Boundary Value Khovanov Homology

Oleg Viro

October 31, 2009

- Kauffman bracket
- Kauffman state sum
- Example
- Categorifying

Kauffman state sum.
Chains

- Differential

Khovanov homology of tangles

Khovanov homology

Kauffman bracket

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

Kauffman bracket

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$
(a Laurent polynomial in A with integer coefficients).

Kauffman bracket

$$
\langle\text { unknot }\rangle=\begin{gather*}
\langle\text { Link diagram }\rangle \in \mathbb{Z}\left[A, A^{-1}\right] \\
\langle\bigcirc\rangle
\end{gather*}
$$

Kauffman bracket

$$
\langle\text { unknot }\rangle=\begin{aligned}
&\langle\text { Link diagram }\rangle \in \mathbb{Z}\left[A, A^{-1}\right] \\
&\langle\bigcirc\rangle=-A^{2}-A^{-2}
\end{aligned}
$$

Kauffman bracket

$$
\begin{array}{lc}
\langle\text { Link diagram }\rangle \in \mathbb{Z}\left[A, A^{-1}\right] \\
\langle\text { unknot }\rangle= & \langle\bigcirc\rangle=-A^{2}-A^{-2} \\
\langle\text { Hopf link }\rangle= & \langle\bigcirc\rangle
\end{array}
$$

Kauffman bracket

$$
\begin{array}{lrl}
& \langle\text { Link diagram }\rangle & \in \mathbb{Z}\left[A, A^{-1}\right] \\
\langle\text { unknot }\rangle= & \langle O\rangle & =-A^{2}-A^{-2} \\
\langle\text { Hopf link }\rangle= & \langle Q\rangle & =A^{6}+A^{2}+A^{-2}+A^{-6}
\end{array}
$$

Kaufman bracket

$$
\begin{array}{lc}
& \langle\text { Link diagram }\rangle \\
\langle\text { unknot }\rangle= & \langle O\rangle=\mathbb{Z}\left[A, A^{-1}\right] \\
\langle\text { Hops link }\rangle= & \langle @\rangle=-A^{2}-A^{-2} \\
\langle\text { empty link }\rangle= & \langle\circlearrowleft\rangle=A^{6}+A^{2}+A^{-2}+A^{-6}
\end{array}
$$

Kauffman bracket

$$
\begin{array}{lrl}
& \langle\text { Link diagram }\rangle & \in \mathbb{Z}\left[A, A^{-1}\right] \\
\langle\text { unknot }\rangle= & \langle O\rangle & =-A^{2}-A^{-2} \\
\langle\text { Hopf link }\rangle= & \langle @\rangle & =A^{6}+A^{2}+A^{-2}+A^{-6} \\
\langle\text { empty link }\rangle= & \rangle & =1
\end{array}
$$

Kaufman bracket

$$
\begin{array}{lrl}
& \langle\text { Link diagram }\rangle & \in \mathbb{Z}\left[A, A^{-1}\right] \\
\langle\text { unknot }\rangle= & \langle O\rangle & =-A^{2}-A^{-2} \\
\langle\text { Hoof link }\rangle= & \langle Q\rangle & =A^{6}+A^{2}+A^{-2}+A^{-6} \\
\langle\text { empty link }\rangle= & \rangle & =1 \\
\langle\text { trefoil }\rangle= & \langle\Theta\rangle &
\end{array}
$$

Kauffman bracket

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{array}{lrl}
\langle\text { unknot }\rangle= & \langle O\rangle & =-A^{2}-A^{-2} \\
\left.\begin{array}{ll}
\text { Hopf link }\rangle= & \langle\Theta\rangle
\end{array}\right)=A^{6}+A^{2}+A^{-2}+A^{-6} \\
\left.\begin{array}{ll}
\text { empty link }\rangle= & \rangle \\
& =1 \\
\text { ltrefoil }\rangle= & \langle\vartheta\rangle
\end{array}\right)=A^{7}+A^{3}+A^{-1}-A^{-9}
\end{array}
$$

Kauffman bracket

$$
\begin{aligned}
& \langle\text { Link diagram }\rangle \in \mathbb{Z}\left[A, A^{-1}\right] \\
& \langle\text { unknot }\rangle= \\
& \langle\bigcirc\rangle=-A^{2}-A^{-2} \\
& \langle\text { Hope links }= \\
& \left\langle(D\rangle=A^{6}+A^{2}+A^{-2}+A^{-6}\right. \\
& \langle\text { empty links }= \\
& \rangle=1 \\
& \langle\text { trefoil }\rangle= \\
& \langle\bigoplus\rangle=A^{7}+A^{3}+A^{-1}-A^{-9} \\
& \langle\text { figure-eight knot }\rangle= \\
& \text { 〈 } 8\rangle
\end{aligned}
$$

Kauffman bracket

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$
\langle unknot $\rangle=\quad\langle\bigcirc\rangle=-A^{2}-A^{-2}$
〈Hopf link〉 $=$
$\left\langle(D\rangle=A^{6}+A^{2}+A^{-2}+A^{-6}\right.$
\langle empty link $\rangle=$
$\rangle=1$
\langle trefoil $\rangle=$
$\langle\Theta\rangle=A^{7}+A^{3}+A^{-1}-A^{-9}$
\langle figure-eight knot $\rangle=\langle\hat{\delta}\rangle=-A^{10}-A^{-10}$

