
$\Delta(X)=X \otimes X$.
For a state s of a link diagram D
associate a copy of \mathcal{A} with each component of D_{s}. Denote by V_{s} the tensor product of these copies of \mathcal{A}. Equip V_{s} with the second grading equal to the first grading shifted by $a(s)-b(s)-|s|$.

Then

$$
\oplus_{p, q} C_{p, q}(D)=\oplus_{s} V_{s}
$$

Differentials are defined by the multiplication and co-multiplication in \mathcal{A}.

What about virtual links?

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual
links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

This works for classical links, but does not for virtual!

What about virtual links?

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual
links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

This works for classical links, but does not for virtual!
For virtual links, it works with \mathbb{Z}_{2} coefficients.

What about virtual links?

Knots and links

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual
links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

What about virtual links?

Knots and links

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual
links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Over integers $d^{2} \neq 0$!
Consider virtual diagram of the unknot: $\underbrace{\infty}_{\cup}$

What about virtual links?

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual links?

Orientation of chord diagrams

Khovanov complex of framed chord diagram

Over integers $d^{2} \neq 0$!
Consider virtual diagram of the unknot: $₫$
There are 4 states contributing to Kauffman bracket as follows:

What about virtual links?

Knots and links

Virtual links
Moves

Kauffman bracket

Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual
links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Over integers $d^{2} \neq 0$!
Consider virtual diagram of the unknot: $₫$
There are 4 states contributing to Kauffman bracket as follows:

What about virtual links?

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual
links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Over integers $d^{2} \neq 0$!
Consider virtual diagram of the unknot: $₫$
There are 4 states contributing to Kauffman bracket as follows:

Differentials are obvious in all A-components but the one corresponding to A^{0}.

What about virtual links?

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual
links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Over integers $d^{2} \neq 0$!
Consider virtual diagram of the unknot: $₫$
There are 4 states contributing to Kauffman bracket as follows:

Differentials are obvious in all A-components but the one corresponding to A^{0}.

What about virtual links?

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual
links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Over integers $d^{2} \neq 0$!
Consider virtual diagram of the unknot: $₫$
There are 4 states contributing to Kauffman bracket as follows:

Differentials are obvious in all A-components but the one corresponding to A^{0}.

What about virtual links?

Virtual links
Moves

Kauffman bracket

Gauss diagrams of a poor man

Khovanov homology

- Khovanov homology
- Enhanced states
- Khovanov complex
- More algebraic
construction
- What about virtual
links?
Orientation of chord diagrams

Khovanov complex of framed chord diagram

Over integers $d^{2} \neq 0$!
Consider virtual diagram of the unknot: $₫$
There are 4 states contributing to Kauffman bracket as follows:

This does not happen if the chord diagram is orientable!

Kauffman bracket

Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram

Orientation of chord diagrams

Orientation of a chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram
= orientations of chords and arcs

Orientation of a chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram
= orientations of chords and arcs such that the chain with integer coefficients

Orientation of a chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram
= orientations of chords and arcs
such that the chain with integer coefficients
\sum arcs $+\sum 2$ chords

Orientation of a chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram
= orientations of chords and arcs
such that the chain with integer coefficients \sum arcs $+\sum 2$ chords is a cycle.

Orientation of a chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram
= orientations of chords and arcs
such that the chain with integer coefficients $\sum \operatorname{arcs}+\sum 2$ chords is a cycle.
That is $\quad \partial\left(\sum\right.$ arcs $+\sum 2$ chords $)=0$.

Orientation of a chord diagram

Knots and links

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram
= orientations of chords and arcs
such that the chain with integer coefficients $\sum \operatorname{arcs}+\sum 2$ chords \quad is a cycle.
That is $\quad \partial\left(\sum\right.$ arcs $+\sum 2$ chords $)=0$.

Orientation of a chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram
= orientations of chords and arcs
such that the chain with integer coefficients $\sum \operatorname{arcs}+\sum 2$ chords is a cycle.
That is $\quad \partial\left(\sum\right.$ arcs $+\sum 2$ chords $)=0$.

A chord diagram is called orientable if it admits an orientation.

Orientation of a chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram
= orientations of chords and arcs
such that the chain with integer coefficients $\sum \operatorname{arcs}+\sum 2$ chords is a cycle.
That is $\quad \partial\left(\sum\right.$ arcs $+\sum 2$ chords $)=0$.

