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REAL ALGEBRAIC PLANE CURVES:
CONSTRUCTIONS WITH CONTROLLED TOPOLOGY

0. YA. VIRO

ABsTRACT. This is a survey of the topology of real algebraic plane curves, con-
centrating on the constructive aspect of this theory, i.e., the problem of con-
structing curves of a given degree with a prescribed arrangement of its compo-
nents. A large part of the paper is concerned with introductory material—the
formulation of the basic problems and the history of the early development
of the subject—so that the exposition is essentially self-contained. We give a
detailed presentation of the technique of perturbing singular curves with con-
trolled variation of the topology. We plan to publish the final part of the survey
in the next issue.
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There are two natural directions in the study of the topology of real algebraic
curves: first, the search for restrictions which the algebraic nature of a curve
imposes on its topology; and, second, the proof that curves exist which satisfy
these restrictions. During the past 18 years there has been an especially intensive
development of the topology of real algebraic curves: at the beginning of this
period, the basic achievements fell in the first of these two directions, while the
past decade has seen significant progress in the second direction. The Surveys
which are available [2], [8], [12], [23], [25], [26], [43], [47] are primarily devoted
to the first direction (although the last two touch upon the second direction as
well). The present article is an attempt to explain the basic concepts, methods,
and results belonging to the second direction. ,

The prohibitions and constructions (as we shall call the results in the first
and second direction of research, respectively) cannot be considered separately
from one another. Rather, they are two complementary ways of answering
the same question: What topology is possible for a real algebraic curve of a
given class? Hence, in our article considerable attention will also be paid to
prohibitions, but as a rule the proofs will not be given, and instead the reader
‘will be referred to the surveys and original articles. However, the author could
not resist the temptation of writing ab ovo and so the article can probably be
read without reference to other treatments of real algebraic geometry. In any
case, everything that relates to the central theme—techniques which enable one
successively to construct equations according to the topology of the curves they
define—is presented in full detail. Experience talking with specialists in other
areas of mathematics shows that this procedure is a good idea far beyond the
confines of the theory of real algebraic curves.

The main objects in this article are curves. It is only in a context where the
dimension is not essential that we shall consider varieties of arbitrary dimension.
Space limitations prevent us from discussing phenomena which occur for higher
dimensional varieties. Information about such varieties can be found in the
surveys by D. A. Gudkov [12] and V. M. Kharlamov [25] and in the author’s

papers [4], [5], [8].

CHAPTER |
Preliminaries

§1. The early topological study of real algebraic plane curves

1.1. Basic definitions and problems. A curve (at least, an algebraic curve) is
something more than just the set of points which belong to it. There are many
ways to introduce algebraic curves. In the elementary situation of real projective
plane curves the simplest and most convenient is the following definition, which
at first glance seems to be overly algebraic.

By a real projective algebraic plane curve of degree m (1) we mean a homoge-
neous real polynomial of degree m in three variables, considered up to constant
factors. If a is such a polynomial, then the equation a(xy, x,, x,) = 0 defines

the set of real points of the curve in the real projective plane RP?. We let RA
denote the set of real points of the curve 4. Following tradition, we shall also
call this set a curve, avoiding this terminology only in cases where confusion
could result.

(l )Of course, the full designation is used only in formal situations. One normally adopts an ab-
breviated terminology. We shall say simply a curve in contexts where this will not lead to confusion.
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A point (x,:X,:X,) € RP? is called a (real) singular point of the curve A
0 %1 ™2

if (xg, X, x,) € R’ is a critical point of the polynomial a which defines the
curve. The curve A4 is said to be (real) nonsingular if it has no real singular
points. The set of real points of a nonsingular real projective plane curve is a
smooth closed one-dimensional submanifold of the projective plane.

In the topology of nonsingular real projective algebraic plane curves, as in
other similar areas, the first natural questions that arise are classification prob-
lems. '

1.1.A. The topological classification problem: Up to homeomorphism, what
are the possible sets of real points of a nonsingular real projective algebraic plane
curve of degree m?

1.1.B. The isotopy classification problem: Up to homeomorphism, what are
the possible pairs (RP2 , RA) where A isa nonsingular real projective algebraic
plane curve of degree m?

It is well known that the components of a closed one-dimensional manifold
are homeomorphic to a circle, and the topological type of the manifold is deter-
mined by the number of components; thus, the first problem reduces to asking
about the number of components of a curve of degree m . The answer to this
question, which was found by Harnack [35] in 1876, is described in §§1.6 and
1.8 below.

The second problem has a more naive formulation as the question of how
a nonsingular curve of degree m can be situated in RP?. Here we are really
talking about the isotopy classification, since any homeomorphism RP? - RP?
is isotopic to the identity map. At present the second problem has been solved
only for m < 7. The solution is completely elementary when m < 5: 1t was
known in the last century, and we shall give the result in this section. But before
proceeding to an exposition of these earliest achievements in the study of the
topology of real algebraic curves, we shall recall the isotopy classification of
closed one-dimensional submanifolds of the projective plane.

1.2. Digression: the topology of closed one-dimensional submanifolds of the
projective plane. For brevity, we shall refer to closed one-dimensional subman-
ifolds of the projective plane as topological plane curves, ot simply curves when
there is no danger of confusion. '

A connected curve can be situated in RP? in two topologically distinct ways:
with two sides, i.e., as the boundary of a disc in RP? , and with one side, i.€., as a
projective line. A two-sided connected curve is called an oval. The complement
of an oval in RP? has two components, one of which is homeomorphic to a
disc and the other homeomorphic to a Moébius strip. The first is called the inside
and the second is called the outside. The complement of a connected one-sided
curve is homeomorphic to a disc.

Any two one-sided connected curves intersect, since each of them is a real-
ization of a nonzero element of the group H, (RPZ'; Z,) having nonzero self-
intersection. Hence, a topological plane curve has at most one one-sided com-
ponent. The existence of such a component can be expressed in terms of ho-
mology: it exists if and only if the curve represents a nonzero element of the
group H 1(RP2 ; Z,) . If it exists, then we say that the whole curve is one-sided,
otherwise, we say that the curve 18 two-sided.

