Boundary Value Khovanov Homology

Oleg Viro

October 31, 2009

Khovanov homology

- Kauffman bracket
- Kauffman state sum
- Example
- Categorifying Kauffman state sum. Chains
- Differential

Khovanov homology of tangles

Khovanov homology

```
\langle \mathsf{Link} \operatorname{ diagram} \rangle \in \mathbb{Z}[A, A^{-1}]
```

```
\langle \mathsf{Link \ diagram} \rangle \in \mathbb{Z}[A, A^{-1}]
```

(a Laurent polynomial in A with integer coefficients).

$\langle \mathsf{Link} \ \mathsf{diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$ $\langle \mathsf{unknot} \rangle = \qquad \langle \bigcirc \rangle$

$$\langle \text{Link diagram} \rangle \in \mathbb{Z}[A, A^{-1}]$$

$$\langle \text{Unknot} \rangle = \qquad \langle \bigcirc \rangle = -A^2 - A^{-2}$$

 $\begin{array}{ll} \langle {\rm Link \ diagram} \rangle \in \mathbb{Z}[A, A^{-1}] \\ \langle {\rm unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle {\rm Hopf \ link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle {\rm empty \ link} \rangle = & \langle \rangle = 1 \\ \langle {\rm trefoil} \rangle = & \langle \heartsuit \rangle \end{array}$

	$\langle Link \operatorname{ diagram} angle \in \mathbb{Z}[A, A^{-1}]$
$\langle unknot angle =$	$\langle \bigcirc \rangle = -A^2 - A^{-2}$
$\langle Hopf \ link angle =$	$\langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6}$
$\langle empty \ link angle =$	$\langle \rangle = 1$
$\langle trefoil angle =$	$\langle \bigcirc \rangle = A^7 + A^3 + A^{-1} - A^{-9}$

 $\begin{array}{ll} \langle {\rm Link \ diagram} \rangle \in \mathbb{Z}[A, A^{-1}] \\ \langle {\rm unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle {\rm Hopf \ link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle {\rm empty \ link} \rangle = & \langle \rangle = 1 \\ \langle {\rm trefoil} \rangle = & \langle \bigcirc \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle {\rm figure-eight \ knot} \rangle = & \langle \bigotimes \rangle \end{array}$

 $\begin{array}{ll} \langle {\rm Link \ diagram} \rangle \in \mathbb{Z}[A, A^{-1}] \\ \langle {\rm unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle {\rm Hopf \ link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle {\rm empty \ link} \rangle = & \langle \rangle = 1 \\ \langle {\rm trefoil} \rangle = & \langle \oslash \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle {\rm figure-eight \ knot} \rangle = & \langle \bigotimes \rangle = -A^{10} - A^{-10} \end{array}$

 $\begin{array}{ll} \langle {\rm Link \ diagram} \rangle \in \mathbb{Z}[A, A^{-1}] \\ \langle {\rm unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle {\rm Hopf \ link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle {\rm empty \ link} \rangle = & \langle \rangle = 1 \\ \langle {\rm trefoil} \rangle = & \langle \oslash \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle {\rm figure-eight \ knot} \rangle = & \langle \bigotimes \rangle = -A^{10} - A^{-10} \end{array}$

 $\begin{array}{ll} \langle {\rm Link \ diagram} \rangle \in \mathbb{Z}[A, A^{-1}] \\ \langle {\rm unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle {\rm Hopf \ link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle {\rm empty \ link} \rangle = & \langle \rangle = 1 \\ \langle {\rm trefoil} \rangle = & \langle \oslash \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle {\rm figure-eight \ knot} \rangle = & \langle \bigotimes \rangle = -A^{10} - A^{-10} \end{array}$

Kauffman bracket is defined by the following properties:

1. $\left< \bigcirc \right> = -A^2 - A^{-2}$,

 $\begin{array}{ll} \langle {\rm Link \ diagram} \rangle \in \mathbb{Z}[A, A^{-1}] \\ \langle {\rm unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle {\rm Hopf \ link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle {\rm empty \ link} \rangle = & \langle \rangle = 1 \\ \langle {\rm trefoil} \rangle = & \langle \bigcirc \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle {\rm figure-eight \ knot} \rangle = & \langle \bigotimes \rangle = -A^{10} - A^{-10} \end{array}$