A chord diagram is called orientable if it admits an orientation. Orientability of chord diagram with connected base is equivalent to the following condition known to K.-F.Gauss:

Orientation of a chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a
smoothened chord diagram

Khovanov complex of framed chord diagram
= orientations of chords and arcs
such that the chain with integer coefficients

$$
\sum \operatorname{arcs}+\sum 2 \text { chords is a cycle. }
$$

That is $\quad \partial\left(\sum\right.$ arcs $+\sum 2$ chords $)=0$.

A chord diagram is called orientable if it admits an orientation.
Orientability of chord diagram with connected base is equivalent to the following condition known to K.-F.Gauss:
The number of endpoints of chords on each arc bounded be endpoints of a chord is even.

Orientation of a chord diagram

Knots and links
Virtual links
Moves

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a
smoothened chord diagram

Khovanov complex of framed chord diagram
= orientations of chords and arcs
such that the chain with integer coefficients

$$
\sum \operatorname{arcs}+\sum 2 \text { chords is a cycle. }
$$

That is $\quad \partial\left(\sum\right.$ arcs $+\sum 2$ chords $)=0$.

A chord diagram is called orientable if it admits an orientation.
Orientability of chord diagram with connected base is equivalent to the following condition known to K.-F.Gauss:
The number of endpoints of chords on each arc bounded be endpoints of a chord is even.
The simplest nonorientable chord diagram: \otimes.

Obstruction to orientability

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram

Try to orient a chord diagram.

Obstruction to orientability

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a
smoothened chord
diagram
Khovanov complex of framed chord diagram

Try to orient a chord diagram.

Obstruction to orientability

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a
smoothened chord
diagram
Khovanov complex of framed chord diagram

Try to orient a chord diagram.

Obstruction to orientability

Knots and links

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a
smoothened chord
diagram
Khovanov complex of framed chord diagram

Try to orient a chord diagram.

\square

Obstruction to orientability

Knots and links

Virtual links

Moves

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord
diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a
smoothened chord
diagram
Khovanov complex of framed chord diagram

Try to orient a chord diagram.

Obstruction to orientability

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram

Try to orient a chord diagram.

Obstruction to orientability

Knots and links
Virtual links

Moves

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a
smoothened chord
diagram
Khovanov complex of framed chord diagram

Try to orient a chord diagram.

We have met an obstruction.

Obstruction to orientability

Knots and links
Virtual links

Moves

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram

Try to orient a chord diagram.

We have met an obstruction.
The obstruction to orientability of a chord diagram
$\left(B, c_{1}, \ldots, c_{n}\right)$ is an element of $H^{1}\left(B, \cup_{i=1}^{n} \partial c_{i} ; \mathbb{Z}_{2}\right)$.

Obstruction to orientability

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a
smoothened chord diagram

Khovanov complex of framed chord diagram

Try to orient a chord diagram.

We have met an obstruction.
The obstruction to orientability of a chord diagram
$\left(B, c_{1}, \ldots, c_{n}\right)$ is an element of $H^{1}\left(B, \cup_{i=1}^{n} \partial c_{i} ; \mathbb{Z}_{2}\right)$.
Dual class belongs to $H_{0}\left(B \backslash \cup_{i=1}^{n} \partial c_{i} ; \mathbb{Z}_{2}\right)$.

Obstruction to orientability

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a
smoothened chord diagram

Khovanov complex of framed chord diagram

Try to orient a chord diagram.

We have met an obstruction.
The obstruction to orientability of a chord diagram $\left(B, c_{1}, \ldots, c_{n}\right)$ is an element of $H^{1}\left(B, \cup_{i=1}^{n} \partial c_{i} ; \mathbb{Z}_{2}\right)$.
Dual class belongs to $H_{0}\left(B \backslash \cup_{i=1}^{n} \partial c_{i} ; \mathbb{Z}_{2}\right)$.
Orient the complement of the 0 -cycle realizing it,
to get vice-orientation of the chord diagram.

Orientation of a smoothened chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram

If a chord diagram

Orientation of a smoothened chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram

If a chord diagram

Orientation of a smoothened chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram

If a chord diagram is oriented,

Orientation of a smoothened chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram

If a chord diagram is oriented,

its orientation induces an orientation of each result of its smoothing.

Orientation of a smoothened chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram

If a chord diagram is oriented,

its orientation induces an orientation of each result of its smoothing.

$$
+
$$

Orientation of a smoothened chord diagram

$\underline{\text { Knots and links }}$
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram

If a chord diagram is oriented,

its orientation induces an orientation of each result of its smoothing.
Similarly, a vice-orientation of a signed chord diagram induces a vice-orientation of each result of its smoothing.