Two disjoint ovals can be situated in two topologically distinct ways: each
may lie outside the other one—i.e., each is in the outside component of the
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FIGURE 1

complement of the other—or else they may form an injective pair, i.e., one of
them is in the inside component of the complement of the other—in that case,
we say that the first is the inner oval of the pair and the second is the outer oval.
In the latter case we also say that the outer oval of the pair envelopes the inner
oval.

A set of & ovals of a curve any two of which form an injective pair is called
a nest of depth h.

The pair (RP"‘ , X), where X is a topological plane curve, is determined up
to homeomorphism by whether or not X has a one-sided component and by the
relative location of each pair of ovals. We shall adopt the following notation to
describe this. A curve consisting of a single oval will be denoted by the symbol
(1) . The empty curve will be denoted by (0). A one-sided connected curve will
be denoted by (J). If (A4) is the symbol for a certain two-sided curve, then
the curve obtained by adding a new oval which envelopes all of the other ovals
will be denoted by (1(4)). A curve which is a union of two disjoint curves (4)
and (B) having the property that none of the ovals in one curve is contained
in an oval of the other is denoted by (A41LB). In addition, we use the following
abbreviations: if (4) denotes a certain curve, and if a part of another curve
has the form AlLAIl--- 14, where 4 occurs #n times, then we let nx 4 denote
AllL---14. We further write n x 1 simply as 7.

When depicting a topological plane curve one usually represents the projective
plane either as a disc with opposite points of the boundary identified, or else
as the compactification of R’ , .e., one visualizes the curve as its preimage
under either the projection D* — RP? or the inclusion R> — RP?. In this
article we shall use the second method. For example, Figure 1 shows a curve
corresponding to the symbol (JILIU2(1)IL1(2)IL1(31L1(2))).

1.3. Bézout’s prohibitions and the Harnack inequality. The most elementary
prohibitions, it seems, are the topological consequences of Bézout’s theorem.
In any case, these were the first prohibitions to be discovered.

1.3.A. BEZoUuT’s THEOREM (see, for example, [24], [30]). If A, and A, are
nonsingular curves of degree m, and m,, and if the set RA, N RA, is finite,
then this set contains at most m,m, points. If, in addition, RA, and RA, are
transversal to one another, then the number of points in the intersection RA;NRA,
Is congruent to m m, modulo 2.
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1.3.B. COROLLARY 1. A nonsingular plane curve of degree m is one-sided if
and only if m is odd. In particular, a curve of odd degree is nonempty.

In fact, in order for a nonsingular plane curve to be two-sided, 1.e., to be
homologous to zero mod 2, it is necessary and sufficient that its intersection
index with the projective line be zero mod2. By Bézout’s theorem, this is
equivalent to the degree being even. @

1.3.C. COROLLARY 2. The number of ovals in the union of two nestings of a
nonsingular plane curve of degree m does not exceed m/2. In particular, a
nesting of a curve of degree m has depth at most m/[2, and if a curve of degree
m has a nesting of depth [m/2], then it does not have any ovals not in the
nesting.

To prove Corollary 2 it suffices to apply Bézout’s theorem to the curve and to
a line which passes through the insides of the smallest ovals in the nestings. ®

1.3.D. COROLLARY 3. There can be no more than m ovals in a set of ovals
which is contained in a union of < 5 nestings of a nonsingular plane curve of
degree m and which does not contain an oval enveloping all of the other ovals
of the set.

To prove Corollary 3 it suffices to apply Bézout’s theorem to the curve and to
a conic which passes through the insides of the smallest ovals in the nestings. @
One can give corollaries whose proofs use curves of higher degree than lines
and conics (see §2.5). The most important such result is Harnack’s inequality.

1.3.E. CoROLLARY 4 (Harnack’s inequality [35]). The number of components
of a nonsingular plane curve of degree m is at most (m2 —~3m+4)/2.

For the derivation of Harnack’s inequality from Bézout’s theorem, see [35],
and also [12]. Incidentally, it is possible to prove Harnack’s inequality without
using Bézout’s theorem; see, for example, [12], [47].

1.4. Curves of degree < 5. If m < 5, then it is easy to see that the pro-
hibitions in the previous subsection are satisfied only by the following isotopy

types.

TABLE i
m Isotopy types of nonsingular plane curves of degree m
I (J)
2 ©, b
3 (J}, (JULT1)
4 ©, (), 2, (K1), 3),4
5 {(J) (JA1Y, (JU2), (JLI(LY), (JU3), (JAUSY, {JI6)

For m < 3 the absence of other types follows from 1.3.B and 1.3.C; for
m = 4 it follows from 1.3.B, 1.3.C and 1.3.D, or else from 1.3.B, 1.3.C and
1.3.E; and for m = 5 it follows from 1.3.B, 1.3.C and 1.3.E. It turns out that
it is possible to realize all of the types in Table 1; hence, we have the following
theorem.

1.4.A. ISOTOPY CLASSIFICATION OF NONSINGULAR PLANE CURVES OF DEGREE
< 5. An isotopy class of topological plane curves contains a nonsingular curve of
degree m < S if and only if it occurs in the mth row of Table 1.
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The curves of degree < 2 are known to everyone. Both of the isotopy types
of nonsingular curves of degree 3 can be realized by small perturbations of
the union of a line and a conic which intersect in two real points (Figure 2).
One can construct these perturbations by replacing the left side of the equation
¢/ = 0 defining the union of the conic C and the line L by the polynomial
cl+ el 1, , where [,=0,i=1,2, 3, are the equations of the lines shown in
Figure 2, and ¢ is a nonzero real number which is sufficiently small in absolute
value.

It will be left to the reader to prove that one in fact obtains the curves in
Figure 2 as a result; alternatively, the reader can deduce this fact from the
theorem in the next subsection.

The isotopy types of nonempty nonsingular curves of degree 4 can be realized
in a similar way by small perturbations of a union of two conics which intersect
in four real points (Figure 3). The empty curve of degree 4 can be defined, for
example, by the equation xg + xf + x; =0.

All of the isotopy types of nonsingular curves of degree 5 can be realized
by small perturbations of the union of two conics and a line, shown in Figure
4. ®

For the isotopy classification of nonsingular curves of degree 6 it is no longer
sufficient to use this type of construction, or even the prohibitions in the previ-
ous subsection. See §§1.13 and 5.1.
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FIGURE 4

1.5. The classical method of constructing nonsingular plane curves. All of the
classical constructions of the topology of nonsingular plane curves are based
on a single construction, which 1 will call classical small perturbation. Some
special cases were given in the previous subsection. Here I will give a detailed
description of the conditions under which it can be applied and the results.

