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Asymptotically maximal real algebraic hypersurfaces

of projective space

Ilia Itenberg and Oleg Viro

Abstract. Using the combinatorial patchworking, we construct an asymptotically
maximal (in the sense of the generalized Harnack inequality) family of real algebraic

hypersurfaces in an n-dimensional real projective space. This construction leads to a
combinatorial asymptotic description of the Hodge numbers of algebraic hypersurfaces
in the complex projective spaces and to asymptotically sharp upper bounds for the

individual Betti numbers of primitive T-hypersurfaces in terms of Hodge numbers of
the complexifications of these hypersurfaces.

1. Introduction

In 1876 A. Harnack published a paper [Har76] where he found an exact upper bound
for the number of connected components for a curve of a given degree. Harnack proved
that the number of components of a real plane projective curve of degree m is at most
(m−1)(m−2)

2 + 1. On the other hand, for each natural number m he constructed a non-

singular real projective curve of degree m with (m−1)(m−2)
2 + 1 components, which shows

that his estimate cannot be improved without introducing new ingredients.
It is natural to ask whether there exists a similar inequality for surfaces in the three-

dimensional projective space. This question is known as the Harnack problem. Under-
stood literally, i.e. as a question about the number of components, it has appeared to be
a difficult problem. The maximal number of components is found only for degree ≤ 4.
However Harnack Inequality has been generalized in another way.

Theorem 1.1 (Generalized Harnack Inequality). If X is a real algebraic variety, then

dimZ2
H∗(RX; Z2) ≤ dimZ2

H∗(CX; Z2), (1)

where RX and CX are the sets of real and complex points of X, respectively.

Since RX is the fixed point set of involution conj : CX → CX, Theorem 1.1, in turn,
is a special case of the following theorem.
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Theorem 1.2 (Smith - Floyd Inequality). Let X be a topological space, τ : X → X an

involution and F the fixed point set of τ . Then

dimZ2
H∗(F ; Z2) ≤ dimZ2

H∗(X; Z2).

(See, e. g., Bredon [Bre72]. To avoid a discussion of choice of homology theory, one can
suppose that X and τ are simplicial.)

Although Theorem 1.2 was first stated by E. E. Floyd [Flo52], all arguments needed
for the proof appeared in earlier works by P. A. Smith, see [Smi38]. Theorem 1.1 was
formulated first by R. Thom [Tho65]. He got the inequality (1) as a corollary of Theo-
rem 1.2. He did not observe however that the inequality (1) gives the best estimates of
dimZ2

H∗(RX; Z2). It was V. M. Kharlamov [Kha72] and V. A. Rokhlin [Rok72] who ac-
knowledged the strength and importance of Generalized Harnack Inequality. They turned
the Smith theory into a powerful tool for studying the topology of real algebraic varieties
([Kha72], [Kha73], [Kha75], [Rok72]).

If X is a nonsingular curve of degree m, then CX is homeomorphic to a sphere with
(m − 1)(m − 2)/2 = (m2 − 3m + 2)/2 handles, and

the right hand side of the inequality (1) is m2 − 3m + 4. In this case the left hand side
is the doubled number of components of RX. Hence Theorem 1.1 generalizes Harnack
Inequality.

A real algebraic variety for which the left and right hand sides of the inequality (1) are
equal is called an M-variety or a maximal variety.

In [IV] we proved the following statement.

Theorem 1.3. For any positive integers m and n, there exists a nonsingular hypersurface

X of degree m in RPn such that

dimZ2
Hp(RX; Z2) =

n−1∑

q=0

hp,q(CX),

where hp,q are Hodge numbers.

In particular, for any positive integers m and n, there exists an M -hypersurface of de-
gree m in RPn. Notice that, for a nonsingular hypersurface X of degree m in CPn, one has∑n−1

q=0 hp,q(CX) = hp,n−1−p(CX) if 2p = n− 1, and
∑n−1

q=0 hp,q(CX) = hp,n−1−p(CX)+1
otherwise.

The construction presented in [IV] can be seen as a combinatorial version of the con-
struction mentioned in [Vir79a]. The M -hypersurfaces in [IV] are constructed using the
primitive patchworking. It is a particular case of the combinatorial patchworking, which
in turn is a particular case of the Viro method of construction of real algebraic varieties,
see [Vir83], [Vir84], [Vir94], [Ris92], [Stu94], [IV96], and Section 2 below. The com-
binatorial patchworking provides piecewise-linear models of hypersurfaces. In the case
of the primitive patchworking, these models are nonsingular real tropical hypersurfaces