Orientation of a smoothened chord diagram

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

- Orientation of a chord
diagram
- Obstruction to
orientability
- Orientation of a smoothened chord diagram

Khovanov complex of framed chord diagram

If a chord diagram is oriented,

its orientation induces an orientation of each result of its smoothing.
Similarly, a vice-orientation of a signed chord diagram induces a vice-orientation of each result of its smoothing.

Theorem (Manturov, Viro) Definition of the Khovanov complex extended straightforwardly to an oriented framed chord diagram gives a complex invariant under Reidemeister moves preserving the orientation.

Kauffman bracket

Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Khovanov complex of framed chord diagram

Structure used in the construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

1. Framed chord diagram.

Structure used in the construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

1. Framed chord diagram.

Structure used in the construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

1. Framed chord diagram.
2. Vice-orientation of the chord diagram.

Structure used in the construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

1. Framed chord diagram.
2. Vice-orientation of the chord diagram.

Structure used in the construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

1. Framed chord diagram.
2. Vice-orientation of the chord diagram.
3. At each chord one of two arcs adjacent to its arrowhead is marked.

$$
+
$$

Structure used in the construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

1. Framed chord diagram.
2. Vice-orientation of the chord diagram.
3. At each chord one of two arcs adjacent to its arrowhead is marked.

$$
+
$$

Structure used in the construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram - Structure used in the construction

- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

1. Framed chord diagram.
2. Vice-orientation of the chord diagram.
3. At each chord one of two arcs adjacent to its arrowhead is marked.

The chain groups are the same as in the Khovanov construction:

Structure used in the construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram - Structure used in the construction

- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

1. Framed chord diagram.
2. Vice-orientation of the chord diagram.
3. At each chord one of two arcs adjacent to its arrowhead is marked.

The chain groups are the same as in the Khovanov construction:

$$
\oplus_{p, q} C_{p, q}(D)=\oplus_{s} V_{s}
$$

Structure used in the construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram - Structure used in the
construction

- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

1. Framed chord diagram.
2. Vice-orientation of the chord diagram.
3. At each chord one of two arcs adjacent to its arrowhead is marked.

The chain groups are the same as in the Khovanov construction:

$$
\oplus_{p, q} C_{p, q}(D)=\oplus_{s} V_{s}
$$

algebraically (up to isomorphisms).

Structure used in the construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

1. Framed chord diagram.
2. Vice-orientation of the chord diagram.
3. At each chord one of two arcs adjacent to its arrowhead is marked.

The chain groups are the same as in the Khovanov construction:

$$
\oplus_{p, q} C_{p, q}(D)=\oplus_{s} V_{s}
$$

algebraically (up to isomorphisms).
The structure is needed for a collection of the isomorphisms

Structure used in the construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

1. Framed chord diagram.
2. Vice-orientation of the chord diagram.
3. At each chord one of two arcs adjacent to its arrowhead is marked.

The chain groups are the same as in the Khovanov construction:

$$
\oplus_{p, q} C_{p, q}(D)=\oplus_{s} V_{s}
$$

algebraically (up to isomorphisms).
The structure is needed for a collection of the isomorphisms needed for construction of differentials.

Structure used in the construction

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

1. Framed chord diagram.
2. Vice-orientation of the chord diagram.
3. At each chord one of two arcs adjacent to its arrowhead is marked.

The chain groups are the same as in the Khovanov construction:

$$
\oplus_{p, q} C_{p, q}(D)=\oplus_{s} V_{s}
$$

algebraically (up to isomorphisms).
The structure is needed for a collection of the isomorphisms needed for construction of differentials.
Homology does not depend on the structure.

Involution in the Frobenius algebra

Knots and links

Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Remind that \mathcal{A} is a Frobenius algebra generated by 1 and X with $X^{2}=0$.
with Grading: $\operatorname{deg}(1)=0, \operatorname{deg}(X)=2$.
and Comultiplication:
$\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}, \Delta(1)=X \otimes 1+1 \otimes X$,
$\Delta(X)=X \otimes X$.

Involution in the Frobenius algebra

Moves

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Remind that \mathcal{A} is a Frobenius algebra generated by 1 and X with $X^{2}=0$.
with Grading: $\operatorname{deg}(1)=0, \operatorname{deg}(X)=2$.
and Comultiplication:
$\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}, \Delta(1)=X \otimes 1+1 \otimes X$, $\Delta(X)=X \otimes X$.
Involution conj: $\mathcal{A} \rightarrow \mathcal{A}: 1 \mapsto 1, X \mapsto-X$.