We say that a real singular point E=(&: ¢ ¢ &,) of the curve A 1s an

intersection point of two real transversal branches, or, more briefly, a cmssing,(z)
if the polynomial a defining the curve has matrix of second partial derivatives
at the point (&, &;, &,) with both a positive and a negative eigenvalue, or,
equivalently, if the point ¢ is a nondegenerate critical point of index 1 of the
functions {x € Rlexi # 0} — R:x — a(x)/x;dega for i with ¢ # 0.
By Morse’s lemma, in a neighborhood of such a point the curve looks like a
union of two real lines. Conversely, if R4, , ..., R4, are nonsingular mutually
transverse curves no three of which pass through the same point, then all of the
singular points of the union RA, U---U RA, (this is precisely the pairwise
intersection points) are Crossings.

1.5.A. CLASSICAL SMALL PERTURBATION THEOREM (see Figure 5). Let A be
a plane curve of degree m all of whose singular points are crossings, and let B
be a plane curve of degree m which does not pass through the singular points of
A. Let U be a regular neighborhood of the curve RA in RP?, represented as
the union of a neighborhood U, of the set of singular points of A and a tubular

neighborhood U, of the submanifold RA\ U, in RP*\ U, .

Then there exists a nonsingular plane curve X of degree m such that:

(1) RX C U.

(2) For each component V of U, there exists a homeomorphism h:V —
D' x D' such that h(RANYV) =D'x0U0x D' and h(RXNV)={(x,y) e
D' x Dlixy = 1/2}.

(3) RX\ U, is a section of the tubular fibration U, — RA\ U, .

(Z)Sometimes other names are used. For example: a node, a point of type A4, with two real
branches, a nonisolated nondegenerate double point.
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FIGURE 5

(4) RX C {(xy:x,:x,) € Rlea(xo, Xy, %)b(xy, X, x,) < 0}, where a
and b are polynomials defining the curves A and B.

(5) RYNRA =RXNRB=RANRB.

(6) If p € RANRB is a nonsingular point of B and RB is transversal to RA
at this point, then RX is also transversal to RA at the point.

There exists € > 0 such that for any t € (0, €] the curve given by the polyno-
mial a + tb satisfies all of the above requirements imposed on X .

It follows from (1)-(3) that for fixed A4 the isotopy type of the curve RX
depends on which of two possible ways it behaves in a neighborhood of each
of the crossings of the curve A4, and this is determined by condition (4). Thus,
conditions (1)-(4) characterize the isotopy type of the curve RX . Conditions
(4)-(6) characterize its position relative to RA.

We say that the curves defined by the polynomials a + tb with ¢ € (0, €]
are obtained by small perturbations of A by means of the curve B . It should
be noted that the curves 4 and B do not determine the isotopy type of the
perturbed curves: since both of the polynomials » and b determine the
curve B, it follows that the polynomials a — tb with small ¢ > 0 also give
small perturbations of 4 by means of B. But these curves are not isotopic
to the curves given by a + tb (at least not in U), if the curve A actually has
singularities.

Proor OoF THEOREM 1.5.A. We set x, = a + tb. It is clear that for any
{ # 0 the curve X, given by the polynomial x, satisfies conditions (5) and
(6), and if ¢ > O it satisfies (4). For small |f| we obviously have RX, C U.
Furthermore, if |¢| is small, the curve RX, is nonsingular at the points of
intersection RX, NRB = R4 NRB, since the gradient of x, differs very little
from the gradient of a when || is small, and the latter gradient is nonzero on
RANRE (this is because, by assumption, B does not pass through the singular
points of 4). Outside RB the curve RX, is a level curve of the function
a/b. On RA\RB this level curve has critical points only at the singular points
of RA, and these critical points are nondegenerate. Hence, for small ¢ the
behavior of RX, outside RB is described by the implicit function theorem
and Morse’s lemma (see, for example, [14]); in particular, for small ¢ # 0 this
curve is nonsingular and satisfies conditions (2) and (3). Consequently, there
exists ¢ > 0 such that for any ¢ € (0, ¢] the curve RX, is nonsingular and
satisfies (1)-(6).
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1.6. Harnack curves. In 1876, Harnack [35] not only proved the inequality
1.3.E in §1.3, but also completed the topological classification of nonsingular
plane curves by proving the following theorem.

1.6.A. HARNACK’S THEOREM. For any natural number m and any integer ¢
satisfying the inequalities

1— (=)™ m’ —3m+4
T S Ao IR
5 <c< 5 : (1)

there exists a nonsingular plane curve of degree m consisting of ¢ components.

The inequality on the right in (1) is Harnack’s inequality. The inequality on
the left is part of Corollary 1 of Bézout’s theorem (see §1.3.B). Thus, Harnack’s
theorem together with §§1.3.B and 1.3.E actually give a complete characteriza-
tion of the set of topological types of nonsingular plane curves of degree m,
i.e., they solve problem 1.1.A.

Curves with the maximum number of components (i.e., with (m2 ~3m+4)/2
components, where m is the degree) are called M-curves. Curves of degree m

which have (m2 — 3m + 4)/2 — a components are called (M — a)-curves. We
begin the proof of Theorem 1.6.A by establishing that the Harnack inequality
1.3.B is best possible.

1.6.B. For any natural number m there exists an M-curve of degree m .

Proor. We shall actually construct a sequence of M-curves. At each step of
the construction we add a line to the M-curve just constructed, and then give
a slight perturbation to the union. We can begin the construction with a line
or, as in Harnack’s proof in [35], with a circle. However, since we have already
treated curves of degree < 5 and constructed M-curves for those degrees (see
§1.4), we shall begin by taking the M -curve of degree 5 that was constructed in
§1.4, so that we can immediately proceed to curves that we have not encountered
before.