Kauffman bracket

$$
\begin{aligned}
& \langle\text { Link diagram }\rangle \in \mathbb{Z}\left[A, A^{-1}\right] \\
& \text { 〈unknot〉 }= \\
& \langle\bigcirc\rangle=-A^{2}-A^{-2} \\
& \langle\text { Hopf link〉 }= \\
& \left\langle(0\rangle=A^{6}+A^{2}+A^{-2}+A^{-6}\right. \\
& \langle\text { empty link }\rangle= \\
& \rangle=1 \\
& \langle\text { trefoil }\rangle= \\
& \langle\Theta\rangle=A^{7}+A^{3}+A^{-1}-A^{-9} \\
& \langle\text { figure-eight knot }\rangle=\langle\delta\rangle=-A^{10}-A^{-10}
\end{aligned}
$$

Kauffman bracket is defined by the following properties：

Kauffman bracket

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{aligned}
& \text { 〈unknot〉 }= \\
& \langle\bigcirc\rangle=-A^{2}-A^{-2} \\
& \langle\text { Hopf link〉 }= \\
& \left\langle(0\rangle=A^{6}+A^{2}+A^{-2}+A^{-6}\right. \\
& \langle\text { empty link〉 }= \\
& \rangle=1 \\
& \langle\text { trefoil }\rangle= \\
& \langle\Theta\rangle=A^{7}+A^{3}+A^{-1}-A^{-9} \\
& \langle\text { figure-eight knot }\rangle=\langle\delta\rangle=-A^{10}-A^{-10}
\end{aligned}
$$

Kauffman bracket is defined by the following properties：
1．$\langle\bigcirc\rangle=-A^{2}-A^{-2}$ ，

Kauffman bracket

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{aligned}
& \text { 〈unknot> }= \\
& \langle\bigcirc\rangle=-A^{2}-A^{-2} \\
& \langle\text { Hopf link〉 }= \\
& \langle\text { (D) }\rangle=A^{6}+A^{2}+A^{-2}+A^{-6} \\
& \langle\text { empty link }\rangle= \\
& \rangle=1 \\
& \langle\text { trefoil }\rangle= \\
& \langle\bigoplus\rangle=A^{7}+A^{3}+A^{-1}-A^{-9} \\
& \langle\text { figure-eight knot }\rangle=\langle\delta\rangle=-A^{10}-A^{-10}
\end{aligned}
$$

Kauffman bracket is defined by the following properties：
1．$\langle\bigcirc\rangle=-A^{2}-A^{-2}$ ，
2．$\langle D \amalg \bigcirc\rangle=\left(-A^{2}-A^{-2}\right)\langle D\rangle$ ，

Kauffman bracket

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{aligned}
& \text { 〈unknot> }= \\
& \langle\bigcirc\rangle=-A^{2}-A^{-2} \\
& \langle\text { Hopf link〉 }= \\
& \langle\text { (D) }\rangle=A^{6}+A^{2}+A^{-2}+A^{-6} \\
& \langle\text { empty link }\rangle= \\
& \rangle=1 \\
& \langle\text { trefoil }\rangle= \\
& \langle\bigoplus\rangle=A^{7}+A^{3}+A^{-1}-A^{-9} \\
& \langle\text { figure-eight knot }\rangle=\langle\delta\rangle=-A^{10}-A^{-10}
\end{aligned}
$$

Kauffman bracket is defined by the following properties：
1．$\langle\bigcirc\rangle=-A^{2}-A^{-2}$ ，
2．$\langle D \amalg \bigcirc\rangle=\left(-A^{2}-A^{-2}\right)\langle D\rangle$ ，
3．$\langle X\rangle=A\langle \rangle\langle \rangle+A^{-1}\langle\bigwedge\rangle$（Kauffman Skein Relation）．

Kauffman bracket

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{aligned}
& \text { 〈unknot> }= \\
& \langle\bigcirc\rangle=-A^{2}-A^{-2} \\
& \langle\text { Hopf link〉 }= \\
& \langle\text { (D) }\rangle=A^{6}+A^{2}+A^{-2}+A^{-6} \\
& \langle\text { empty link }\rangle= \\
& \rangle=1 \\
& \langle\text { trefoil }\rangle= \\
& \langle\bigoplus\rangle=A^{7}+A^{3}+A^{-1}-A^{-9} \\
& \langle\text { figure-eight knot }\rangle=\langle\delta\rangle=-A^{10}-A^{-10}
\end{aligned}
$$

Kauffman bracket is defined by the following properties：
1．$\langle\bigcirc\rangle=-A^{2}-A^{-2}$ ，
2．$\langle D \amalg \bigcirc\rangle=\left(-A^{2}-A^{-2}\right)\langle D\rangle$ ，
3．$\langle X\rangle=A\langle \rangle\langle \rangle+A^{-1}\langle\bigwedge\rangle$（Kauffman Skein Relation）．
Uniqueness is obvious．