Involution in the Frobenius algebra

- Partial differential

Remind that \mathcal{A} is a Frobenius algebra generated by 1 and X with $X^{2}=0$.
with Grading: $\operatorname{deg}(1)=0, \operatorname{deg}(X)=2$.
and Comultiplication:
$\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}, \Delta(1)=X \otimes 1+1 \otimes X$, $\Delta(X)=X \otimes X$.
Involution conj : $\mathcal{A} \rightarrow \mathcal{A}: 1 \mapsto 1, X \mapsto-X$.
Notice: $\operatorname{conj}(a b)=\operatorname{conj}(a) \operatorname{conj}(b)$.

Involution in the Frobenius algebra

Moves

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Remind that \mathcal{A} is a Frobenius algebra generated by 1 and X with $X^{2}=0$.
with Grading: $\operatorname{deg}(1)=0, \operatorname{deg}(X)=2$.
and Comultiplication:
$\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}, \Delta(1)=X \otimes 1+1 \otimes X$,
$\Delta(X)=X \otimes X$.
Involution conj : $\mathcal{A} \rightarrow \mathcal{A}: 1 \mapsto 1, X \mapsto-X$.
Notice: $\operatorname{conj}(a b)=\operatorname{conj}(a) \operatorname{conj}(b)$.
But $\Delta(\operatorname{conj}(1))=\Delta(1)=X \otimes 1+1 \otimes X$

$$
=-\Delta(X) \otimes \Delta(1)-\Delta(1) \otimes \Delta(X)
$$

Involution in the Frobenius algebra

Moves

Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Remind that \mathcal{A} is a Frobenius algebra generated by 1 and X with $X^{2}=0$.
with Grading: $\operatorname{deg}(1)=0, \operatorname{deg}(X)=2$.
and Comultiplication:
$\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}, \Delta(1)=X \otimes 1+1 \otimes X$,
$\Delta(X)=X \otimes X$.
Involution conj : $\mathcal{A} \rightarrow \mathcal{A}: 1 \mapsto 1, X \mapsto-X$.
Notice: $\operatorname{conj}(a b)=\operatorname{conj}(a) \operatorname{conj}(b)$.
But $\Delta(\operatorname{conj}(1))=\Delta(1)=X \otimes 1+1 \otimes X$

$$
=-\Delta(X) \otimes \Delta(1)-\Delta(1) \otimes \Delta(X)
$$

and
$\Delta(\operatorname{conj}(X))=\Delta(-X)=-X \otimes X=-\Delta(X) \otimes \Delta(X)$.

Space associated to a state

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Given a state s of a framed chord diagram D.

Space associated to a state

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Given a state s of a framed chord diagram D. Orient each connected component of D_{s}.

Space associated to a state

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Given a state s of a framed chord diagram D. Orient each connected component of D_{s}. Order the set of components.

Space associated to a state

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Given a state s of a framed chord diagram D.
Orient each connected component of D_{s}.
Order the set of components.
Associate a copy of \mathcal{A} to each component of D_{s}.

$$
+
$$

Space associated to a state

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Given a state s of a framed chord diagram D.
Orient each connected component of D_{s}.
Order the set of components.
Associate a copy of \mathcal{A} to each component of D_{s}. Denote by V_{s} the tensor product of these copies of \mathcal{A}.

Space associated to a state

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Given a state s of a framed chord diagram D.
Orient each connected component of D_{s}.
Order the set of components.
Associate a copy of \mathcal{A} to each component of D_{s}. Denote by V_{s} the tensor product of these copies of \mathcal{A}. This construction depends on the orientations and ordering.

Space associated to a state

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Given a state s of a framed chord diagram D.
Orient each connected component of D_{s}.
Order the set of components.
Associate a copy of \mathcal{A} to each component of D_{s}. Denote by V_{s} the tensor product of these copies of \mathcal{A}. This construction depends on the orientations and ordering.
The results corresponding to the different choices of them are related by isomorphisms:

Space associated to a state

Knots and links
Virtual links

Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Given a state s of a framed chord diagram D.
Orient each connected component of D_{s}.
Order the set of components.
Associate a copy of \mathcal{A} to each component of D_{s}.
Denote by V_{s} the tensor product of these copies of \mathcal{A}.
This construction depends on the orientations and ordering.
The results corresponding to the different choices of them are related by isomorphisms:
Reversing of orientation of a component corresponds to conj in the corresponding copy of \mathcal{A}.