Recall that we obtained a degree 5 M-curve by perturbing the union of two

conics and a line L. This perturbation can be done using various curves. For
what follows it is essential that the auxiliary curve intersect L in five points
which are outside the two conics. For example, let the auxiliary curve be a
union of five lines which satisfies this condition (Figure 6). We let B; denote
this union, and we let A, denote the M-curve of degree 5 that is obtained using
B..
S’We now construct a sequence of auxiliary curves B, for m > 5. We take
B, to be a union of m lines which intersect L in m distinct points lying, for
even m, in an arbitrary component of the set RL \RB, _, and for odd m in
the component of RL\ RB,_, containing RL N RB, .

We construct the M-curve A of degree m using small perturbation of
the union A, UL by means of B, . Suppose that the M-curve A4, _, of
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degree m —1 has already been constructed, and suppose that R4, | intersects
RL transversally in the m — 1 points of the intersection RL N RB, |, which
lie in the same component of the curve R4, | and in the same order as on
RL . It is not hard to see that, for one of the two possible directions of a small
perturbation of 4, _, UL by means of B, , the line RL and the component of
R4, _, thatit mtersects give m — 1 componems while the O‘Eher components
of R4, ,, of which, by assumption, there are )

(m=1)*=3(m—1)+4)/2—1=(m"—5m +6)/2,

are only shghﬂy deformed—so that the number of components of R4, remains

equal to (m -5m+6)/24+m~—1= (m —3m+4)/2. We have thus obtained
an M-curve of degree m . This curve is transversal to RL, it intersects RL
in RLNRB,, (see 1.5.A), and, since RL N RB, 1s contained in one of the
components of the set RL\ RB,__ , it follows that the intersection points of
our curve with RL are all in the same component of the curve and are in the
same order as on RL (Figure 7). @

The proof that the left inequality in (1) is best possible, i.e., that there is a
curve with the minimum number of components 18 much simpier For example,
we can take the curve given by the equa‘uon xo + x + xz = 0. Its set of real
points is obviously empty when m is even, and when m is odd the set of

real points is homeomorphic to RP' (we can get such a homeomorphism onto
RP! , for example, by projection from the point (0:0:1)).
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By choosing the auxiliary curves B, in different ways in the construction of
M -curves in the proof of Theorem 1.6.B, we can obtain curves with any inter-
mediate number of components. However, 10 complete the proof of Theorem
1.6.A in this way would be rather tedious, even though it would not require
any new ideas. We shall instead turn to a less explicit, but simpler and more
conceptual method of proof, which is based on objects and phenomena not
encountered above.

1.7. Digression; the space of real projective plane curves. By the definition
of the set of all real projective algebraic plane curves of degree m , they form
a real projective space of dimension m(m + 3)/2. The homogeneous coordi-
nates in this projective space are the coefficients of the polynomials defining the
curves. We shall denote this space by the symbol RC, . Its only difference with

the standard space RP"M /2 s the unusual numbering of the homogeneous
coordinates. The point is that the coefficients of a homogeneous polynomial in
three variables have a natural double indexing by the exponents of the mono-
mials:

B m—i—j i _J
a(xy, X, X;) = E a;;%g X, X5 .
i,j20
i+j<m

We let RNC,~denote the subset of RC corresponding to the real nonsin-
gular curves. It is obviously open in RC, . Moreover, any nonsingular curve
of degree m has a neighborhood in RNC, consisting of isotopic nonsingular
curves. Namely, small changes in the coefficients of the polynomial defining the
curve lead to polynomials which give smooth sections of a tubular fibration of
the original curve. This is an easy consequence of the implicit function theorem;
compare with 1.5.A condition (3).

Curves which belong to the same component of the space RNC, of nonsin-
gular degree m curves are isotopic—this follows from the fact that nonsingular
curves which are close to one another are isotopic. Suppose that we have an
isotopy in RNC , of the set of real points of a curve in RP? which consists
of the set of real points of curves of degree m1. Such an isotopy is said to be
rigid. This definition naturally gives rise to the following classification problem,
which is every bit as classical as problems 1.1.A and 1.1.B.

1.7.A. Rigid isotopy classification problem: Classify the nonmsingular curves
of degree m up to rigid isotopy, i.e. study the partition of the space RNC,, of
nonsingular degree m curves inio its components.

If m < 2, it is well known that the solution of this problem is identical to
that of problem 1.1.B. Isotopy also implies rigid isotopy for curves of degree 3
and 4. This was known in the last century; however, we shall not discuss this
further here, since it has little relevance to the theme of the article. At present
problem 1.7.A has been solved for m < 6.

Although this section is devoted to the early stages of the theory, I cannot
resist commenting in some detail about a more recent result. In 1978, V. A.
Rokhlin [23] discovered that for m > 5 isotopy of nonsingular curves of degree
m no longer implies rigid isotopy. The simplest example is given in Figure 8,
which shows two curves of degree 5. They are obtained by slightly perturbing
the very same curve in Figure 4 which is made up of two conics and a line.
It becomes clear that these curves are not rigid isotopic if we note that the
first curve has an oval lying inside a triangle which does not intersect the one-
sided component and which has its vertices inside the other three ovals, and
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FIGURE 8

the second curve does not have such an oval—but under a rigid isotopy the
oval cannot leave the triangle, since that would entail a violation of Bézout’s
theorem.

We now examine the subset of RC,, made up of real singular curves.

It is clear that a curve of degree m has a singularity at (1:0:0) if and only

if its polynomial has zero coefficients of the monomials Xy 5 Xy _lxl , Xg _lxz .
Thus, the set of real projective plane curves of degree m having a singularity
at a particular point forms a subspace of codimension 3 in RC,, .

We now consider the space S of pairs of the form (p, C), where p RP’ ,
CeRC, ,and p is a singular point of the curve C. S is clearly an algebraic

subvariety of the product RP? x RC . The restriction to S of the projection
m

RP? x RC, — RP? isa locally trivial fibration whose fiber is the space of curves
of degree m with a singularity at the corresponding point, i.e., the fiber is a
projective space of dimension m(m+3)/2~3. Thus, S is a smooth manifold
of dimension m(m + 3)/2 — 1. The restriction S — RC, of the projection

RP? x RC,, — RC  has as its image precisely the set of all real singular curves
of degree m, i.e., RC, \RN C,, . Welet RSC =~ denote this image. Since it is
the image of a (m(m + 3)/2 — 1)-dimensional manifold under smooth map, its
dimension is at most m(m + 3)/2 — 1. On the other hand, its dimension is at
least equal m(m+3)/2—1, since otherwise, as a subspace of codimension > 2 ,
it would not partition the space RC , and all nonsingular curves of degree m
would be isotopic.