Kauffman bracket

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\begin{aligned}
& \text { 〈unknot> }= \\
& \langle\bigcirc\rangle=-A^{2}-A^{-2} \\
& \langle\text { Hopf link〉 }= \\
& \langle\text { (D) }\rangle=A^{6}+A^{2}+A^{-2}+A^{-6} \\
& \langle\text { empty link }\rangle= \\
& \rangle=1 \\
& \langle\text { trefoil }\rangle= \\
& \langle\Theta\rangle=A^{7}+A^{3}+A^{-1}-A^{-9} \\
& \langle\text { figure-eight knot }\rangle=\langle\delta\rangle=-A^{10}-A^{-10}
\end{aligned}
$$

Kauffman bracket is defined by the following properties：
1．$\langle\bigcirc\rangle=-A^{2}-A^{-2}$ ，
2．$\langle D \amalg \bigcirc\rangle=\left(-A^{2}-A^{-2}\right)\langle D\rangle$ ，
3．$\langle X\rangle=A\langle \rangle\langle \rangle+A^{-1}\langle\bigwedge\rangle$（Kauffman Skein Relation）．
Uniqueness is obvious．Invariant under Reidemeister 2 and 3.

Kauffman bracket

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\langle\text { unknot }\rangle=
$$

$$
\langle\bigcirc\rangle=-A^{2}-A^{-2}
$$

$$
\langle\text { Hopf link }\rangle=
$$

$$
\langle @\rangle=A^{6}+A^{2}+A^{-2}+A^{-6}
$$

$$
\langle\text { empty link }\rangle=
$$

$$
\rangle=1
$$

$$
\langle\text { trefoil }\rangle=
$$

$$
\langle\vartheta\rangle=A^{7}+A^{3}+A^{-1}-A^{-9}
$$

$$
\langle\text { figure-eight knot }\rangle=\langle\delta\rangle=-A^{10}-A^{-10}
$$

Kauffman bracket is defined by the following properties:

1. $\langle\bigcirc\rangle=-A^{2}-A^{-2}$,
2. $\langle D \amalg \bigcirc\rangle=\left(-A^{2}-A^{-2}\right)\langle D\rangle$,
3. $\langle X\rangle=A\langle \rangle\langle \rangle+A^{-1}\langle\bigwedge\rangle$ (Kauffman Skein Relation).

Uniqueness is obvious. Invariant under Reidemeister 2 and 3.
Under Reidemeister 1 it multiplies by $-A^{ \pm 3}$.

Kauffman bracket

\langle Link diagram $\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$

$$
\langle\text { unknot }\rangle=
$$

$$
\langle\bigcirc\rangle=-A^{2}-A^{-2}
$$

$$
\langle\text { Hopf link }\rangle=
$$

$$
\langle @\rangle=A^{6}+A^{2}+A^{-2}+A^{-6}
$$

$$
\langle\text { empty link }\rangle=
$$

$$
\rangle=1
$$

$$
\langle\text { trefoil }\rangle=
$$

$$
\langle\vartheta\rangle=A^{7}+A^{3}+A^{-1}-A^{-9}
$$

$$
\langle\text { figure-eight knot }\rangle=\langle\delta\rangle=-A^{10}-A^{-10}
$$

Kauffman bracket is defined by the following properties:

1. $\langle\bigcirc\rangle=-A^{2}-A^{-2}$,
2. $\langle D \amalg \bigcirc\rangle=\left(-A^{2}-A^{-2}\right)\langle D\rangle$,
3. $\langle X\rangle=A\langle \rangle\langle \rangle+A^{-1}\langle\bigwedge\rangle$ (Kauffman Skein Relation).

Uniqueness is obvious. Invariant under Reidemeister 2 and 3.
Under Reidemeister 1 it multiplies by $-A^{ \pm 3}$.
$(-A)^{-3 w(D)}\langle D\rangle=\operatorname{Jones}_{D}\left(-A^{2}\right)$

Kauffman state sum

A state of diagram is a distribution of markers over all crossings.

Kauffman state sum

A state of diagram is a distribution of markers over all crossings. Knot diagram:

Kauffman state sum

A state of diagram is a distribution of markers over all crossings.
Knot diagram:

and its states:

Kauffman state sum

A state of diagram is a distribution of markers over all crossings.
Knot diagram:

and its states:

Kauffman state sum

A state of diagram is a distribution of markers over all crossings.
Knot diagram:

and its states:

Kauffman state sum

A state of diagram is a distribution of markers over all crossings.
Knot diagram: $\overparen{\Omega}$
and its states:

Kauffman state sum

A state of diagram is a distribution of markers over all crossings. Knot diagram: and its states:

Kauffman state sum

A state of diagram is a distribution of markers over all crossings. Knot diagram: and its states:

Kauffman state sum

A state of diagram is a distribution of markers over all crossings.

and its states

Totally 2^{c} states, where c is the number of crossings.