1.
$$\langle \bigcirc \rangle = -A^2 - A^{-2}$$
,
2. $\langle D \amalg \bigcirc \rangle = (-A^2 - A^{-2}) \langle D \rangle$,

 $\begin{array}{ll} \langle {\rm Link \ diagram} \rangle \in \mathbb{Z}[A, A^{-1}] \\ \langle {\rm unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle {\rm Hopf \ link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle {\rm empty \ link} \rangle = & \langle \rangle = 1 \\ \langle {\rm trefoil} \rangle = & \langle \oslash \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle {\rm figure-eight \ knot} \rangle = & \langle \bigotimes \rangle = -A^{10} - A^{-10} \end{array}$

1.
$$\langle \bigcirc \rangle = -A^2 - A^{-2}$$
,
2. $\langle D \amalg \bigcirc \rangle = (-A^2 - A^{-2}) \langle D \rangle$,
3. $\langle \swarrow \rangle = A \langle \rangle \langle \rangle + A^{-1} \langle \leftthreetimes \rangle$ (Kauffman Skein Relation)

 $\begin{array}{ll} \langle {\rm Link \ diagram} \rangle \in \mathbb{Z}[A, A^{-1}] \\ \langle {\rm unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle {\rm Hopf \ link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle {\rm empty \ link} \rangle = & \langle \rangle = 1 \\ \langle {\rm trefoil} \rangle = & \langle \oslash \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle {\rm figure-eight \ knot} \rangle = & \langle \bigotimes \rangle = -A^{10} - A^{-10} \end{array}$

1.
$$\langle \bigcirc \rangle = -A^2 - A^{-2}$$
,
2. $\langle D \amalg \bigcirc \rangle = (-A^2 - A^{-2}) \langle D \rangle$,
3. $\langle \swarrow \rangle = A \langle \rangle \langle \rangle + A^{-1} \langle \leftthreetimes \rangle$ (Kauffman Skein Relation).
Uniqueness is obvious.

 $\begin{array}{ll} \langle {\rm Link \ diagram} \rangle \in \mathbb{Z}[A, A^{-1}] \\ \langle {\rm unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle {\rm Hopf \ link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle {\rm empty \ link} \rangle = & \langle \rangle = 1 \\ \langle {\rm trefoil} \rangle = & \langle \oslash \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle {\rm figure-eight \ knot} \rangle = & \langle \bigotimes \rangle = -A^{10} - A^{-10} \end{array}$

Kauffman bracket is defined by the following properties:

1. $\langle \bigcirc \rangle = -A^2 - A^{-2}$, 2. $\langle D \amalg \bigcirc \rangle = (-A^2 - A^{-2}) \langle D \rangle$, 3. $\langle \swarrow \rangle = A \langle \rangle \langle \rangle + A^{-1} \langle \leftthreetimes \rangle$ (*Kauffman Skein Relation*). Uniqueness is obvious. Invariant under Reidemeister 2 and 3.

 $\begin{array}{ll} \langle {\rm Link \ diagram} \rangle \in \mathbb{Z}[A, A^{-1}] \\ \langle {\rm unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle {\rm Hopf \ link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle {\rm empty \ link} \rangle = & \langle \rangle = 1 \\ \langle {\rm trefoil} \rangle = & \langle \bigcirc \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle {\rm figure-eight \ knot} \rangle = & \langle \bigotimes \rangle = -A^{10} - A^{-10} \end{array}$

Kauffman bracket is defined by the following properties:

1. $\langle \bigcirc \rangle = -A^2 - A^{-2}$, 2. $\langle D \amalg \bigcirc \rangle = (-A^2 - A^{-2}) \langle D \rangle$, 3. $\langle \leftthreetimes \rangle = A \langle \rangle \langle \rangle + A^{-1} \langle \leftthreetimes \rangle$ (*Kauffman Skein Relation*). Uniqueness is obvious. Invariant under Reidemeister 2 and 3. Under Reidemeister 1 it multiplies by $-A^{\pm 3}$.