(cf. [Mi05]). A nonsingular algebraic hypersurface X in RPn constructed by means of the
primitive patchworking is called a primitive T -hypersurface.
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Let n be a positive integer, P a real polynomial of degree n in one variable, b a
vector (b0, b1, . . . , bn−1) in Z

n, and C a class of algebraic hypersurfaces in RPn. We say

that C satisfies the condition b
n

≤ P (respectively, b
n

≥ P ) if there exists a real univariate
polynomial Q of degree n−1 such that, for any hypersurface X in C, one has the inequality∑n−1

p=0 bi dimZ2
Hp(RX; Z2) ≤ P (m) + Q(m) (respectively,

∑n−1
p=0 bi dimZ2

Hp(RX; Z2) ≥

P (m) + Q(m)), where m is the degree of X. We say that C satisfies the condition b
n
= P

if C satisfies the both conditions b
n

≤ P and b
n

≥ P .
Let B ∈ Z

n be the vector with all the coordinates equal to 1. Since for any nonsingular
hypersurface X of degree m in CPn one has

dimZ2
H∗(CX; Z2) =

(m − 1)n+1 − (−1)n+1

m
+ n + (−1)n+1

(see, for example, [Far57]), the Generalized Harnack Inequality implies that the class

of all nonsingular algebraic hypersurfaces in RPn verifies the condition B
n

≤ xn. We
say that a sequence (Xm)m∈N, where Xm is a nonsingular hypersurface of degree m in

RPn, is asymptotically maximal, if this sequence verifies the condition B
n
= xn, i.e., if

dimZ2
H∗(RXm; Z2) = mn + O(mn−1).

For any integer p = 0, . . ., n − 1, put

Hp(x) =

n+1∑

i=0

(−1)i

(
n + 1

i

)(
x(p + 1) − (x − 1)i − 1

n

)
.

If X is a nonsingular hypersurface of degree m in CPn, then Hp(m) = hp,n−1−p(CX)− 1
in the case n − 1 = 2p, and Hp(m) = hp,n−1−p(CX) otherwise (see [DKh86]).

For any integer p = 0, . . ., n − 1, denote by Bp the vector in Z
n such that all the

coordinates of Bp are equal to 0 except the p-th coordinate which is equal to 1.
The main result of the present paper is the following theorem.

Theorem 1.4. For any positive integer n and any integer p = 0, . . ., n − 1, the class of

primitive T -hypersurfaces in RPn satisfies the condition Bp

n

≤ Hp.

Theorem 1.4 immediately implies the following statement.

Corollary 1.5. For any positive integer n, any integer p = 0, . . . , n − 1, and any

asymptotically maximal sequence (Xm)m∈N such that Xm is a primitive T -hypersurface

of degree m in RPn, the sequence (Xm)m∈N satisfies the condition Bp
n
= Hp, i.e.,

dimZ2
Hp(RXm; Z2) = hp,n−1−p(CXm) + O(mn−1).

Remark 1.1. As it was shown by B. Bertrand [Ber06], for any primitive T -hypersurface X
in RPn (the projective space can be replaced by any nonsingular projective toric variety)
the Euler characteristic of RX is equal to the signature of CX.
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Remark 1.2. The statement of Theorem 1.4 (and the statement of Corollary 1.5) be-
comes false if one replaces the class of primitive T -hypersurfaces by the class of all nonsin-
gular algebraic hypersurfaces in RPn. For example, there exists an asymptotically maxi-
mal sequence (Ym)m∈N of nonsingular surfaces in RP 3 such that Ym is of degree m and
dimZ2

H0(RYm; Z2) = 7
24m3+O(m2); see [Vir79b] (note that h0,2(CYm) = 1

6m3+O(m2)).
More detailed information concerning the asymptotic behavior of Betti numbers of alge-
braic hypersurfaces in RPn can be found in [Bih03].

The paper is organized as follows. Section 2 is devoted to the combinatorial patch-
working. The key upper bounds used in the proof of Theorem 1.4 are based on the results
of [Sh96, ISh03] and are presented in Sections 3 and 4. These upper bounds together with
a combinatorial description of Hodge numbers of algebraic hypersurfaces in CP 2 (Corol-
lary 5.2) give a proof of Theorem 1.4. The combinatorial description of Hodge numbers
is proved in Sections 5 - 8. Section 5 contains a construction of an asymptotically max-
imal sequence of hypersurfaces in RPn. This construction is a simplified version of the
construction described in [IV] (the latter construction produces maximal hypersurfaces).

To prove that the constructed sequence of hypersurfaces satisfies the condition Bp
n
= Hp,

we present a collection of cycles of these hypersurfaces (Section 6), and prove a recurrent
relation for the Hodge numbers (Section 7).

2. Combinatorial Patchworking of Hypersurfaces in RP
n

Let m be a positive integer number (it would be the degree of the hypersurface under
construction) and Tn(m) be the simplex in R

n with vertices (0, 0, . . . , 0), (0, 0, . . . , 0,m),
(0, . . . , 0,m, 0), . . . , (m, 0, . . . , 0). We shorten the notation of Tn(m) to T , when n and m
are unambiguous and call Tn(m) the standard n-simplex of size m. Take a triangulation τ
of T with vertices having integer coordinates. Suppose that a distribution of signs at the
vertices of τ is given. The sign (plus or minus) at the vertex with coordinates (i1, . . . , in)
is denoted by αi1,...,in

.
Denote by T∗ the union of all the symmetric copies of T under reflections and composi-

tions of reflections with respect to coordinate hyperplanes. Extend the triangulation τ to
a symmetric triangulation τ∗ of T∗, and the distribution of signs αi1,...,in

to a distribution
at the vertices of the extended triangulation by the following rule: passing from a vertex
to its mirror image with respect to a coordinate hyperplane we preserve its sign if the
distance from the vertex to the plane is even, and change the sign if the distance is odd.