Kauffman state sum

A state of diagram is a distribution of markers over all crossings.

and its states:

Totally 2^{c} states, where c is the number of crossings. Three numbers associated to a state s :

Kauffman state sum

A state of diagram is a distribution of markers over all crossings.

and its states

Totally 2^{c} states, where c is the number of crossings.
Three numbers associated to a state s :

1. the number $a(s)$ of positive markers \times

Kauffman state sum

A state of diagram is a distribution of markers over all crossings.

and its states:

Totally 2^{c} states, where c is the number of crossings.
Three numbers associated to a state s :

1. the number $a(s)$ of positive markers 1%
2. the number $b(s)$ of negative markers $\%$,

Kauffman state sum

A state of diagram is a distribution of markers over all crossings.
Knot diagram:

and its states:

Totally 2^{c} states, where c is the number of crossings.
Three numbers associated to a state s :

1. the number $a(s)$ of positive markers 10 ,
2. the number $b(s)$ of negative markers $0 / \mathrm{o}$,
3. the number $|s|$ of components of the curve D_{s} obtained by smoothing along the markers:

Kauffman state sum

A state of diagram is a distribution of markers over all crossings.
Knot diagram:

and its states:

Totally 2^{c} states, where c is the number of crossings.
Three numbers associated to a state s :

1. the number $a(s)$ of positive markers 10 ,
2. the number $b(s)$ of negative markers $\partial /$
3. the number $|s|$ of components of the curve D_{s} obtained by smoothing along the markers:

Kauffman state sum

A state of diagram is a distribution of markers over all crossings.
Knot diagram:

and its states:

Totally 2^{c} states, where c is the number of crossings.
Three numbers associated to a state s :

1. the number $a(s)$ of positive markers 10 ,
2. the number $b(s)$ of negative markers $\partial /$
3. the number $|s|$ of components of the curve D_{s} obtained by smoothing along the markers:
$s=\left(D_{s}=\frac{0}{5}\right.$

Kauffman state sum

A state of diagram is a distribution of markers over all crossings.
Knot diagram:

and its states:

Totally 2^{c} states, where c is the number of crossings.
Three numbers associated to a state s :

1. the number $a(s)$ of positive markers 10 ,
2. the number $b(s)$ of negative markers $\partial /$
3. the number $|s|$ of components of the curve D_{s} obtained by smoothing along the markers:
$s=\left(D_{s}=0\right.$

Kauffman state sum

A state of diagram is a distribution of markers over all crossings.
Knot diagram:

and its states:

Totally 2^{c} states, where c is the number of crossings.
Three numbers associated to a state s :

1. the number $a(s)$ of positive markers 10 ,
2. the number $b(s)$ of negative markers $\%$,
3. the number $|s|$ of components of the curve D_{s} obtained by smoothing along the markers:
$s=\left(D_{s}=\right.$
State Sum: $\langle D\rangle=\sum_{s \text { state of } D} A^{a(s)-b(s)}\left(-A^{2}-A^{-2}\right)^{|s|}$

Example

Hopf link,

Example

Hopf link,

Example
Hops link,
$\langle Q\rangle=$

$$
\langle Q\rangle+\langle Q\rangle+\langle Q\rangle+\langle Q\rangle=
$$

Example

Hopf link,

〈Q $\rangle=$
$\langle(0)\rangle+\langle(0)\rangle+\langle(\square)\rangle=$
$A^{2}\left(-A^{2}-A^{-2}\right)^{2}+2\left(-A^{2}-A^{-2}\right)+A^{-2}\left(-A^{2}-A^{-2}\right)^{2}=$

Example

Hopf link,

〈Q $\rangle=$
$\langle(0)\rangle+\langle(0)\rangle+\langle(\square)\rangle=$
$A^{2}\left(-A^{2}-A^{-2}\right)^{2}+2\left(-A^{2}-A^{-2}\right)+A^{-2}\left(-A^{2}-A^{-2}\right)^{2}=$ $A^{6}+A^{2}+A^{-2}+A^{-6}$.

Categorifying Kauffman state sum. Chains

Categorifying Kauffman state sum. Chains

On each connected component C of D_{s} put
$V_{C} \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and -1 .

Categorifying Kauffman state sum. Chains

On each connected component C of D_{s} put
corresponds to
$V_{C} \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and $-1 . \quad-A^{2}-A^{-2}$.

Categorifying Kauffman state sum. Chains

On each connected component C of D_{s} put
corresponds to $V_{C} \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and $-1 . \quad-A^{2}-A^{-2}$. Generators of the summands are 1_{C} and x_{C}.

Categorifying Kauffman state sum. Chains

On each connected component C of D_{s} put corresponds to $V_{C} \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and $-1 . \quad-A^{2}-A^{-2}$. Generators of the summands are 1_{C} and x_{C}.

Make product $V_{s}=\otimes_{C} V_{C}$ of all $|s|$ copies of $\mathbb{Z} \oplus \mathbb{Z}$.

Categorifying Kauffman state sum. Chains

On each connected component C of D_{s} put
corresponds to $V_{C} \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and $-1 . \quad-A^{2}-A^{-2}$. Generators of the summands are 1_{C} and x_{C}.

Make product $V_{s}=\otimes_{C} V_{C}$ of all $|s|$ copies of $\mathbb{Z} \oplus \mathbb{Z}$.
corresponds to $\left(-A^{2}-A^{-2}\right)^{|s|}$.

Categorifying Kauffman state sum. Chains

On each connected component C of D_{s} put
corresponds to $V_{C} \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and $-1 . \quad-A^{2}-A^{-2}$. Generators of the summands are 1_{C} and x_{C}.