 $\begin{array}{ll} \langle {\rm Link \ diagram} \rangle \in \mathbb{Z}[A, A^{-1}] \\ \langle {\rm unknot} \rangle = & \langle \bigcirc \rangle = -A^2 - A^{-2} \\ \langle {\rm Hopf \ link} \rangle = & \langle \bigcirc \rangle = A^6 + A^2 + A^{-2} + A^{-6} \\ \langle {\rm empty \ link} \rangle = & \langle \rangle = 1 \\ \langle {\rm trefoil} \rangle = & \langle \bigcirc \rangle = A^7 + A^3 + A^{-1} - A^{-9} \\ \langle {\rm figure-eight \ knot} \rangle = & \langle \bigotimes \rangle = -A^{10} - A^{-10} \end{array}$

Kauffman bracket is defined by the following properties:

1. $\langle \bigcirc \rangle = -A^2 - A^{-2}$, 2. $\langle D \amalg \bigcirc \rangle = (-A^2 - A^{-2}) \langle D \rangle$, 3. $\langle \leftthreetimes \rangle = A \langle \rangle \langle \rangle + A^{-1} \langle \leftthreetimes \rangle$ (Kauffman Skein Relation). Uniqueness is obvious. Invariant under Reidemeister 2 and 3. Under Reidemeister 1 it multiplies by $-A^{\pm 3}$. $(-A)^{-3w(D)} \langle D \rangle = \text{Jones}_D(-A^2)$

A state of diagram is a distribution of markers over all crossings.

A state of diagram is a distribution of markers over all crossings.

A state of diagram is a distribution of markers over all crossings.

Knot diagram: And its states:

A state of diagram is a distribution of markers over all crossings.

and its states:

A state of diagram is a distribution of markers over all crossings.

and its states:

A state of diagram is a distribution of markers over all crossings.

and its states:

A state of diagram is a distribution of markers over all crossings.

and its states:

Knot diagram:

A state of diagram is a distribution of markers over all crossings.

and its states:

Table of Contents

Knot diagram:

A state of diagram is a distribution of markers over all crossings.

Totally 2^c states, where c is the number of crossings.

and its states:

Knot diagram:

A state of diagram is a distribution of markers over all crossings.

and its states:

Totally 2^c states, where c is the number of crossings. Three numbers associated to a state s:

Knot diagram:

A state of diagram is a distribution of markers over all crossings.

and its states:

Totally 2^c states, where c is the number of crossings.

Three numbers associated to a state *s*:

1. the number a(s) of *positive* markers \mathbf{X} ,

Knot diagram:

A state of diagram is a distribution of markers over all crossings.

and its states:

Totally 2^c states, where c is the number of crossings.

Three numbers associated to a state *s*:

1. the number a(s) of **positive** markers \mathbf{X} ,

2. the number b(s) of *negative* markers \mathbf{k} ,

Knot diagram:

A state of diagram is a distribution of markers over all crossings.

and its states:

Totally 2^c states, where c is the number of crossings.

Three numbers associated to a state *s*:

- 1. the number a(s) of *positive* markers \checkmark ,
- 2. the number b(s) of *negative* markers \checkmark ,

3. the number |s| of components of the curve D_s obtained by smoothing along the markers:

Knot diagram:

A state of diagram is a distribution of markers over all crossings.

and its states:

Totally 2^c states, where c is the number of crossings.

Three numbers associated to a state *s*:

- 1. the number a(s) of **positive** markers \mathbf{X} ,
- 2. the number b(s) of *negative* markers \mathbf{k} ,
- 3. the number |s| of components of the curve D_s obtained by smoothing along the markers:

$$s = \bigcirc$$
Kauffman state sum

Knot diagram:

A state of diagram is a distribution of markers over all crossings.

and its states:

Totally 2^c states, where c is the number of crossings.