If an n-simplex of the triangulation of T∗ has vertices of different signs, select a piece
of hyperplane being the convex hull of the middle points of the edges having endpoints
of opposite signs. Denote by Γ the union of the selected pieces. It is a piecewise-linear
hypersurface contained in T∗. It is not a simplicial subcomplex of T∗, but can be deformed
by an isotopy preserving τ∗ to a subcomplex K of the first barycenter subdivision τ ′

∗ of
τ∗. Each n-simplex of τ ′

∗ has a unique vertex belonging to τ∗. Denote by τ+
∗ the union

of all the n-simplices of τ ′
∗ containing positive vertices of τ∗ and by τ−

∗ the union of all
the rest n-simplices. The subcomplex K is the intersection of τ+

∗ and τ−
∗ . A point of Γ
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contained in a simplex σ of τ∗ belongs to a unique segment connecting the face of σ with
positive vertices and the face with negative ones. This segment meets K also in a unique
point and the deformation of Γ to K can be done along those segments.

Identify by the symmetry with respect to the origin the faces of T∗. The quotient space

T̃ is homeomorphic to the real projective space RPn. Denote by Γ̃ the image of Γ in T̃ .
A triangulation τ of T is said to be convex if there exists a convex piecewise-linear

function ν : T −→ R whose domains of linearity coincide with the n-simplices of τ .
Sometimes, such triangulations are also called coherent (see [GKZ94]) or regular (see
[Zie94]).

Theorem 2.1 (see [Vir83], [Vir94]). If τ is convex, there exists a nonsingular hypersurface

X of degree m in RPn and a homeomorphism RPn → T̃ mapping the set of real points

RX of X onto Γ̃.

A hypersurface defined by a polynomial
∑

(i1,...,in)∈V

αi1,...in
xm−i1−...in

0 xi1
1 . . . xin

n tν(i1,...in),

where V is the set of vertices of τ , and t is positive and sufficiently small, satisfies the
properties described in Theorem 2.1. The polynomial above and its affine version

P ν,α
t (x1, . . . , xn) =

∑

(i1,...,in)∈V

αi1,...in
xi1

1 . . . xin
n tν(i1,...in),

are called T -polynomials associated with the function ν and the distribution of signs
α : V → R, α(i1, . . . , in) = αi1,...,in

. The hypersurface X defined by a T -polynomial is
called a T -hypersurface. If the triangulation τ is primitive (that is, each n-simplex of τ is
of volume 1

n! ), then X is called a primitive T -hypersurface.

3. Critical Points of T -polynomials

To any orthant O in R
n we associate the map SO = s(i1) ◦ s(i2) ◦ . . . ◦ s(ik), where

i1, . . ., ik are the indices of all negative coordinates of a point in the interior of O, and
s(ij), j = 1, . . ., k, is the reflection with respect to the ij-th coordinate hyperplane in R

n.
Let q be a point in R

n. An n-dimensional lattice simplex δ in an orthant O of R
n is

called q-generic if the point SO(q) belongs neither to δ, nor to any hyperplane containing
an (n−1)-dimensional face of δ. Let δ ⊂ O be a q-generic simplex. An (n−1)-dimensional
face of δ is called q-visible (resp., non-q-visible) if the cone over this face with the vertex
at SO(q) does not intersect (resp., does intersect) the interior of δ. The q-index iq(δ)
of δ is the number of q-visible (n − 1)-dimensional faces of δ. The co-q-index of δ is the
number n − iq(δ). Denote by V q

+(δ) (resp., V q
−(δ)) the set of vertices of δ which belong

to all q-visible (resp., non-q-visible) (n− 1)-dimensional faces of δ. A q-generic simplex δ
whose vertices are equipped with signs is called real q-critical if all the vertices in V q

+(δ)
have the same sign and the vertices in V q

−(δ) have the sign opposite to that of the vertices
in V q

+(δ).
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A triangulation τ of Tn(m) is called q-generic, if all its n-simplices are q-generic. A
simplex of τ is called q-terminal if it is contained in an (n − 1)-dimensional non-q-visible
face of Tn(m). Associate to any non-q-terminal simplex σ of τ an n-simplex of τ in the
following way. Let v be a point in the relative interior of σ. Take a point v̂ such that

• v̂ belongs to the ray which starts at q and passes through v,
• the distance between q and v̂ is greater than the distance between q and v,
• the segment joining v and v̂ is contained in an n-simplex of τ .

The latter n-simplex does not depend on the choice of v in the relative interior of σ and
is called the q-upper simplex of σ. A T -polynomial of degree m is called q-generic, if the
corresponding triangulation of Tn(m) is q-generic.