Make product $V_{s}=\otimes_{C} V_{C}$
corresponds to of all $|s|$ copies of $\mathbb{Z} \oplus \mathbb{Z}$.

$$
\left(-A^{2}-A^{-2}\right)^{|s|} .
$$

V_{s} is generated by distributions of 1 or x over components of D_{s}.

Categorifying Kauffman state sum. Chains

On each connected component C of D_{s} put
corresponds to $V_{C} \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and $-1 . \quad-A^{2}-A^{-2}$. Generators of the summands are 1_{C} and x_{C}.

Make product $V_{s}=\otimes_{C} V_{C}$
corresponds to of all $|s|$ copies of $\mathbb{Z} \oplus \mathbb{Z}$. $\left(-A^{2}-A^{-2}\right)^{|s|}$.
V_{s} is generated by distributions of 1 or x over components of D_{s}.
A-grading: on V_{C} multiply the original grading by -2 and shift by $a(s)-b(s)$.

Categorifying Kauffman state sum. Chains

On each connected component C of D_{s} put
corresponds to $V_{C} \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and $-1 . \quad-A^{2}-A^{-2}$. Generators of the summands are 1_{C} and x_{C}.

Make product $V_{s}=\otimes_{C} V_{C}$
corresponds to
of all $|s|$ copies of $\mathbb{Z} \oplus \mathbb{Z}$. $\left(-A^{2}-A^{-2}\right)^{|s|}$.
V_{s} is generated by distributions of 1 or x over components of D_{s}.
A-grading: on V_{C} multiply the original grading by -2 and shift by $a(s)-b(s)$. corresponds to $A^{a(s)-b(s)}\left(-A^{2}-A^{-2}\right)^{|s|}$.

Categorifying Kauffman state sum. Chains

On each connected component C of D_{s} put
corresponds to $V_{C} \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and $-1 . \quad-A^{2}-A^{-2}$. Generators of the summands are 1_{C} and x_{C}.

Make product $V_{s}=\otimes_{C} V_{C}$
corresponds to
of all $|s|$ copies of $\mathbb{Z} \oplus \mathbb{Z}$. $\left(-A^{2}-A^{-2}\right)^{|s|}$.
V_{s} is generated by distributions of 1 or x over components of D_{s}.
A-grading: on V_{C} multiply the original grading by -2 and shift by $a(s)-b(s)$. corresponds to $A^{a(s)-b(s)}\left(-A^{2}-A^{-2}\right)^{|s|}$.

Sum up V_{s} over all states s.

Categorifying Kauffman state sum. Chains

On each connected component C of D_{s} put
corresponds to $V_{C} \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and $-1 . \quad-A^{2}-A^{-2}$. Generators of the summands are 1_{C} and x_{C}.

Make product $V_{s}=\otimes_{C} V_{C}$
corresponds to
of all $|s|$ copies of $\mathbb{Z} \oplus \mathbb{Z}$. $\left(-A^{2}-A^{-2}\right)^{|s|}$.
V_{s} is generated by distributions of 1 or x over components of D_{s}.
A-grading: on V_{C} multiply the original grading by -2 and shift by $a(s)-b(s)$. corresponds to $A^{a(s)-b(s)}\left(-A^{2}-A^{-2}\right)^{|s|}$.

Sum up V_{s} over all states $s . \mathcal{C}=\sum_{s} V_{s}$ is generated by states s enhanced with distributions of 1 's and x 's over all components of D_{s}.

Categorifying Kauffman state sum. Chains

On each connected component C of D_{s} put corresponds to $V_{C} \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and $-1 . \quad-A^{2}-A^{-2}$. Generators of the summands are 1_{C} and x_{C}.

Make product $V_{s}=\otimes_{C} V_{C}$
corresponds to
of all $|s|$ copies of $\mathbb{Z} \oplus \mathbb{Z}$. $\left(-A^{2}-A^{-2}\right)^{|s|}$.
V_{s} is generated by distributions of 1 or x over components of D_{s}.
A-grading: on V_{C} multiply the original grading by -2 and shift by $a(s)-b(s)$. corresponds to $A^{a(s)-b(s)}\left(-A^{2}-A^{-2}\right)^{|s|}$.

Sum up V_{s} over all states $s . \mathcal{C}=\sum_{s} V_{s}$ is generated by states s enhanced with distributions of 1 's and x 's over all components of D_{s}. corresponds to $\langle D\rangle=\sum_{s \text { state of } D} A^{a(s)-b(s)}\left(-A^{2}-A^{-2}\right)^{|s|}$.

Categorifying Kauffman state sum. Chains

On each connected component C of D_{s} put corresponds to $V_{C} \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and $-1 . \quad-A^{2}-A^{-2}$. Generators of the summands are 1_{C} and x_{C}.

Make product $V_{s}=\otimes_{C} V_{C}$
corresponds to
of all $|s|$ copies of $\mathbb{Z} \oplus \mathbb{Z}$. $\left(-A^{2}-A^{-2}\right)^{|s|}$.
V_{s} is generated by distributions of 1 or x over components of D_{s}.
A-grading: on V_{C} multiply the original grading by -2 and shift by $a(s)-b(s)$. corresponds to $A^{a(s)-b(s)}\left(-A^{2}-A^{-2}\right)^{|s|}$.