Using an argument similar to the proof that dimRSC < m(m+3)/2-1,
one can show that the set of curves having at least two singular points and the
~set of curves having a singular point where the matrix of second derivatives
of the corresponding polynomial has rank < 1, each has dimension at most
m(m + 3)/2 — 2. Thus, the set RSC, has an open everywhere dense subset
consisting of curves with only one singular point, which is a nondegenerate
double point (meaning that at this point the matrix of second derivatives of the
polynomial defining the curve has rank 2). This subset is called the principal
part of the set RSC, . Itis a smooth submanifold of codimension 1 in RC, .
In fact, its preimage under the natural map S — RC, is obviously an open
everywhere dense subset in the manifold S , and the restriction of this map
to the preimage is easily verified to be a one-to-one immersion, and hence a
smooth imbedding.

There are two types of nondegenerate real points on a plane curve. We say
that a nondegenerate real double point (SN £,) on acurve A4 is solitary
if the matrix of second partial derivatives of the polynomial defining A4 has
either two nonnegative or two nonpositive eigenvalues at the point (Sos €15 &y).
A solitary nondegenerate double point of A4 is an isolated point of the set RA .
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In general, a singular point of 4 which is an isolated point of the set R4 will be
called a solitary real singular point. The other type of nondegenerate real double
point is a crossing; crossings were discussed in §1.5 above. Corresponding to
this division of the nondegenerate real double points into solitary points and
crossings, we have a partition of the principal part of the set of real singular
curves of degree m into two open sets.

If a curve of degree m moves as a point of RC,, along an arc which has
4 transversal intersection with the half of the principal part of the set of real
singular curves consisting of curves with a solitary singular point, then the set
of real points on this curve undergoes a Meorse modification of index 0 or 2
(i.e., either the curve acquires a solitary double point, which then becomes a
new oval, or else one of the ovals contracts to a point (a solitary nondegenerate
double point) and disappears). In the case of a transversal intersection with
the other half of the principal part of the set of real singular curves one has a
Morse modification of index 1 (i.e., two arc®of the curve approach one another
and merge, with a crossing at the point where they come together, and then
immediately diverge in their modified form, as happens, for example, with the
hyperbola in the family of affine curves of degree 2 given by the equation xy =
at the moment when ¢ =0).

A line in RC, is called a (real) pencil of curves of degree m. If a and b
are polynomials defining two curves of the pencil, then the other curves of the
pencil are given by polynomials of the form Aa + ub with 4, p € R\ 0.

By the transversality theorem, the pencils which intersect the set of real sin-
gular curves only at points of the principal part and only transversally form an
open everywhere dense subset of the set of all real pencils of curves of degree
m.

1.8. End of the proof of theorem 1.6.A. In §1.6 it was shown that for any
m there exist nonsingular curves of degree m with the minimum number

(1—(—1)")/2 or with the maximum number (m2 —3m +4)/2 of components.
Nonsingular curves which are isotopic to one another form an open set in the
space RC, of real projective plane curves of degree m (see §1.7). Hence, there
exists a real pencil of curves of degree m which connects a curve with mini-
mum number of components to a curve with maximum number of components
and which intersects the set of real singular curves only in its principal part and
only transversally. As we move along this pencil from the curve with minimum
number of components to the curve with maximum number of components, the
curve only undergoes Morse modifications, each of which changes the number
of components by at most 1. Consequently, this pencil includes nonsingular
curves with an arbitrary intermediate number of components. @

1.9. Isotopy types of Harnack M -curves. Harnack’s construction of M-
curves in [35] differs from the construction in the proof of Theorem 1.6.B in
that a conic, rather than a curve of degree 5, is used as the original curve.
Figure 9 shows that the M-curves of degree < 5 which are used in Harnack’s
construction [35]. For m > 6 Harnack’s construction gives M-curves with the
same isotopy types as in the construction in §1.6.

In these constructions one obtains different 1sotopy types of M-curves de-
pending on the choice of auxiliary curves (more precisely, depending on the
relative location of the intersections RB_NRL). Recall that in order to obtain
M-curves it is necessary for the intersection RB, NRL to consist of m points
and lie in a single component of the set RL\RB, ,, where for odd m this



1072

component must contain RB, _, NRL. It is easy to see that the isotopy type
of the resulting M-curve of degree m depends only on the choice of the com-
ponents of RL\ RB, | for even r < m where the intersections R N RB, are
to be found. If we take the components containing RL N RB,_, foreven r as
well, then the degree m M-curve obtained from the construction has 1sotopy
type (JU(m* ~3m+2)/2) for odd m and ((3m° —6m) /81L1{(m* —6m+8)/8))
for even m. In Table 2 we have listed the isotopy types of M-curves of degree

0. YA. VIRO

—
£
\_/

FIGURE 9

< 10 which one obtains from Harnack’s construction using all possible B .

TABLE 2

m Isotopy types of Harnack M-curves of degree m
2 (1

!
3 (JILT1)

!

4 (4)

!
5 {(JLL6)

l
6 / (91L1(1)) \
7 (JIL15) (JAI3L1())

1 i
8 (181L1(3)) Q7L L12Y
9 (J128) (JU2411(3)) (JA261L11)) (JU23I1(1IL1(2))
i ! ! !

10 (304L1{6)) (29112(3}) (2941 (1Y 1L 1(5)) (28LLI(1)IL1(2) 11 (3))
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FiGure 10. Construction of even degree curves by Hilbert’s
method. Degrees 4 and 6.

FiGure 11. Construction of odd degree curves by Hilbert’s
method. Degrees 3 and 5.

In conclusion, we mention two curious properties of Harnack M-curves, for

which the reader can easily furnish a proof.
1.9.A. The depth of a nesting in a Harnack M-curve is at most 2.