Theorem 3.1 (see [Sh96, ISh03]). Let q = (−q1, . . . ,−qn) be a point with negative integer

coordinates in R
n, and P ν,α

t a (non-homogeneous) q-generic T -polynomial of degree m in n
variables. Then, there is a one-to-one correspondence between the real critical points in

(R∗)n of the polynomial

xq1

1 . . . xqn
n P ν,α

t (x1, . . . , xn)

and the real q-critical n-simplices of τ∗ (where τ is the triangulation defined by ν) such

that the index of a real critical point of P ν,α
t with positive (resp., negative) critical value

is equal to the q-index (resp., co-q-index) of the corresponding simplex. If τ is primitive,

each n-simplex of τ has exactly one real critical symmetric copy in τ∗.

Proposition 3.2. Let q be a point in R
n, and τ1, τ2 convex primitive q-generic triangu-

lations of a standard simplex Tn(m). Then, for any integer i = 1, . . ., n, the numbers of

simplices of q-index i in τ1 and in τ2 coincide.

Proof. As is known (see, for example, [Dai00, Ber06]), for any integer j = 0, . . ., n, the

numbers of j-dimensional simplices in τ1 and τ2 coincide. Thus, the numbers Sj
1 and Sj

2

of j-dimensional non-q-terminal simplices in τ1 and τ2, respectively, also coincide. For
any j-dimensional non-q-terminal simplex σ in τk, k = 1, 2, the q-index of the q-upper
simplex of σ is at least n − j. Denote by Ci,1 and Ci,2 the numbers of n-simplices of
q-index i in τ1 and τ2, respectively. Since Cn,k = S0

k, k = 1, 2, we obtain Cn,1 = Cn,2.

Furthermore, for any integer j = 1, . . ., n− 1, we have Cn−j,k = Sj
k −

∑j−1
s=0

(
n−s
j−s

)
Cn−s,k,

k = 1, 2. Thus, Ci,1 = Ci,2 for any integer number i = 1, . . ., n. �

4. Upper Bounds for Betti Numbers of Primitive T -hypersurfaces

Let P be the product of a real polynomial of degree m in n variables and any monomial
in n variables. Let XP ⊂ CPn be the projective closure of {P = 0} ∩ (C∗)n. Assume
that P has only nondegenerate critical points in (R∗)n and that the hypersurface XP is
nonsingular. Denote by c+

p (respectively, c−p ) the number of real critical points of P in
(R∗)n of index p and with positive (respectively, negative) critical value.

The following statement is well known and can be found, for example, in [ISh03].
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Proposition 4.1. There exists a real univariate polynomial R of degree n− 1 such that,

for any polynomial P as above and any integer number p = 0, 1, . . ., n− 1, the following

inequality holds:

dimZ2
Hp(RXP ; Z2) ≤ c−p + c+

n−p + R(m).

Let

• q ∈ R
n be a point with negative integer coordinates,

• τ a convex primitive q-generic triangulation of Tn(m),
• ν : Tn(m) → R a convex piecewise-linear function certifying the convexity of τ ,
• α a distribution of signs at the integer points of Tn(m),
• P ν,α

t a (non-homogeneous) T -polynomial associated with ν and α,
• X a hypersurface of degree m in RPn defined by (the homogenization of) P ν,α

t .

Denote by Ci(m) the number of n-simplices of τ of q-index i. Theorem 3.1 and Proposi-
tion 4.1 imply the following statement.

Theorem 4.2 (cf. [Sh96, ISh03]). For any integer p = 0, . . ., n−1, the following inequality

holds:

dimZ2
Hp(RX; Z2) ≤ Cn−p(m) + R(m),

where R is a polynomial described in Proposition 4.1.

According to Proposition 3.2, the numbers Cn(m), . . ., C1(m) do not depend on the
choice of a convex primitive q-generic triangulation τ of Tn(m). To prove Theorem 1.4,
it remains to compare the numbers Cn(m), . . ., C1(m) with the numbers H0(m), . . .,
Hn−1(m).

If {Xm}m∈N is an asymptotically maximal sequence of primitive T -hypersurfaces, then

due to Theorem 4.2 and the equality
∑n−1

p=0 Cn−p(m) = mn, we obtain

dimZ2
Hp(RXm; Z2) = Cn−p(m) + O(mn−1),

for any integer p = 0, . . ., n − 1. In the remaining part of the paper, we construct an
asymptotically maximal sequence of primitive T -hypersurfaces and show the equality

dimZ2
Hp(RXm; Z2) = Hp(m) + O(mn−1)

for the hypersurfaces Xm of the sequence.

5. Triangulation and Signs Generating Asymptotically Maximal

Sequence of Hypersurfaces

In this section we describe for each positive integer n and for each positive integer m
a triangulation τn(m) of the standard simplex Tn(m) and a distribution of signs at the
vertices of τn(m) which provide via Theorem 2.1 an asymptotically maximal sequence of
hypersurfaces in RPn.