Three numbers associated to a state *s*:

- 1. the number a(s) of **positive** markers \mathbf{X} ,
- 2. the number b(s) of *negative* markers \checkmark ,

3. the number |s| of components of the curve D_s obtained by smoothing along the markers:

$$s = \bigcup_{s \to 0} \mapsto D_s = \bigcup_{s \to 0}$$

Kauffman state sum

Knot diagram:

A state of diagram is a distribution of markers over all crossings.

and its states:

Totally 2^c states, where c is the number of crossings.

- Three numbers associated to a state s:
- 1. the number a(s) of **positive** markers \mathbf{X} ,
- 2. the number b(s) of *negative* markers \checkmark ,

3. the number |s| of components of the curve D_s obtained by smoothing along the markers:

$$s = \bigcup_{s \to 0} \mapsto D_s = \bigcup_{s \to 0} |s| = 2$$

Kauffman state sum

Knot diagram:

A state of diagram is a distribution of markers over all crossings.

and its states:

Totally 2^c states, where c is the number of crossings. Three numbers associated to a state s:

- 1. the number a(s) of **positive** markers \mathbf{X} ,
- 2. the number b(s) of *negative* markers \mathbf{k} ,

3. the number |s| of components of the curve D_s obtained by smoothing along the markers:

$$s = \bigcup_{s \to D_s} \mapsto D_s = \bigcup_{s \to D_s} |s| = 2$$

State Sum: $\langle D \rangle = \sum_{s \text{ state of } D} A^{a(s)-b(s)} (-A^2 - A^{-2})^{|s|}$

Hopf link,

Hopf link,

Hopf link, () $\langle \bigcirc \rangle =$ $\langle \bigcirc \rangle + \langle \bigcirc \rangle + \langle \bigcirc \rangle + \langle \bigcirc \rangle =$

Hopf link, $\left\langle \bigcirc \right\rangle =$ $\left\langle \bigcirc \right\rangle + \left\langle \bigcirc \right\rangle + \left\langle \bigcirc \right\rangle + \left\langle \bigcirc \right\rangle + \left\langle \bigcirc \right\rangle =$ $A^{2}(-A^{2} - A^{-2})^{2} + 2(-A^{2} - A^{-2}) + A^{-2}(-A^{2} - A^{-2})^{2} =$

Hopf link, $\left\langle \bigcirc \right\rangle =$ $\left\langle \bigcirc \right\rangle + \left\langle \bigcirc \right\rangle + \left\langle \bigcirc \right\rangle + \left\langle \bigcirc \right\rangle + \left\langle \bigcirc \right\rangle =$ $A^{2}(-A^{2} - A^{-2})^{2} + 2(-A^{2} - A^{-2}) + A^{-2}(-A^{2} - A^{-2})^{2} =$ $A^{6} + A^{2} + A^{-2} + A^{-6}.$

On each connected component C of D_s put $V_C \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and -1.

On each connected component C of D_s put corresponds to $V_C \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and -1. $-A^2 - A^{-2}$.

On each connected component C of D_s put corresponds to $V_C \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and -1. $-A^2 - A^{-2}$. Generators of the summands are 1_C and x_C .

On each connected component C of D_s put corresponds to $V_C \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and -1. $-A^2 - A^{-2}$. Generators of the summands are 1_C and x_C .

Make product $V_s = \bigotimes_C V_C$ of all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$.

On each connected component C of D_s put corresponds to $V_C \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and -1. $-A^2 - A^{-2}$. Generators of the summands are 1_C and x_C .

Make product $V_s = \bigotimes_C V_C$ of all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$.

corresponds to $(-A^2 - A^{-2})^{|s|}$.

On each connected component C of D_s put corresponds to $V_C \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and -1. $-A^2 - A^{-2}$. Generators of the summands are 1_C and x_C .

Make product $V_s = \otimes_C V_C$ corresponds toof all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$. $(-A^2 - A^{-2})^{|s|}$.

 V_s is generated by distributions of 1 or x over components of D_s .

On each connected component C of D_s put corresponds to $V_C \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and -1. $-A^2 - A^{-2}$. Generators of the summands are 1_C and x_C .

Make product $V_s = \otimes_C V_C$ corresponds toof all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$. $(-A^2 - A^{-2})^{|s|}$.

 V_s is generated by distributions of 1 or x over components of D_s .

