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A state of diagram is a distribution of markers over all crossings.

Knot diagram: and its states: , , , , . . .

Totally 2c states, where c is the number of crossings.
Three numbers associated to a state s :
1. the number a(s) of positive markers ,

2. the number b(s) of negative markers ,
3. the number |s| of components of the curve Ds obtained by
smoothing along the markers:

s = 7→ Ds = |s| = 2

State Sum: 〈D〉 =
∑

s state of D Aa(s)−b(s)(−A2 − A−2)|s|
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A2(−A2 − A−2)2 + 2(−A2 − A−2) + A−2(−A2 − A−2)2 =
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∂ : Cp,q → Cp−1,q . Any differential ∂ : Cp,q → Cp−1,q gives homology
Hp,q(D) with 〈D〉 =

∑

p,q(−1)pAq rk Hp,q(D) .
Invariance of Hp,q(D) under Reidemeister moves wanted!

∂(S) =
∑

±T with T , which differ from S by a single marker.

S

1 1

x 1

1 x

T

1

x

x

S

x

1

1

T
x

x

x

1

1

x

V = Z ⊕ Z is a Frobenius algebra with unity 1, relation x2 = 0 and
comultiplication ∆ : V → V ⊗ V : ∆(1) = (1 ⊗ x) + (x ⊗ 1) ,
∆(x) = x ⊗ x .
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= Links with boundary.
= A fragment of a link diagram.
A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles
by Turaev and Reshetikhin.

(n,m) -tangle 7→ a homomorphism
(V ⊗ Z[A,A−1])⊗n → (V ⊗ Z[A,A−1])⊗m.
The Khovanov homology was generalized by Khovanov to
(n,m) -itangles with even n,m .

(V ⊗ Z[A,A−1])⊗n turns into a triangulated category Kn

(V ⊗ Z[A,A−1])⊗n → (V ⊗ Z[A,A−1])⊗m turns into a functor from
Kn → Km of tensoring with a complex of (Hm, Hn) -bimodules.

The functoriality preserved.
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The key idea: relate the generators of VC to orientations of C .

A generator of the Khovanov chain complex C for a link diagram D
turns into a state s of D enhanced with an orientation of Ds .

Counting of the A-grading can be localized.

For counting of the contribution of
oriented embedded circles: A −A −A−1 A−1

−A

A

A(−A) = −A2

A−1

−A−1

A−1(−A−1) = −A−2

For : = A−1 A−1

−A−1 = −A−3
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The key idea: relate the generators of VC to orientations of C .

A generator of the Khovanov chain complex C for a link diagram D
turns into a state s of D enhanced with an orientation of Ds .

Counting of the A-grading can be localized.

A −A −A−1 A−1
Boltzmann weights

A A A−1 A−1 A −A−3 A −A

A−1 A−1 A A A−1 −A−1 A−1 −A3

The Kauffman state sum turns into the R-matrix state sum.
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A matrix element of the Reshetikhin-Turaev homomorphism is defined
by the tangle with end-points equipped with orientations.

4−1
2 = 3

2

The matrix element can be computed as a state sum over distributions of
markers at crossings and orientations of the corresponding smoothing.

Summands of the state sums are generators of the chain complex.

The homology grading of a state is the degree of Gauss map of Ds

evaluated as the average of local degrees at ±1 ∈ S1

+3/2 in the picture above.
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Change of a single positive marker to negative
and change of adjacent orientation so that:

• the A-grading would preserve,

• the homology grading would decrease by 1 and

• the orientations at the end points would preserve.

Theorem 1. d2 = 0

Theorem 2. An isotopy of a tangle defines homotopy equivalence of the
chain complexes.
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