To construct the triangulation τn(m), we use induction on n. If n = 1, the triangula-
tion τ1(m) of [0,m] is formed by m intervals [0, 1], . . . , [m − 1,m] for any m.
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Assume that the triangulations of the standard simplices of dimensions less than n and
all the sizes are constructed and consider the n-dimensional standard simplex Tn(m) of
size m.

Denote by x1, . . . , xn the coordinates in R
n. Let Tn−1

j = Tn(m) ∩ {xn = m − j}, and

Tj be the image of Tn−1
j under the orthogonal projection to the coordinate hyperplane

{xn = 0}. Numerate the vertices of each simplex T1, . . . , Tm as follows: assign 1 to the
vertex at the origin and i + 1 to the vertex with nonzero coordinate at the i-th place.
Assign to the vertices of Tn−1

1 , . . . , Tn−1
m−1 the numbers of their projections. A triangulation

of each simplex T1, . . . , Tm is already constructed. Take the corresponding triangulations
in the simplices Tn−1

j , if m − j is even. If m − j is odd, take the linear map Tn−1
j → Tj

sending the i-th vertex of Tn−1
j to the vertex number n + 1 − i of Tj (i = 1, . . . , n). The

preimages of simplices of the triangulation of Tj form a triangulation of Tn−1
j .

Let l be a nonnegative integer not greater than n − 1. If m − j is even, denote by T l
j

the l-face of Tn−1
j which is the convex hull of the vertices with numbers 1, . . . , l + 1. If

m− j is odd, denote by T l
j the l-face of Tn−1

j which is the convex hull of the vertices with
numbers n − l, . . . , n.

Now for any integer 0 ≤ j ≤ m − 1 and any integer 0 ≤ l ≤ n − 1, take the join
T l

j+1 ∗ Tn−1−l
j . The triangulations of T l

j+1 and Tn−1−l
j constructed by the inductive as-

sumption define a triangulation of T l
j+1 ∗ Tn−1−l

j . This gives rise to the desired triangu-

lation τn(m) of Tn(m). It easy to see that τn(m) is convex: a convex piecewise-linear
function certifying the convexity of τn(m) can be obtained combining the following func-
tions:

• a convex piecewise-linear function whose domains of linearity are the convex hulls
of Tn−1

j and Tn−1
j+1 , j = 0, . . ., m − 1;

• affine-linear functions Lj(ε) : Tn−1
j → R (here j runs over all the integers

1 ≤ j ≤ m such that m − j is even, and ε is a sufficiently small positive num-
ber); any function Lj(ε) sends a vertex with number i of Tn−1

j to εi;

• convex piecewise-linear functions (multiplied by appropriate constants) certifying
the convexity of the triangulations of Tn−1

1 , . . ., Tn−1
m .

The distribution of signs at the vertices of τn(m) is as follows: all the vertices get the
sign “+”.

Let (Xm)m∈N be the sequence of hypersurfaces in RPn provided according to Theo-
rem 2.1 by the triangulations τn(m) and the distribution of signs described above.

Theorem 5.1. For any positive integer n and any integer p = 0, . . ., n− 1, the sequence

(Xm)m∈N satisfies dimZ2
Hp(RXm; Z2) = Hp(m) + O(mn−1).

Corollary 5.2. For any positive integer n and any integer p = 0, . . ., n − 1, one has

Hp(m) = Cn−p(m) + O(mn−1).

Proof. The statement immediately follows from Theorems 5.1 and 4.2 and the equality∑n−1
p=0 Cn−p(m) = mn. �
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Theorem 5.1 is proved in Section 8. We precede the proof by a description of a certain
collection of cycles of RXm (Section 6) and a recurrent relation for the Hodge numbers
of algebraic hypersurfaces in CPn (Section 7).

6. Narrow Cycles

For any positive integers n and m, and any integer p = 0, . . ., n−1, we define a collection

ci, i ∈ In,p(m) of p-cycles of Γ̃n(m) ⊂ T̃ , where T = Tn(m) and Γ̃n(m) is the piecewise-
linear hypersurface provided by the triangulation τn(m) and the distribution of signs
described in Section 5 (in fact, any ci is also a p-cycle of the hypersurface Γn(m) ⊂ T∗).
The cycles ci are called narrow.

The collection of narrow cycles ci is constructed together with a collection of axes bi.

Any axis bi is a (n− 1− p)-cycle in T̃ \ Γ̃n(m) (where p is the dimension of ci) composed
by simplices of the triangulation τn

∗ (m) of T∗ and representing a homological class such
that its linking number with any p-dimensional narrow cycle ck is δik.

Let us fix some notations. For any simplex T l
j (where 1 ≤ j ≤ m and 0 ≤ l ≤

n − 1), denote by (T l
j)∗ the union of the symmetric copies of T l

j under the reflections
with respect to coordinate hyperplanes {xi = 0}, where i = 1, . . . , l, if m− j is even, and
i = n − l, . . . , n − 1, if m − j is odd, and compositions of these reflections.