A-grading: on V_C multiply the original grading by -2 and shift by a(s) - b(s).

On each connected component C of D_s put corresponds to $V_C \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and -1. $-A^2 - A^{-2}$. Generators of the summands are 1_C and x_C .

Make product $V_s = \otimes_C V_C$ corresponds toof all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$. $(-A^2 - A^{-2})^{|s|}$.

 V_s is generated by distributions of 1 or x over components of D_s .

A-grading: on V_C multiply the original grading by -2 and shift by a(s) - b(s). corresponds to $A^{a(s)-b(s)}(-A^2 - A^{-2})^{|s|}$.

On each connected component C of D_s put corresponds to $V_C \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and -1. $-A^2 - A^{-2}$. Generators of the summands are 1_C and x_C .

Make product $V_s = \otimes_C V_C$ corresponds toof all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$. $(-A^2 - A^{-2})^{|s|}$.

 V_s is generated by distributions of 1 or x over components of D_s .

A-grading: on V_C multiply the original grading by -2 and shift by a(s) - b(s). corresponds to $A^{a(s)-b(s)}(-A^2 - A^{-2})^{|s|}$.

Sum up V_s over all states s.

On each connected component C of D_s put corresponds to $V_C \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and -1. $-A^2 - A^{-2}$. Generators of the summands are 1_C and x_C .

Make product $V_s = \otimes_C V_C$ corresponds toof all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$. $(-A^2 - A^{-2})^{|s|}$.

 V_s is generated by distributions of 1 or x over components of D_s .

A-grading: on V_C multiply the original grading by -2 and shift by a(s) - b(s). corresponds to $A^{a(s)-b(s)}(-A^2 - A^{-2})^{|s|}$.

Sum up V_s over all states s. $C = \sum_s V_s$ is generated by states s enhanced with distributions of 1's and x's over all components of D_s .

On each connected component C of D_s put corresponds to $V_C \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and -1. $-A^2 - A^{-2}$. Generators of the summands are 1_C and x_C .

Make product $V_s = \otimes_C V_C$ corresponds toof all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$. $(-A^2 - A^{-2})^{|s|}$.

 V_s is generated by distributions of 1 or x over components of D_s .

A-grading: on V_C multiply the original grading by -2 and shift by a(s) - b(s). corresponds to $A^{a(s)-b(s)}(-A^2 - A^{-2})^{|s|}$.

Sum up V_s over all states s. $C = \sum_s V_s$ is generated by states s enhanced with distributions of 1's and x's over all components of D_s . corresponds to $\langle D \rangle = \sum_{s \text{ state of } D} A^{a(s)-b(s)} (-A^2 - A^{-2})^{|s|}$.

On each connected component C of D_s put corresponds to $V_C \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and -1. $-A^2 - A^{-2}$. Generators of the summands are 1_C and x_C .

Make product $V_s = \otimes_C V_C$ corresponds toof all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$. $(-A^2 - A^{-2})^{|s|}$.

 V_s is generated by distributions of 1 or x over components of D_s .

A-grading: on V_C multiply the original grading by -2 and shift by a(s) - b(s). corresponds to $A^{a(s)-b(s)}(-A^2 - A^{-2})^{|s|}$.

Sum up V_s over all states s. $C = \sum_s V_s$ is generated by states s enhanced with distributions of 1's and x's over all components of D_s . corresponds to $\langle D \rangle = \sum_{s \text{ state of } D} A^{a(s)-b(s)} (-A^2 - A^{-2})^{|s|}$.

Homological grading: skip multiplication by 2 and the shift.

On each connected component C of D_s put corresponds to $V_C \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and -1. $-A^2 - A^{-2}$. Generators of the summands are 1_C and x_C .

Make product $V_s = \otimes_C V_C$ corresponds toof all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$. $(-A^2 - A^{-2})^{|s|}$.

 V_s is generated by distributions of 1 or x over components of D_s .

A-grading: on V_C multiply the original grading by -2 and shift by a(s) - b(s). corresponds to $A^{a(s)-b(s)}(-A^2 - A^{-2})^{|s|}$.

