SIGNATURES OF LINKS

OLEG VIRO
Uppsala University, Uppsala, Sweden POMI, St. Petersburg, Russia

This paper is an English translation of my note [7] published in 1977.
Let $L=\left(S^{2 n-1}, l\right)$ be an oriented link (i.e., a pair in which l is an oriented smooth closed $(2 n-3)$-submanifold of the sphere $\left.S^{2 n-1}\right)$ and let ζ be a complex number with $|\zeta|=1$. Let A be an oriented smooth compact connected submanifold of $D^{2 n}$ with $\partial A=l$. Let \mathbb{C}_{ζ} denote the local coefficient system on $D^{2 n} \backslash A$ with fiber \mathbb{C} defined by the homomorphism $\pi_{1}\left(D^{2 n} \backslash A\right) \rightarrow U(1)$ mapping classes of meridian loops to ζ.

Denote by $\sigma_{\zeta}(L)$ the signature of the Hermitian intersection form

$$
\begin{equation*}
H_{n}\left(D^{2 n} \backslash A ; \mathbb{C}_{\zeta}\right) \times H_{n}\left(D^{2 n} \backslash A ; \mathbb{C}_{\zeta}\right) \rightarrow \mathbb{C} \tag{1}
\end{equation*}
$$

for even n and the signature of the Hermitian form obtained from the skewHermitian intersection form (1) by multiplying by $\zeta-\bar{\zeta}$. The number $\sigma_{\zeta}(L)$ depends only on L and ζ.

If V is a Seifert matrix of L then $\sigma_{\zeta}(L)$ is equal to the signature of the Hermitian matrix $(1-\zeta) V+(1-\bar{\zeta}) V^{\top}$ for even n and $\frac{\zeta}{1+\zeta} V+\frac{\bar{\zeta}}{1+\bar{\zeta}} V^{\top}$ for odd n (here ${ }^{\top}$ denotes transposition).

For even n the signature of the m-sheeted cyclic covering space of $D^{2 n}$ branched over A is equal to $\sum_{\zeta^{m}=1} \sigma_{\zeta}(L)$.

The following theorem generalizes the results by Murasugi [3], Tristram [5], the author [8] and Kauffman and Taylor [1].

Theorem 1. If ζ is a root of an integer polynomial f irreducible over \mathbb{Z} with $f(1)$ divisibe by a prime number p then for any integer r with $0 \leq r \leq \frac{n}{2}$

$$
\begin{align*}
\left|\sigma_{\zeta}(L)\right|+ & \sum_{s=0}^{2 r}(-1)^{s} \operatorname{dim}_{\mathbb{C}} H_{r-1-s}\left(S^{2 n-1} \backslash l ; \mathbb{C}_{\zeta}\right) \tag{2}\\
& \leq \sum_{s=0}^{2 r}(-1)^{s}\left[\operatorname{dim}_{\mathbb{Z}_{p}} H_{n-2-s}\left(A ; \mathbb{Z}_{p}\right)+\operatorname{dim}_{\mathbb{Z}_{p}} H_{n-1-s}\left(A ; \mathbb{Z}_{p}\right)\right]
\end{align*}
$$

and for any oriented smooth closed submanifold Σ of $S^{2 n}$ transversally intersecting $S^{2 n-1}$ in l

$$
\begin{align*}
& \left|\sigma_{\zeta}(L)\right| \leq \frac{1}{2} \operatorname{dim}_{\mathbb{Z}_{p}} H_{n-1}\left(\Sigma ; \mathbb{Z}_{p}\right) \tag{3}\\
& \quad+1-\sum_{s=0}^{2 r-1}(-1)^{s} \operatorname{dim}_{\mathbb{Z}_{p}} H_{s}\left(\Sigma ; \mathbb{Z}_{p}\right)+\sum_{s=0}^{2 r}(-1)^{s} \operatorname{dim}_{\mathbb{Z}_{p}} H_{s}\left(\Sigma, l ; \mathbb{Z}_{p}\right) \\
& \\
& \quad+\sum_{s=0}^{2 r}(-1)^{s} \operatorname{dim}_{\mathbb{C}} H_{s+1}\left(S^{2 n-1} \backslash l ; \mathbb{C}_{\zeta}\right)
\end{align*}
$$

The following theorem generalizes Shinohara's theorem [4] on σ_{-1} and reduces calculation of the signatures of algebraic 1-knots to a calculation of signatures of the torus knots.

Theorem 2. Let $K_{i}=\left(S^{2 n-1}, k_{i}\right)$ and $L_{i}=\left(S^{2 n-1}, l_{i}\right)$ with $i=1,2$ be oriented knots, U_{i} be a tubular neighborhood of k_{i}. Suppose l_{i} lies in U_{i} and realizes the r-fold generator of $H_{2 n-3}\left(U_{i}\right)=\mathbb{Z}$. If there exists a fiberpreserving diffeomorphism $h: U_{1} \rightarrow U_{2}$ with $h\left(k_{1}\right)=k_{2}$ and $h\left(l_{1}\right)=l_{2}$, preserving linking numbers if $n=2$, then

$$
\sigma_{\zeta}\left(L_{1}\right)-\sigma_{\zeta}\left(L_{2}\right)=\sigma_{\zeta^{r}}\left(K_{1}\right)-\sigma_{\zeta^{r}}\left(K_{2}\right)
$$

Theorem 2 is deduced from the Wall theorem on non-additivity of signature [9].

References

[1] Louis H. Kauffman and L. Taylor, Signature of links, Trans. Amer. Math. Soc., 216 (1976), 351-365.
[2] J. Milnor, A duality theorem for Reidemeister torsion, Ann. Math. 76 (1962), 137-147.
[3] K. Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc., 117 (1965), 387-422.
[4] Y. Shinohara, On the signature of knots and links, Trans. Amer. Math. Soc., 156 (1971), 273-285.
[5] A. G. Tristram, Some cobordism invariants of links, Proc. Cambridge Philos. Soc., 66 (1969), 257-264.
[6] O. Y. Viro, V. G. Turaev, Estimates of Twisted Homology, Tezisy VII Vsesojuznoj topologicheskoj konferencii, Minsk, 1977, p. 42 (Russian).
[7] O. Y. Viro, Signatures of links, Tezisy VII Vsesojuznoj topologicheskoj konferencii, Minsk, 1977, p. 43 (Russian).
[8] O. Y. Viro, Positioning in codimension 2, and the boundary, Uspechi Mat. Nauk, 30 (1975), no. 1, (181), 231-232.
[9] C. T. C. Wall, Non-additivity of the signature, Invent. Math., 7 (1969), 269-274.
Department of Mathematics, Uppsala University, Box 480, S-751 06 Uppsala, Sweden

E-mail address: oleg@math.uu.se