Any simplex T l
j is naturally identified with the standard simplex T l(j) in R

l with

vertices (0, . . . , 0), (j, 0, . . . , 0), . . . , (0, . . . , 0, j) via the linear map Ll
j : T l

j → T l(j) sending

(1) the vertex with number i of T l
j to the vertex of T l(j) with the same number, if

m − j is even,
(2) the vertex with number i of T l

j to the vertex of T l(j) with the number i−n+ l+1,
if m − j is odd.

It is easy to see that Ll
j is simplicial with respect to the chosen triangulations of T l

j and

T l(j). The natural extension of Ll
j to (T l

j)∗ identifies (T l
j)∗ with (T l(m))∗ and respects

the chosen triangulations.
By a symmetry we mean a composition of reflections with respect to coordinate hy-

perplanes. Let s(i) be the reflection of R
n with respect to the hyperplane {xi = 0},

i = 1, . . . , n. Denote by sl
j the symmetry of (T l+1

j )∗ which is identical if m − j is even,

and coincides with the restriction of s(n−l−1) ◦ . . . ◦ s(n−1) on (T l+1
j )∗ if m − j is odd.

The narrow cycles and their dual cycles are defined below using induction on n. For
n = 1 and m ≥ 3, the narrow cycles are the pairs of points

(−1/2,−3/2), . . . , (−(2m − 5)/2,−(2m − 3)/2),

(The set of narrow cycles is empty if n = 1 and m = 1, 2.) The axes are pairs of vertices

(−1,−m + 1), (−2,−m), (−3,−m + 1), . . . , (−m + 2,−m),

if m is even, and pairs of vertices

(−1,−m), (−2,−m + 1), (−3,−m), . . . , (−m + 2,−m),
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if m is odd.
Assume that for all natural m and all natural k < n the narrow cycles ci in the

hypersurface Γ̃k(m) ⊂ T̃ k(m) and the axes bi in T̃ k(m) \ Γ̃k(m) are constructed. The

narrow cycles of the hypersurface in T̃n
m are divided into 3 families.

Horizontal Cycles. The initial data for constructing a cycle of the first family
consist of an integer j satisfying inequality 1 ≤ j ≤ m − 1 and a narrow cycle of the
hypersurface in (Tn−1(j))∗ constructed at the previous steps. In the copy (Tn−1

j )∗ of

(Tn−1(j))∗, take the copy c of this cycle and the copy b of its axis.
There exists exactly one symmetric copy of T 0

j+1 incident to b. It is T 0
j+1 itself, if m− j

is odd, and either T 0
j+1, or s(n−1)(T

0
j+1), if m−j is even. If the sign of the symmetric copy

s(T 0
j+1) of T 0

j+1 incident to b is opposite to the sign of c, we include c in the collection of

narrow cycles of Γ̃. Otherwise take s(n)(c) as a narrow cycle of Γ̃. The axis of c (resp.,

s(n)(c)) is the suspension of b (resp., s(n)(b)) with the vertex s(T 0
j+1) (resp., s(n)(s(T

0
j+1)))

and with the vertex s(T 0
j−1) (resp., s(n)(s(T

0
j−1))).

Co-Horizontal Cycles. The initial data for constructing a cycle of the second
family are the same as in the case of the horizontal cycles: the data consist of an integer j
satisfying inequality 1 ≤ j ≤ m− 1 and a narrow cycle of the hypersurface in (Tn−1(j))∗.

In the copy (Tn−1
j )∗ of (Tn−1(j))∗, take the copy c of this cycle and the copy b of its

axis. If the sign of the symmetric copy s(T 0
j+1) of T 0

j+1 incident to b coincides with the

sign of c, take b as axis of a narrow cycle of Γ̃. Otherwise take s(n)(b). The corresponding
narrow cycle is a suspension of c (resp., s(n)(c)).

Join Cycles. The initial data consist of integers j and l satisfying inequalities
1 ≤ j ≤ m−1, 1 ≤ l ≤ n−2, the copy c1 ⊂ (T l

j+1)∗ of a narrow cycle of the hypersurface in

(T l(j+1))∗, the copy c2 ⊂ (Tn−1−l
j )∗ of a narrow cycle of the hypersurface in (Tn−1−l(j))∗

and the copies b1 ⊂ (T l
j+1)∗ and b2 ⊂ (Tn−1−l

j )∗ of the axes of these narrow cycles.

One of the joins b1 ∗ b2 and sl
j+1(b1) ∗ sn−1−l

j (b2), belongs to τn
∗ (m); denote this join

by J . If the signs of c1 and c2 coincide, take J as the axis of a cycle of Γ̃n(m). Otherwise

take s(n)(J). The corresponding narrow cycle is either c1 ∗ c2, or sl
j+1(c1) ∗ sn−1−l

j (c2), or

s(n)(c1 ∗ c2), or s(n)(s
l
j+1(c1) ∗ sn−1−l

j (c2)).