Sum up V_{s} over all states $s . \mathcal{C}=\sum_{s} V_{s}$ is generated by states s enhanced with distributions of 1 's and x 's over all components of D_{s}.

$$
\text { corresponds to }\langle D\rangle=\sum_{s \text { state of } D} A^{a(s)-b(s)}\left(-A^{2}-A^{-2}\right)^{|s|} \text {. }
$$

Homological grading: skip multiplication by 2 and the shift.

Categorifying Kauffman state sum. Chains

On each connected component C of D_{s} put corresponds to $V_{C} \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and $-1 . \quad-A^{2}-A^{-2}$. Generators of the summands are 1_{C} and x_{C}.

Make product $V_{s}=\otimes_{C} V_{C}$
corresponds to
of all $|s|$ copies of $\mathbb{Z} \oplus \mathbb{Z}$. $\left(-A^{2}-A^{-2}\right)^{|s|}$.
V_{s} is generated by distributions of 1 or x over components of D_{s}.
A-grading: on V_{C} multiply the original grading by -2 and shift by $a(s)-b(s)$. corresponds to $A^{a(s)-b(s)}\left(-A^{2}-A^{-2}\right)^{|s|}$.

Sum up V_{s} over all states $s . \mathcal{C}=\sum_{s} V_{s}$ is generated by states s enhanced with distributions of 1 's and x 's over all components of D_{s}.

$$
\text { corresponds to }\langle D\rangle=\sum_{s \text { state of } D} A^{a(s)-b(s)}\left(-A^{2}-A^{-2}\right)^{|s|} \text {. }
$$

Homological grading: skip multiplication by 2 and the shift.
Denote by $\mathcal{C}_{p, q}$ the subgroup of \mathcal{C} with homological grading p and second grading q.

Categorifying Kauffman state sum. Chains

On each connected component C of D_{s} put
corresponds to $V_{C} \cong \mathbb{Z} \oplus \mathbb{Z}$ with the summands of grades 1 and $-1 . \quad-A^{2}-A^{-2}$. Generators of the summands are 1_{C} and x_{C}.

Make product $V_{s}=\otimes_{C} V_{C}$
corresponds to
of all $|s|$ copies of $\mathbb{Z} \oplus \mathbb{Z}$. $\left(-A^{2}-A^{-2}\right)^{|s|}$.
V_{s} is generated by distributions of 1 or x over components of D_{s}.
A-grading: on V_{C} multiply the original grading by -2 and shift by $a(s)-b(s)$. corresponds to $A^{a(s)-b(s)}\left(-A^{2}-A^{-2}\right)^{|s|}$.

Sum up V_{s} over all states $s . \mathcal{C}=\sum_{s} V_{s}$ is generated by states s enhanced with distributions of 1 's and x 's over all components of D_{s}.

$$
\text { corresponds to }\langle D\rangle=\sum_{s \text { state of } D} A^{a(s)-b(s)}\left(-A^{2}-A^{-2}\right)^{|s|} \text {. }
$$

Homological grading: skip multiplication by 2 and the shift.
Denote by $\mathcal{C}_{p, q}$ the subgroup of \mathcal{C} with homological grading p and second grading q.

$$
\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q} \mathrm{rk} \mathcal{C}_{p, q}
$$

Differential

$$
\partial: \mathcal{C}_{p, q} \rightarrow \mathcal{C}_{p-1, q} .
$$

Differential

$\partial: \mathcal{C}_{p, q} \rightarrow \mathcal{C}_{p-1, q}$. Any differential $\partial: C_{p, q} \rightarrow C_{p-1, q}$ gives homology $H_{p, q}(D)$ with $\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q}$ rk $H_{p, q}(D)$.

Differential

$\partial: \mathcal{C}_{p, q} \rightarrow \mathcal{C}_{p-1, q}$. Any differential $\partial: C_{p, q} \rightarrow C_{p-1, q}$ gives homology $H_{p, q}(D)$ with $\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q}$ rk $H_{p, q}(D)$.
Invariance of $H_{p, q}(D)$ under Reidemeister moves wanted!

Differential

$\partial: \mathcal{C}_{p, q} \rightarrow \mathcal{C}_{p-1, q}$. Any differential $\partial: C_{p, q} \rightarrow C_{p-1, q}$ gives homology $H_{p, q}(D)$ with $\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q}$ rk $H_{p, q}(D)$.
Invariance of $H_{p, q}(D)$ under Reidemeister moves wanted!
$\partial(S)=\sum \pm T$ with T, which differ from S by a single marker.

Differential

$\partial: \mathcal{C}_{p, q} \rightarrow \mathcal{C}_{p-1, q}$. Any differential $\partial: C_{p, q} \rightarrow C_{p-1, q}$ gives homology $H_{p, q}(D)$ with $\langle D\rangle=\sum_{p, q}(-1)^{p} A^{q}$ rk $H_{p, q}(D)$.
Invariance of $H_{p, q}(D)$ under Reidemeister moves wanted! $\partial(S)=\sum \pm T$ with T, which differ from S by a single marker.