JEF ) =n ~.p + 1. 'Hence, one should pay special attention to the numbers
p and n. (It i1s amazing that essentigllyv these concideratiome wors ctafad fa o
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By analyzing the constructions, Ragsdale [44] made the following observa-
tions.
1.11.A. (compare with 1.9A and B). For any Harnack M-curve of even degree
m, ~
p=0mt—6m+8)/8, n=(m —6m+8)/8.
1.11.B. For any Hilbert M-curve of even degree m

(m” — 6m +16)/8 <p < (3m” — 6m +8)/8,

(m’ —6m+8)/8 < n<(3m" —6m)/8.
This gave her evidence for the following conjecture.

1.11.C. RAGSDALE CONJECTURE. For any curve of even degree m,

p<(Gm—6m+8)/8, n<(3m —6m)/8.

In §5 we shall return to this very first conjecture of a general nature on the
topology of real algebraic curves. At this point we shall only mention that several
weaker assertions have been proved and examples have been constructed which
made it necessary to weaken the second inequality by 1. In the weaker form
the Ragsdale conjecture has not yet been either proved or disproved.

The numbers p and n introduced by Ragsdale occur in many of of the prohi-
bitions that were subsequently discovered. While giving full credit to Ragsdale
for her insight, we must also say that, if she had looked more carefully at the
experimental data available to her, she should have been able to find some of
these prohibitions. For example, it is not clear what stopped her from making
the conjecture which was made by Gudkov [9] in the late 1960°s. Proof of these
conjectures marked the beginning of the most recent stage in the development
of the topology of real algebraic curves.

1.12. Generalizations of Harnack’s and Hilbert’s methods. Brusotti. Wiman.
Ragsdale’s work [44] was partly inspired by the erroneous paper of Halbrat,
containing a proof of the false assertion that an AM-curve can be obtained by
means of a classical small perturbation (see §1.5) from only two M-curves, one
of which must have degree < 2. If this had been true, it would have meant that
an inductive construction of M-curves by classical small perturbations starting
with curves of small degree must essentially be either Harnack’s method or
Hilbert’s method.

In 1910-1917, L. Brusotti showed that this is not the case. He found in-
ductive constructions of M-curves based on classical small perturbation which
were different from the methods of Harnack and Hilbert. ,

Before describing Brusotti’s constructions, we need some definitions. A sim-
ple arc X in the set of real points of a curve 4 of degree m is said to be a base
of rank p if there exists a curve of degree p which intersects the arc in pm
(distinct) points. A base of rank p is clearly also a base of rank any multiple
of p (for example, one can obtain the intersecting curve of the corresponding
degree as the union of several copies of the degree p curve, each copy shifted
slightly).

An M-curve A is called a generating curve if it has disjoint bases X and Y
whose ranks divide twice the degree of the curve. An M-curve 4, of degree
my is called an auxiliary curve for the generating curve A4 of degree m with
bases X and Y if the following conditions hold:

a) The intersection R4 NRA, consist of mm, distinct points and lies in a
single component K of R4 and in a single component K of R4,.
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b) The cyclic orders determined on the intersection RA N RA, by how it is
situated in K and in K, are the same.

c) X CRA\R4,.

d) If X 1is a one-sided curve and m, = mod 2, then the base X lies outside
the oval K.

e) The rank of the base X is a divisor of the numbers m + my and 2m,
and the rank of Y is a divisor of 2m + my and 2m .

An auxiliary curve can be the empty curve of degree 0. In this case the rank
of X must be a divisor of the degree of the generating curve.

Let 4 be a generating curve of degree m , and let A, be a curve of degree m,
which is an auxiliary curve with respect to 4 and the bases X and Y . Since the
rank of X divides m + m, , we may assume that the rank is equal to m + my .
Let C be a real curve of degree m + m, which intersects X in m(m + m,)
distinct points. It is not hard to verify that a classical small perturbation of the
curve AU A, by means of L will give an M-curve of degree m -+ m, , and
that this M-curve will be an auxiliary curve with respect to 4 and the bases
obtained from Y and X (the bases must change places). We can now repeat
this construction, with A, replaced by the curve that has just been constructed.
Proceeding in this way, we obtain a sequence of M-curves whose degree forms
an arithmetic progression: km + mgy with k = 1,2,.... This is called the
construction by Brusotti’s method, and the sequence of M-curves is called a
Brusotti series.

Any simple arc of a curve of degree < 2 is a base of rank 1 (and hence of
any rank). This is no longer the case for curves of degree < 3. For example, an
arc of a curve of degree 3 is a base of rank 1 if and only if it contains a point
of inflection. (We note that a base of rank 2 on a curve of degree 3 might not
contain a point of inflection: it might be on the oval rather than on the one-
sided component where all of the points of inflection obviously lie. A curve of
degree 3 with this type of base of rank 2 can be constructed by a classical small
perturbation of a union of three lines.)

If the generating curve has degree 1 and the auxiliary curve has degree 2,
then the Brusotti construction turns out to be Harnack’s construction. The
same happens if we take an auxiliary curve of degree | or 0. If the generating
curve has degree 2 and the auxiliary curve has degree 1 or 2 (or 0), then the
Brusotti construction is the same as Hilbert’s construction.

In general, not all Harnack and Hilbert constructions are included in Bru-
sotti’s scheme; however, the Brusotti construction can easily be extended in
such a way as to be a true generalization of the Harnack and Hilbert construc-
tions. This extension involves allowing the use of an arbitrary number of bases
of the generating curve. Such an extension is particularly worthwhile when the
generating curve has degree < 2, in which case there are arbitrarily many bases.

It can be shown that Brusotti’s construction with generating curve of degree
I and auxiliary curve of degree < 4 gives the same types of M-curves as
Harnack’s construction. But as soon as one uses auxiliary curves of degree 5,
one can obtain new isotopy types from Brusotti’s construction. It was only in
1971 that Gudkov [11] found an auxiliary curve of degree 5 that did this. His
construction was rather complicated, and so I shall only give some references
[11], [12], [33] and present Figure 12, which illustrates the location of the degree
5 curve relative to the generating line. Even with the first stage of Brusotti’s
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FIGURE 14. In the construction by Hilbert’s method,
we keep track of the locations relative to a fixed line
A . The union of two conics is perturbed by means of a
4-tuple of lines. A curve of degree 4 is obtained. We
add one of the original conics to this curve, and then
perturb the union.

construction, i.e., the classical small perturbation of the union of the curve and
the line, one obtains an M-curve (of degree 6) which has isotopy type (51L1(5)),
an isotopy type not obtained using the constructions of Harnack and Hilbert.
Such an M-curve of degree 6 was first constructed in a much more complicated
way by Gudkov [9], [10] in the late 1960’s.