Proposition 6.1. For any integer p = 0, . . ., n − 1, the Z2-homology classes of the

narrow cycles ci, i ∈ In,p(m), are linearly independent in Hp(Γ̃
n(m); Z2).

Proof. Both ci and bi with i ∈ In,p(m) are Z2-cycles homologous to zero in T̃ , which is
homeomorphic to the projective space of dimension n. The sum of dimensions of ci and bi

is n−1. Thus we can consider the linking number of ci, i ∈ In,p(m), and bk, k ∈ In,p(m),

taking values in Z2. Each ci bounds an obvious ball in T̃ . This ball meets bi in a single
point transversally and is disjoint with bk for k 6= i and i, k ∈ In,p(m). Hence the linking
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number of ci and bk is δik. This proves that the cycles ci, i ∈ In,p(m), realize linearly

independent Z2-homology classes of Γ̃n(m). �

7. Recurrent Relation for Hodge Numbers

For positive integers n and m, and an integer p = 0, . . ., n − 1, denote by An,p
m the

number of ordered (n + 1)-partitions of m(p + 1) such that each of the summands does
not exceed m − 1. In other words, this is the number of interior integer points in the
section of the cube [0,m]n+1 by the hyperplane

∑n+1
i=1 xi = m(p + 1).

We have An,p
m = hp,n−1−p(CX)−1, if n−1 = 2p, and An,p

m = hp,n−1−p(CX) otherwise,
where X is a nonsingular surface of degree m in CPn (see [DKh86]). Furthermore,

An,p
m =

n+1∑

i=0

(−1)i

(
n + 1

i

)(
m(p + 1) − (m − 1)i − 1

n

)
.

If either n < 0 or p < 0, put An,p
m = 0. If n = 0 and p 6= 0, put An,p

m = 0. Finally, if
n = 0 and p = 0, put An,p

m = 1.

Proposition 7.1. Let n and m be positive integers, and p a nonnegative integer not

greater than n − 1. The following recurrent relation holds true:

An,p
m =

m−1∑

j=1

An−1,p
j +

m−1∑

j=1

An−1,p−1
j +

m−1∑

j=1

An−2,p−1
j+1 +

m−1∑

j=1

An−2,p−1
j +

m−1∑

j=1

n−2∑

l=1

p−1∑

k=0

Al,k
j+1A

n−1−l,p−1−k
j +

m−1∑

j=1

n−3∑

l=1

p−1∑

k=0

Al,k
j+1A

n−2−l,p−1−k
j +

m−1∑

j=1

n−3∑

l=1

p−2∑

k=0

Al,k
j+1A

n−2−l,p−2−k
j +

m−1∑

j=1

n−4∑

l=1

p−2∑

k=0

Al,k
j+1A

n−3−l,p−2−k
j .

Proof. We prove the statement using induction on m. If m = 1 the statement is evident.
For the inductive step, we need to show that

An,p
m = An,p

m−1 + An−1,p
m−1 + An−1,p−1

m−1 + An−2,p−1
m + An−2,p−1

m−1 +

n−2∑

l=1

p−1∑

k=0

Al,k
m An−1−l,p−1−k

m−1 +
n−3∑

l=1

p−1∑

k=0

Al,k
m An−2−l,p−1−k

m−1 +

n−3∑

l=1

p−2∑

k=0

Al,k
m An−2−l,p−2−k

m−1 +
n−4∑

l=1

p−2∑

k=0

Al,k
m An−3−l,p−2−k

m−1 .

We call an ordered (n+1)-partition of m(p+1) appropriate, if each of its summands does
not exceed m − 1. A partition a1 + . . . + as of mr such that all the summands do not
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exceed m − 1 is called reducible, if there exist integers k and l such that l < s − 1 and

l+1∑

i=1

ai = m(k + 1).

For any reducible partition, denote by L the largest l < s−1 such that
∑l+1

i=1 ai is divisible
by m. A partition of mr such that all the summands do not exceed m − 1 and which is
not reducible is called irreducible.

Denote the summands of an appropriate partition by a1, . . . , an+1. Let us prove that

(1) An,p
m−1 is the number of appropriate irreducible partitions with a1 < m − 1 and

an+1 > 1,

(2) An−1,p
m−1 is the number of appropriate irreducible partitions with a1 < m − 1 and

an+1 = 1,

(3) An−1,p−1
m−1 is the number of appropriate irreducible partitions with a1 = m−1 and

an+1 > 1,

(4) An−2,p−1
m−1 is the number of appropriate irreducible partitions with a1 = m−1 and

an+1 = 1,

(5)
∑n−2

l=1

∑p−1
k=0 Al,k

m An−1−l,p−1−k
m−1 is the number of appropriate reducible partitions

with aL+2 < m − 1 and an+1 > 1,

(6)
∑n−3

l=1

∑p−1
k=0 Al,k

m An−2−l,p−1−k
m−1 is the number of appropriate reducible partitions

with aL+2 < m − 1 and an+1 = 1,

(7)
∑n−3

l=1

∑p−2
k=0 Al,k

m An−2−l,p−2−k
m−1 is the number of appropriate reducible partitions

with aL+2 = m − 1 and an+1 > 1,

(8)
∑n−4

l=1

∑p−2
k=0 Al,k

m An−3−l,p−2−k
m−1 +An−2,p−1

m is the number of appropriate reducible
partitions with aL+2 = m − 1 and an+1 = 1.