Sum up V_s over all states s. $C = \sum_s V_s$ is generated by states s enhanced with distributions of 1's and x's over all components of D_s . corresponds to $\langle D \rangle = \sum_{s \text{ state of } D} A^{a(s)-b(s)} (-A^2 - A^{-2})^{|s|}$.

Homological grading: skip multiplication by 2 and the shift. Denote by $\mathcal{C}_{p,q}$ the subgroup of \mathcal{C} with homological grading p and second grading q.

Table of Contents

On each connected component C of D_s put corresponds to $V_C \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and -1. $-A^2 - A^{-2}$. Generators of the summands are 1_C and x_C .

Make product $V_s = \otimes_C V_C$ corresponds toof all |s| copies of $\mathbb{Z} \oplus \mathbb{Z}$. $(-A^2 - A^{-2})^{|s|}$.

 V_s is generated by distributions of 1 or x over components of D_s .

A-grading: on V_C multiply the original grading by -2 and shift by a(s) - b(s). corresponds to $A^{a(s)-b(s)}(-A^2 - A^{-2})^{|s|}$.

Sum up V_s over all states s. $C = \sum_s V_s$ is generated by states s enhanced with distributions of 1's and x's over all components of D_s . corresponds to $\langle D \rangle = \sum_{s \text{ state of } D} A^{a(s)-b(s)} (-A^2 - A^{-2})^{|s|}$.

Homological grading: skip multiplication by 2 and the shift. Denote by $C_{p,q}$ the subgroup of C with homological grading p and second grading q. $\langle D \rangle = \sum_{p,q} (-1)^p A^q \operatorname{rk} C_{p,q}$

Table of Contents

 $\partial:\mathcal{C}_{p,q} o \mathcal{C}_{p-1,q}$.

 $\partial: \mathcal{C}_{p,q} \to \mathcal{C}_{p-1,q}$. Any differential $\partial: C_{p,q} \to C_{p-1,q}$ gives homology $H_{p,q}(D)$ with $\langle D \rangle = \sum_{p,q} (-1)^p A^q \operatorname{rk} H_{p,q}(D)$.

 $\partial: \mathcal{C}_{p,q} \to \mathcal{C}_{p-1,q}$. Any differential $\partial: \mathcal{C}_{p,q} \to \mathcal{C}_{p-1,q}$ gives homology $H_{p,q}(D)$ with $\langle D \rangle = \sum_{p,q} (-1)^p A^q \operatorname{rk} H_{p,q}(D)$. Invariance of $H_{p,q}(D)$ under Reidemeister moves wanted!

 $\partial: \mathcal{C}_{p,q} \to \mathcal{C}_{p-1,q}$. Any differential $\partial: C_{p,q} \to C_{p-1,q}$ gives homology $H_{p,q}(D)$ with $\langle D \rangle = \sum_{p,q} (-1)^p A^q \operatorname{rk} H_{p,q}(D)$. Invariance of $H_{p,q}(D)$ under Reidemeister moves wanted! $\partial(S) = \sum \pm T$ with T, which differ from S by a single marker.

 $\partial: \mathcal{C}_{p,q} \to \mathcal{C}_{p-1,q}$. Any differential $\partial: C_{p,q} \to C_{p-1,q}$ gives homology $H_{p,q}(D)$ with $\langle D \rangle = \sum_{p,q} (-1)^p A^q \operatorname{rk} H_{p,q}(D)$. Invariance of $H_{p,q}(D)$ under Reidemeister moves wanted! $\partial(S) = \sum \pm T$ with T, which differ from S by a single marker. (x) (1) z_{F} (x) 1 z_{F} (x) (1) (x) $V = \mathbb{Z} \oplus \mathbb{Z}$ is a Frobenius algebra with unity 1, relation $x^2 = 0$ and comultiplication $\Delta: V \to V \otimes V: \ \Delta(1) = (1 \otimes x) + (x \otimes 1)$, $\Delta(x) = x \otimes x$. Table of Contents

Khovanov homology

Khovanov homology of tangles

- Tangles
- Orientations replace generators
- Arcs with oriented
- end points
- Differential

Khovanov homology of tangles

= Links with boundary.