In Figures 13 and 14 we show the construction of two curves of degree 6 which
are auxiliary curves with respect to a line. In this case the Brusotti construction
gives new isotopy types beginning with degree 8.

In the Hilbert construction we keep track of the location relative to a fixed
line 4. The union of two conics is perturbed by means of a quadruple of lines.
One obtains a curve of degree 4. To this curve one then adds one of the original
conics, and the union is perturbed.

In numerous papers by Brusotti and his students, many series of Brusotti M-
curves were found. Generally, new isotopy types appear in them beginning with
degree 9 or 10. In these constructions they paid much attention to combinations
of nestings of different depths—a theme which no longer seems to be very
interesting. An idea of the nature of the results in these papers can be obtained
from Gudkov’s survey [12]; for more details, see Brusotti’s survey [34] and the
papers cited there,
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An important variant of the classical constructions of M-curves, of which
we shall need to make use in the next section, is not subsumed under Brusotti’s
scheme even in its extended form. This variant, proposed by Wiman [48], con-
sists in the following. We take an M-curve A of degree k having base X of
rank dividing k; near this curve we construct a curve A" transversally inter-
secting 4 1n k? points of X, after which we can subject the union AU A4’ to
a classical small perturbation, giving an M-curve of degree 2k (for example, a
perturbation by means of an empty curve of degree 2k) . The resulting M-curve
has the following topological structure: each of the components of the curve 4
except for one (i.e., except for the component containing X) is doubled, i.e.,
is replaced by a pair of ovals which are each close to an oval of the original
curve, and the component containing X gives a chain of k? ovals. This new
curve does not necessarily have a base, so that in general one cannot construct
a series of M -curves in this way.

1.13. The first prohibitions not obtained from Bézout’s theorem. The tech-
niques discussed above are, in essence, completely elementary. As we saw (§1.4),
they are sufficient to solve the isotopy classification problem for nonsingular pro-
jective curves of degree < 5. However, even in the case of curves of degree
6 one needs subtler considerations. Not all of the failed attempts to construct
new isotopy types of M-curves of degree 6 (after Hilbert’s 1891 paper [36],
there were two that had not been realized: (91L1(1)) and (11L1(9))) could be
explained on the basis of Bézout’s theorem. Hilbert undertook an attack on
M-curves of degree 6. He was able to grope his way toward a proof that iso-
topy types cannot be realized by curves of degree 6, but the proof required a
very involved investigation of the natural stratification of the space RC, of real
curves of degree 6. In [45], Rohn, developing Hilbert’s approach, proved (while
stating without proof several valid technical claims which he needed) that the
types (11) and (1(10)) cannot be realized by curves of degree 6. It was not
until the 1960’s that the potential of this approach was fully developed by Gud-
kov. By going directly from Rohn’s 1913 paper [45] to the work of Gudkov,
I would violate the chronological order of my presentation of the history of
prohibitions. But in fact I would only be omitting one important episode, to be
sure a very remarkable one: the famous work of I. G. Petrovskii [41], [42] in
which he proved the first prohibition relating to curves of arbitrary even degree
and not a direct consequence of Bézout’s theorem.

1.13.A. PETROVSKII'S THEOREM ([41], [42]). For any nonsingular real projec-
tive algebraic plane curve of degree m = 2k

~3k(k—1)<p-n<sk(k—1)+1.

(Recall that p denotes the number of even ovals on the curve (i.e., ovals
each of which is enveloped by an even number of other ovals, see §1.11), and
n denotes the number of odd ovals.) '

Petrovskii’s proof was based on a technique that was new in the study of the
topology of real curves: the Euler-Jacobi interpolation formula. Petrovskii’s
theorem was generalized by Petrovskii and Oleinik [18] to the case of varieties
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of arbitrary dimension, and by Oleinik [17] to the case of curves on a surface.,
More about the proof and the influence of Petrovskii’s work on the subsequent
development of the subject can be found in Kharlamov’s survey [26] in Petro-
vskii’s collected works. I will only comment that in application to nonsingular
projective plane curves, the full potential of Petrovskii’s method, insofar as we
are able to judge, was immediately realized by Petrovskii himself.

We now turn to Gudkov’s work. In a series of papers in the 1950°s and 1960,
he completed the development of the techniques needed to realize Hilbert’s
approach to the problem of classifying curves of degree 6 (these techniques
were referred to as the Hilbert-Rohn method by Gudkov), and he used the
techniques to solve this problem (see [9]). The answer turned out to be elegant
and stimulating.

1.13.B. GUDKOV’S THEOREM [9]. The 56 isotopy types that follow, and no
others, can be realized by nonsingular real projective algebraic plane curves of
degree 6.

(9AL1(1)) (SAL1(5)) (11L1(9))
(10) (81L1(1)) (SLI¢4))  (4LL1(5)) (LLE8))  (1(9))
(O (LKD) (611(2)) (SLI(3)) (4lL1(4)) (3LI(S)) (211(6)) (ILI(7)) (1(8))
(8) (LKD) (SL1(2)) (4l1(3)) (31L1(4)) (2L1(5)) (1LI(6)) (1(7))

(7) (SLKL) (4l142))  (BLI3)  (21L1(4))  (1LI(5))  (1(6))

(6) (4LI(1)) (3L1(2)) (2L1(3)) (1) (1(5))

(5) (LK) (2L1(2)) (1L13)) (1¢4))
4y L)) (L)) (1(3))

(3) (LK) (12)) (L{(1)))
(2) (K1)
(n
(@)

This result, along with the available examples of curves of higher degree, led
Gudkov to the following conjectures.

1.13.C. GUDKOV’S CONJECTURES [9]. (i) For any M-curve of even degree m =
2k

p_n;::kz mod §.

(ii) For any (M — 1)-curve of even degree m = 2k
p~nf—_k2:}:1 mod § .