Let Π be an ordered s-partition a1+. . .+as of (m−1)r, where ai ≤ m−2 for i = 1, . . . , s.
This partition defines in the following way an ordered s-partition f(Π) : a′

1 + . . . + a′
s of

mr with a′
i ≤ m − 1 and an ordered (s + 1)-partition g(Π) : a′′

1 + . . . + a′′
s+1 of mr with

a′′
i ≤ m − 1. Let i1, . . . , ir−1 be the integers such that

iq∑

j=1

aj ≤ (m − 1)q,

iq+1∑

j=1

aj > (m − 1)q,

for any q = 1, . . . , r− 1. Take a′
i = ai + 1 if i = iq + 1 (for some q = 1, . . . , r− 1) or i = s,

and a′
i = ai otherwise. Take a′′

i = ai + 1, if i = iq + 1 (for some q = 1, . . . , r − 1), and
a′′

i = ai otherwise. Take, in addition, a′′
s+1 = 1. Note that the partitions f(Π) and g(Π)

are both irreducible, a′
1 < m − 1, a′

s > 1, and a′′
1 < m − 1. For any irreducible ordered

s-partition Φ : a′
1 + . . . + a′

s of mr such that a′
1 < m − 1, a′

s > 1, and a′
i ≤ m − 1, i = 2,

. . ., s, there exists a unique partition Π such that f(Π) = Φ. Indeed, let i1, . . . , ir−1 be
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the integers such that

iq∑

j=1

a′
j ≤ mq − 1,

iq+1∑

j=1

a′
j > mq − 1;

for any q = 1, . . . , r− 1; take ai = a′
i − 1, if i = iq + 1 (for some q = 1, . . . , r− 1) or i = s,

and ai = a′
i otherwise. (Note that a′

iq+1 > 1, because Φ is irreducible.) Similarly, for

any irreducible ordered (s + 1)-partition Ψ : a′′
1 + . . . + a′′

s+1 of mr such that a′′
1 < m− 1,

a′′
s+1 = 1, and a′′

i ≤ m − 1, i = 2, . . ., s, there exists a unique partition Π such that
g(Π) = Ψ.

The constructions of f(Π) and g(Π) described above give immediately (1) and (2).
To prove (3) (respectively, (4)), one can apply the construction of f(Π) (respectively,
g(Π)) to ordered (n + 1)-partitions a1 + . . . + an+1 (respectively, to ordered n-partitions
a1 + . . . + an) of (m− 1)(p + 1) such that a1 = m− 1 and ai ≤ m− 2 for i = 2, . . . , n + 1
(resp., i = 2, . . . , n).

The statements (5) - (8) follow from (1) - (4): to any appropriate reducible partition
a1 + . . . + an+1, one can associate the irreducible partition aL+2 + . . . + an+1. �

8. Proofs of Theorems 5.1 and 1.4

Proof of Theorem 5.1. For positive integers n and m, and an integer p = 0, . . ., n − 1,
denote by Nn,p

m the number of narrow p-cycles ci, i ∈ In,p(m) constructed in Section 6.
If either n ≤ 0 or p < 0, put Nn,p

m = 0. If n = 0 and p 6= 0, put Nn,p
m = 0. Finally, if

n = 0 and p = 0, put Nn,p
m = 1.

According to the construction of narrow cycles, the numbers Nn,p
m satisfy the following

recurrent relation:

Nn,p
m = Nn,p

m−1 + Nn−1,p
m−1 + Nn−1,p−1

m−1 +

n−2∑

l=1

p−1∑

k=0

N l,k
m Nn−1−l,p−1−k

m−1 .

In addition, N1,0
1 = N1,0

2 = 0 and N1,0
m = m − 2 for any integer m ≥ 3.

Fix a positive integer n and an integer p = 0, . . ., n − 1. Notice that An,p
m ≤ (m − 1)n

for any positive integer m. Thus, Proposition 7.1 implies that, for n ≥ 2, one has

An,p
m = An,p

m−1 + An−1,p
m−1 + An−1,p−1

m−1 +
n−2∑

l=1

p−1∑

k=0

Al,k
m An−1−l,p−1−k

m−1 + O(mn−2).

In addition, A1,0
m = m − 1 for any positive integer m. Comparing the two recurrent

relations, we obtain Nn,p
m = An,p

m + O(mn−1). This proves Theorem 5.1, since, according
to Proposition 6.1, the cycles ci, i ∈ In,p(m), realize linearly independent Z2-homology

classes in Hp(Γ̃
n(m); Z2). �

Proof of Theorem 1.4. The statement immediately follows from Theorem 4.2 and Corol-
lary 5.2. �
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