- = Links with boundary.
- = A fragment of a link diagram.

- = Links with boundary.
- = A fragment of a link diagram.
- A generalization of braid.

- = Links with boundary.
- = A fragment of a link diagram.
- A generalization of braid.

- = Links with boundary.
- = A fragment of a link diagram.
- A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.

- = Links with boundary.
- = A fragment of a link diagram.
- A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.

(n, m)-tangle \mapsto a homomorphism $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n} \to (V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes m}.$

= Links with boundary.

- = A fragment of a link diagram.
- A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.

(n,m)-tangle \mapsto a homomorphism $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n} \to (V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes m}.$

The Khovanov homology was generalized by Khovanov to (n, m) -itangles with even n, m.
- = Links with boundary.
- = A fragment of a link diagram.
- A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.

(n,m)-tangle \mapsto a homomorphism $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n} \to (V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes m}.$

The Khovanov homology was generalized by Khovanov to (n, m)-itangles with even n, m as the Khovanov homology of all links obtained from the tangle by adding disjoint arcs.

= Links with boundary.

- = A fragment of a link diagram.
- A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.

(n,m)-tangle \mapsto a homomorphism $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n} \to (V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes m}.$

The Khovanov homology was generalized by Khovanov to

(n, m)-itangles with even n, m as the Khovanov homology of all links obtained from the tangle by adding disjoint arcs.

Table of Contents

= Links with boundary.

- = A fragment of a link diagram.
- A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.

(n,m)-tangle \mapsto a homomorphism $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n} \to (V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes m}.$

The Khovanov homology was generalized by Khovanov to (n, m) -itangles with even n, m.

= Links with boundary.

- = A fragment of a link diagram.
- A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.

(n,m)-tangle \mapsto a homomorphism $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n} \to (V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes m}.$

The Khovanov homology was generalized by Khovanov to (n,m) -itangles with even n,m.

 $(V\otimes \mathbb{Z}[A,A^{-1}])^{\otimes n}$ turns into a triangulated category \mathcal{K}^n

= Links with boundary.

- = A fragment of a link diagram.
- A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.

(n, m)-tangle \mapsto a homomorphism $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n} \to (V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes m}.$

The Khovanov homology was generalized by Khovanov to (n,m) -itangles with even n,m.

 $(V\otimes \mathbb{Z}[A,A^{-1}])^{\otimes n}$ turns into a triangulated category \mathcal{K}^n the chain homotopy category of graded modules over a certain ring H^n

= Links with boundary.

- = A fragment of a link diagram.
- A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.

(n, m)-tangle \mapsto a homomorphism $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n} \to (V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes m}.$

The Khovanov homology was generalized by Khovanov to (n,m) -itangles with even n,m.

 $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n}$ turns into a triangulated category \mathcal{K}^n

 $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n} \to (V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes m}$ turns into a functor from $\mathcal{K}^n \to \mathcal{K}^m$ of tensoring with a complex of (H^m, H^n) -bimodules.

= Links with boundary.

- = A fragment of a link diagram.
- A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.

(n, m)-tangle \mapsto a homomorphism $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n} \to (V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes m}.$

The Khovanov homology was generalized by Khovanov to (n,m) -itangles with even n,m.

 $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n}$ turns into a triangulated category \mathcal{K}^n

 $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n} \to (V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes m}$ turns into a functor from $\mathcal{K}^n \to \mathcal{K}^m$ of tensoring with a complex of (H^m, H^n) -bimodules.

No direct relation to the Reshetikhin-Turaev functor!

= Links with boundary.

- = A fragment of a link diagram.
- A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.

(n, m)-tangle \mapsto a homomorphism $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n} \to (V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes m}.$

The Khovanov homology was generalized by Khovanov to (n,m) -itangles with even n,m.

 $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n}$ turns into a triangulated category \mathcal{K}^n

 $(V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes n} \to (V \otimes \mathbb{Z}[A, A^{-1}])^{\otimes m}$ turns into a functor from $\mathcal{K}^n \to \mathcal{K}^m$ of tensoring with a complex of (H^m, H^n) -bimodules.

The functoriality preserved.