Space associated to a state

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Given a state s of a framed chord diagram D.
Orient each connected component of D_{s}.
Order the set of components.
Associate a copy of \mathcal{A} to each component of D_{s}.
Denote by V_{s} the tensor product of these copies of \mathcal{A}.
This construction depends on the orientations and ordering.
The results corresponding to the different choices of them are related by isomorphisms:
Reversing of orientation of a component corresponds to conj in the corresponding copy of \mathcal{A}.
Permutations of the components corresponds to the permutation isomorphism of the tensor product multiplied by the sign of the permutation.

Partial differential

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Let s and t be adjacent states of a framed chord diagram D which is equipped with a vice orientation and markers.

Partial differential

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Let s and t be adjacent states of a framed chord diagram D which is equipped with a vice orientation and markers.
Let t differs from s only by a marker sign at chord c

Partial differential

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Let s and t be adjacent states of a framed chord diagram D which is equipped with a vice orientation and markers.
Let t differs from s only by a marker sign at chord c, positive in s and negative at t.

Partial differential

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Let s and t be adjacent states of a framed chord diagram D which is equipped with a vice orientation and markers.
Let t differs from s only by a marker sign at chord c, positive in s and negative at t.
Construct $V_{s} \rightarrow V_{t}$.

Partial differential

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of
framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Let s and t be adjacent states of a framed chord diagram D which is equipped with a vice orientation and markers.
Let t differs from s only by a marker sign at chord c, positive in s and negative at t.
Construct $V_{s} \rightarrow V_{t}$.
Put it to be 0 if $|s|=|t|$.

Partial differential

Knots and links
Virtual links
Moves
Kauffman bracket
Gauss diagrams of a poor man

Khovanov homology
Orientation of chord diagrams

Khovanov complex of framed chord diagram

- Structure used in the
construction
- Involution in the

Frobenius algebra

- Space associated to
a state
- Partial differential

Let s and t be adjacent states of a framed chord diagram D which is equipped with a vice orientation and markers.
Let t differs from s only by a marker sign at chord c, positive in s and negative at t.
Construct $V_{s} \rightarrow V_{t}$.
Put it to be 0 if $|s|=|t|$.
Otherwise, order the components of D_{s} and D_{t} so that:

Partial differential

- Partial differential

Let s and t be adjacent states of a framed chord diagram D which is equipped with a vice orientation and markers.
Let t differs from s only by a marker sign at chord c, positive in s and negative at t.
Construct $V_{s} \rightarrow V_{t}$.
Put it to be 0 if $|s|=|t|$.
Otherwise, order the components of D_{s} and D_{t} so that:

- The first component passes through the marker at c.

Partial differential

- Partial differential

Let s and t be adjacent states of a framed chord diagram D which is equipped with a vice orientation and markers.
Let t differs from s only by a marker sign at chord c, positive in s and negative at t.
Construct $V_{s} \rightarrow V_{t}$.
Put it to be 0 if $|s|=|t|$.
Otherwise, order the components of D_{s} and D_{t} so that:

- The first component passes through the marker at c.
- On the second place put the other component passes though c (if there is one).

Partial differential

Let s and t be adjacent states of a framed chord diagram D which is equipped with a vice orientation and markers.
Let t differs from s only by a marker sign at chord c, positive in s and negative at t.
Construct $V_{s} \rightarrow V_{t}$.
Put it to be 0 if $|s|=|t|$.
Otherwise, order the components of D_{s} and D_{t} so that:

- The first component passes through the marker at c.
- On the second place put the other component passes though c (if there is one).
- Other components (which are common for D_{s} and D_{t}) are to be ordered coherently.

Partial differential

Let s and t be adjacent states of a framed chord diagram D which is equipped with a vice orientation and markers.
Let t differs from s only by a marker sign at chord c, positive in s and negative at t.
Construct $V_{s} \rightarrow V_{t}$.
Put it to be 0 if $|s|=|t|$.
Otherwise, order the components of D_{s} and D_{t} so that:

- The first component passes through the marker at c.
- On the second place put the other component passes though c (if there is one).
- Other components (which are common for D_{s} and D_{t}) are to be ordered coherently.
Orient the first components according to the vice orientation at c.

Partial differential

- Partial differential

Let s and t be adjacent states of a framed chord diagram D which is equipped with a vice orientation and markers.
Let t differs from s only by a marker sign at chord c, positive in s and negative at t.
Construct $V_{s} \rightarrow V_{t}$.
Put it to be 0 if $|s|=|t|$.
Otherwise, order the components of D_{s} and D_{t} so that:

- The first component passes through the marker at c.
- On the second place put the other component passes though c (if there is one).
- Other components (which are common for D_{s} and D_{t}) are to be ordered coherently.
Orient the first components according to the vice orientation at c. In these representations of V_{s} and V_{t}, define the map by multiplication or co-multipication.