$V=\mathbb{Z} \oplus \mathbb{Z}$ is a Frobenius algebra with unity 1 , relation $x^{2}=0$ and comultiplication $\Delta: V \rightarrow V \otimes V: \Delta(1)=(1 \otimes x)+(x \otimes 1)$, $\Delta(x)=x \otimes x$.

Khovanov homology of tangles

Table of Contents

Tangles

$=$ Links with boundary.

Tangles

= Links with boundary.
= A fragment of a link diagram.

Tangles

= Links with boundary.
= A fragment of a link diagram.
A generalization of braid.

Tangles

= Links with boundary.
= A fragment of a link diagram.
A generalization of braid.

Tangles

= Links with boundary.
= A fragment of a link diagram.
A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.

Tangles

= Links with boundary.
= A fragment of a link diagram.
A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.
(n, m) -tangle \mapsto a homomorphism
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n} \rightarrow\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes m}$.

Tangles

= Links with boundary.
= A fragment of a link diagram.
A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.
(n, m) -tangle \mapsto a homomorphism
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n} \rightarrow\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes m}$.
The Khovanov homology was generalized by Khovanov to (n, m) -itangles with even n, m.

Tangles

= Links with boundary.
= A fragment of a link diagram.
A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.
(n, m) -tangle \mapsto a homomorphism
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n} \rightarrow\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes m}$.
The Khovanov homology was generalized by Khovanov to
(n, m) -itangles with even n, m as the Khovanov homology of all links obtained from the tangle by adding disjoint arcs.

Tangles

= Links with boundary.
= A fragment of a link diagram.
A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.
(n, m) -tangle \mapsto a homomorphism $\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n} \rightarrow\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes m}$.
The Khovanov homology was generalized by Khovanov to (n, m) -itangles with even n, m as the Khovanov homology of all links obtained from the tangle by adding disjoint arcs.

Tangles

= Links with boundary.
= A fragment of a link diagram.
A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.
(n, m) -tangle \mapsto a homomorphism
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n} \rightarrow\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes m}$.
The Khovanov homology was generalized by Khovanov to (n, m) -itangles with even n, m.

Tangles

= Links with boundary.
= A fragment of a link diagram.
A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.
(n, m) -tangle \mapsto a homomorphism
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n} \rightarrow\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes m}$.
The Khovanov homology was generalized by Khovanov to (n, m)-itangles with even n, m.
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n}$ turns into a triangulated category \mathcal{K}^{n}

Tangles

= Links with boundary.
= A fragment of a link diagram.
A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.
(n, m) -tangle \mapsto a homomorphism
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n} \rightarrow\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes m}$.
The Khovanov homology was generalized by Khovanov to (n, m)-itangles with even n, m.
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n}$ turns into a triangulated category \mathcal{K}^{n}
the chain homotopy category of graded modules over a certain ring H^{n}

Tangles

= Links with boundary.
= A fragment of a link diagram.
A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.
(n, m) -tangle \mapsto a homomorphism
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n} \rightarrow\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes m}$.
The Khovanov homology was generalized by Khovanov to (n, m)-itangles with even n, m.
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n}$ turns into a triangulated category \mathcal{K}^{n}
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n} \rightarrow\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes m}$ turns into a functor from $\mathcal{K}^{n} \rightarrow \mathcal{K}^{m}$ of tensoring with a complex of $\left(H^{m}, H^{n}\right)$-bimodules.

Tangles

= Links with boundary.
= A fragment of a link diagram.
A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.
(n, m) -tangle \mapsto a homomorphism
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n} \rightarrow\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes m}$.
The Khovanov homology was generalized by Khovanov to (n, m)-itangles with even n, m.
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n}$ turns into a triangulated category \mathcal{K}^{n}
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n} \rightarrow\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes m}$ turns into a functor from $\mathcal{K}^{n} \rightarrow \mathcal{K}^{m}$ of tensoring with a complex of $\left(H^{m}, H^{n}\right)$-bimodules.

No direct relation to the Reshetikhin-Turaev functor!

Tangles

= Links with boundary.
= A fragment of a link diagram.
A generalization of braid.

The Jones polynomial and Kauffman bracket was generalized to tangles by Turaev and Reshetikhin.
(n, m) -tangle \mapsto a homomorphism
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n} \rightarrow\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes m}$.
The Khovanov homology was generalized by Khovanov to (n, m)-itangles with even n, m.
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n}$ turns into a triangulated category \mathcal{K}^{n}
$\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes n} \rightarrow\left(V \otimes \mathbb{Z}\left[A, A^{-1}\right]\right)^{\otimes m}$ turns into a functor from $\mathcal{K}^{n} \rightarrow \mathcal{K}^{m}$ of tensoring with a complex of $\left(H^{m}, H^{n}\right)$-bimodules.

The functoriality preserved.

Orientations replace generators

The key idea: relate the generators of V_{C} to orientations of C.

Orientations replace generators

The key idea: relate the generators of V_{C} to orientations of C.
A generator of the Khovanov chain complex \mathcal{C} for a link diagram D turns into a state s of D enhanced with an orientation of D_{s}.

Orientations replace generators

The key idea: relate the generators of V_{C} to orientations of C.
A generator of the Khovanov chain complex \mathcal{C} for a link diagram D turns into a state s of D enhanced with an orientation of D_{s}.

Counting of the A-grading can be localized.