The key idea: relate the generators of V_C to orientations of C.

The key idea: relate the generators of V_C to orientations of C.

A generator of the Khovanov chain complex C for a link diagram D turns into a state s of D enhanced with an orientation of D_s .

The key idea: relate the generators of V_C to orientations of C.

A generator of the Khovanov chain complex C for a link diagram D turns into a state s of D enhanced with an orientation of D_s .

Counting of the A-grading can be localized.

The key idea: relate the generators of V_C to orientations of C.

A generator of the Khovanov chain complex C for a link diagram D turns into a state s of D enhanced with an orientation of D_s .

Counting of the A-grading can be localized.

For counting of the contribution of oriented embedded circles:

	\checkmark	\checkmark	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$
A	-A	$-A^{-1}$	A^{-1}

The key idea: relate the generators of V_C to orientations of C.

A generator of the Khovanov chain complex C for a link diagram D turns into a state s of D enhanced with an orientation of D_s .

Counting of the A-grading can be localized.

For counting of the contribution of oriented embedded circles:

$$\bigcirc A \\ -A$$
 $A(-A) = -A^2$

$$\underbrace{ \begin{array}{c} & & \\ &$$

The key idea: relate the generators of V_C to orientations of C.

A generator of the Khovanov chain complex C for a link diagram D turns into a state s of D enhanced with an orientation of D_s .

Counting of the A-grading can be localized.

For counting of the contribution of oriented embedded circles:

$$A_{-A} = -A^{2}$$

$$A_{-A}^{-1} = -A^{-2}$$
For
$$A_{-A}^{-1} = -A^{-3}$$

$$A_{-A}^{-1} = -A^{-3}$$

The key idea: relate the generators of V_C to orientations of C.

A generator of the Khovanov chain complex C for a link diagram D turns into a state s of D enhanced with an orientation of D_s .

Counting of the A-grading can be localized.

The key idea: relate the generators of V_C to orientations of C.

A generator of the Khovanov chain complex C for a link diagram D turns into a state s of D enhanced with an orientation of D_s .

Counting of the A-grading can be localized.

The Kauffman state sum turns into the R-matrix state sum.

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

The matrix element can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

The matrix element can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

The matrix element can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

Summands of the state sums are generators of the chain complex.

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

The matrix element can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

Summands of the state sums are generators of the chain complex.

The homology grading of a state is the degree of Gauss map of D_s evaluated as the average of local degrees at $\pm 1 \in S^1$

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

The matrix element can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

Summands of the state sums are generators of the chain complex.

The homology grading of a state is the degree of Gauss map of D_s evaluated as the average of local degrees at $\pm 1 \in S^1$

+3/2 in the picture above.

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

The matrix element can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

Summands of the state sums are generators of the chain complex.

The homology grading of a state is the degree of Gauss map of D_s evaluated as the average of local degrees at $\pm 1 \in S^1$

+3/2 in the picture above.

Т

Change of a single positive marker to negative and change of adjacent orientation so that:

Change of a single positive marker to negative and change of adjacent orientation so that:

• the A-grading would preserve,

Change of a single positive marker to negative and change of adjacent orientation so that:

- the A-grading would preserve,
- the homology grading would decrease by 1 and

Change of a single positive marker to negative and change of adjacent orientation so that:

- the A-grading would preserve,
- the homology grading would decrease by 1 and
- the orientations at the end points would preserve.

Change of a single positive marker to negative and change of adjacent orientation so that:

- the A-grading would preserve,
- the homology grading would decrease by 1 and
- the orientations at the end points would preserve.

Theorem 1. $d^2 = 0$

Change of a single positive marker to negative and change of adjacent orientation so that:

- the A-grading would preserve,
- the homology grading would decrease by 1 and
- the orientations at the end points would preserve.

Theorem 1. $d^2 = 0$

Theorem 2. An isotopy of a tangle defines homotopy equivalence of the chain complexes.

Table of Contents

Khovanov homology

Kauffman bracket Kauffman state sum Example Categorifying Kauffman state sum. Chains Differential

Khovanov homology of tangles

Tangles Orientations replace generators Arcs with oriented end points Differential