Orientations replace generators

The key idea: relate the generators of V_{C} to orientations of C.
A generator of the Khovanov chain complex \mathcal{C} for a link diagram D turns into a state s of D enhanced with an orientation of D_{s}.

Counting of the A-grading can be localized.
For counting of the contribution of oriented embedded circles:

Orientations replace generators

The key idea: relate the generators of V_{C} to orientations of C.
A generator of the Khovanov chain complex \mathcal{C} for a link diagram D turns into a state s of D enhanced with an orientation of D_{s}.

Counting of the A-grading can be localized.
For counting of the contribution of oriented embedded circles:

Orientations replace generators

The key idea: relate the generators of V_{C} to orientations of C.
A generator of the Khovanov chain complex \mathcal{C} for a link diagram D turns into a state s of D enhanced with an orientation of D_{s}.

Counting of the A-grading can be localized.
For counting of the contribution of oriented embedded circles:

$\boldsymbol{\aleph}$	\checkmark	か	\downarrow
A	$-A$	$-A^{-1}$	A^{-1}

$\overbrace{-A}^{A} A(-A)=-A^{2}$

For $\frac{R}{7}$

Orientations replace generators

The key idea：relate the generators of V_{C} to orientations of C ．
A generator of the Khovanov chain complex \mathcal{C} for a link diagram D turns into a state s of D enhanced with an orientation of D_{s} ．

Counting of the A－grading can be localized．

$\boldsymbol{\aleph}$	\checkmark	$\boldsymbol{\aleph}$	\downarrow
A	$-A$	$-A^{-1}$	A^{-1}

Boltzmann weights

$\bar{\pi}$	1%		1R				
A	A	A^{-}	A^{-1}	A	$-A^{-3}$	A	－A
π	20	入i	Kス゚	π	π	π	－
A^{-1}	A^{-1}	A	A	A^{-1}	$-A^{-1}$	A^{-1}	－

Orientations replace generators

The key idea: relate the generators of V_{C} to orientations of C.
A generator of the Khovanov chain complex \mathcal{C} for a link diagram D turns into a state s of D enhanced with an orientation of D_{s}.

Counting of the A-grading can be localized.

$\boldsymbol{\aleph}$	\checkmark	$\boldsymbol{\aleph}$	\downarrow
A	$-A$	$-A^{-1}$	A^{-1}

Boltzmann weights

	YK		K				
A	A	A^{-1}	A^{-1}	A	$-A^{-3}$	A	-
π	人)		K	\pm		KK	
A^{-1}	A^{-1}	A	A	A^{-1}	$-A^{-1}$	A^{-1}	-

The Kauffman state sum turns into the R-matrix state sum.

Arcs with oriented end points

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

Arcs with oriented end points

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

Arcs with oriented end points

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

The matrix element can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

Arcs with oriented end points

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

The matrix element can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

Arcs with oriented end points

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

The matrix element can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

Summands of the state sums are generators of the chain complex.

Arcs with oriented end points

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

The matrix element can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

Summands of the state sums are generators of the chain complex.
The homology grading of a state is the degree of Gauss map of D_{s} evaluated as the average of local degrees at $\pm 1 \in S^{1}$

Arcs with oriented end points

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

The matrix element can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

Summands of the state sums are generators of the chain complex.
The homology grading of a state is the degree of Gauss map of D_{s} evaluated as the average of local degrees at $\pm 1 \in S^{1}$
$+3 / 2$ in the picture above.

Arcs with oriented end points

A matrix element of the Reshetikhin-Turaev homomorphism is defined by the tangle with end-points equipped with orientations.

The matrix element can be computed as a state sum over distributions of markers at crossings and orientations of the corresponding smoothing.

Summands of the state sums are generators of the chain complex.
The homology grading of a state is the degree of Gauss map of D_{s} evaluated as the average of local degrees at $\pm 1 \in S^{1}$
$+3 / 2$ in the picture above.

Differential

Differential

Change of a single positive marker to negative and change of adjacent orientation so that:

Differential

Change of a single positive marker to negative and change of adjacent orientation so that:

- the A-grading would preserve,

Differential

Change of a single positive marker to negative and change of adjacent orientation so that:

- the A-grading would preserve,
- the homology grading would decrease by 1 and

Differential

Change of a single positive marker to negative and change of adjacent orientation so that:

- the A-grading would preserve,
- the homology grading would decrease by 1 and
- the orientations at the end points would preserve.

Differential

Change of a single positive marker to negative and change of adjacent orientation so that:

- the A-grading would preserve,
- the homology grading would decrease by 1 and
- the orientations at the end points would preserve.

Theorem 1. $d^{2}=0$

Differential

Change of a single positive marker to negative and change of adjacent orientation so that:

- the A-grading would preserve,
- the homology grading would decrease by 1 and
- the orientations at the end points would preserve.

Theorem 1. $d^{2}=0$
Theorem 2. An isotopy of a tangle defines homotopy equivalence of the chain complexes.

Table of Contents

Khovanov homology

Kauffman bracket
Kauffman state sum
Example
Categorifying Kauffman state sum. Chains
Differential
Khovanov homology of tangles
Tangles
Orientations replace generators
Arcs with oriented end points
Differential