While attempting to prove conjecture 1.13.C(i), V. 1. Arnol'd [1] discovered
some striking connections between the topology of a real algebraic plane curve
and the topology of its complexification. Although he was able to prove the
conjecture itself only in a weaker form (modulo 4 rather than 8), the new point
of view he introduced to the subject opened up a remarkable perspective, and
in fact immediately brought fruit: in the same paper [1] Arnol'd proved sev-
eral new prohibitions (in particular, he strengthened Petrovskii’s inequalities
1.13.A). The full conjecture 1.13.C(i) and its high-dimensional generalizations
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were proved by Rokhlin [21], based on the connections discovered by Arnol'd
in [1]. T am recounting this story briefly here only to make the preliminary
exposition more complete. For details and information about further work, see
Gudkov’s survey [12]. To learn about the many results obtained using methods
from the modern topology of manifolds and complex algebraic geometry (the
use of which was begun by Arnol'd in [1]), the reader is referred to the surveys
[471, [23], [2], [25], [26], [8].

§2. Prohibitions

In this section we describe the current state of prohibitions on the topology
of real projective algebraic plane curves of a given degree. We do this to con-
vey a general impression rather than anything more serious: although we give
careful, and when possible complete statements of results, the proofs are hardly
discussed at all. See the above surveys and the papers cited there.

2.1. Real algebraic curves from a complex viewpeint. According to a tradition
going back to Hilbert, for a long time the main question concerning the topology
of real algebraic curves was considered to be the determination of which isotopy
types are realized by nonsingular real projective algebraic plane curves of given
degree (i.e., problem 1.1.B above). However, as early as 100 years ago F. Klein
[39] posed the question more broadly. He was also interested in how the isotopy
type of a curve is connected with the way its set RA of real points is situated in
the set CA of complex points (i.e., the set of points of the complex projective
plane whose homogeneous coordinates satisfy the equation defining the curve
A).

The set CA is an oriented smooth two-dimensional submanifold of the com-
plex projective plane CP? which is invariant under the complex conjugation
involution conj: cP’ — CP*: (zg iz, 0 2y) = (2o, 2y Z,). The curve R4
is the set of fixed points of the restriction of this involution to CA. The real
curve may or may not divide CA. In the first case we say that A is a dividing
curve or a curve of type I, and in the second case we say that it is a nondividing
curve or a curve of fype IL In the first case R4 divides CA into two connected
pieces. The natural orientations of these two halves determine two opposite orl-
entations on RA (which is the common boundary); they are called the complex
orientations on the curve.

The scheme of the relative location of the ovals of a curve is called the real
scheme of the curve. If along with the real scheme we indicate the type of the
curve, and in the case of type I also the complex orientations, then we call this
information the complex scheme of the curve.

We say that the real scheme of a curve of degree m is of type I (of type 1) if
any curve of degree m having this real scheme is a curve of type I (of type II).
Otherwise (i.e., if there exist both curves of type I and curves of type IT with
the given real scheme), we say that the real scheme is of indeterminate type.

The division of curves into types is due to Klein [39]. It was Rokhlin [22]
who introduced the complex orientations into the study of the topology of real
algebraic curves. He also introduced the notion of a complex scheme and its
type [23]. These ideas occupy a central place in the contemporary development
of the subject. In recent years our point of view concerning the problems in
the topology of real algebraic varieties has broadened so that the basic object is
no longer the real manifolds themselves, but rather the real manifolds together
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with their location in their complexification. This viewpoint is also largely due
to Rokhlin.

2.2, Flexible curves. A large part of all of the known prohibitions follow
from a relatively small number of purely topological properties of algebraic
curves. Hence, along with algebraic curves it is useful to consider objects which
imitate them in the topological sense. :

An oriented smooth closed and connected two-dimensional submanifold M
of the complex projective plane CP? is called a Hexible curve of degree m if:

(i) it realizes a class m[CP'] € H,(CP%);

(i1) its genus is equal to (m — 1)(m — 2)/2;

(1ii) it is invariant under conj;

(iv) its field of tangent planes on M NRP® can be deformed in the class of
planes invariant under conj into the field of lines in CP?> which are tangent to
MNRP*.

A flexible curve intersects RP? in a smooth one-dimensional submanifold,
which is called the real part of the flexible curve. Obviously, the set of complex
points of a nonsingular algebraic curve of degree m is a flexible curve of degree
m . Everything said in the last subsection about algebraic curves and their (real
and complex) schemes carries over without any changes to the case of flexible
curves. We say that a prohibition on the schemes of curves of degree m comes
Jfrom topology if it can be proved for the schemes of flexible curves of degree
m . The classification that we have for the schemes of curves of degree < 6
can be obtained from prohibitions that come from topology, i.e., for m < 6 all
prohibitions come from topology.

2.3. Prohibitions on the real schemes of degree m curves which come from
topology. In this subsection I will list all such prohibitions that I know of at this
point, including the ones already referred to above, but excluding prohibitions
which follow from the other prohibitions given here or from the prohibitions
on the complex schemes which are given in the next subsection.

2.3.A. A curve is one-sided if and only if it has odd degree.

This fact was given before as a corollary of Bézout’s theorem (see §1.3). But it
also holds for flexible curves. The same can be said about Harnack’s inequality,
which is undoubtedly the best known and most important prohibition.

2.3.B. HARNACK’S INEQUALIT Y The number of components of the set of real
points of a curve of degree m is at most (m — 1)(m —2)/2 + 1.

In prohibitions 2.3.C-2.3.M the degree m of the curve is even: m = 2k .

Extremal properties of Harnack's inequality.

2.3.C. THE GUDKOV-ROKHLIN CONGRUENCE. [n the case of an M-curve (L.e.,
when p+n=(m-—1)(m-2)/2+1),

2
p—n=k" modS§.
2.3.D. THE GUDKOV-KRAKHNOV-KHARLAMOV CONGRUENCE. In the case of
an (M — 1)-curve (i.e., when p+n = (m— 1)(m—2)/2),
p—nzkzil mod 8.
The Euler characteristic of a component of the complement of a curve in

RP? is called the characteristic of the oval which bounds the component from
outside.

2.3.E. FIDLER’S CONGRUENCE. If the curve is an M-curve, m = 4 mod 8, and
every even oval has even characteristic, then

p—n=-4 modl6.
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2.3.F. NIKULIN'S CONGRUENCE. If the curve is an M-curve, m = 0mod38,
and every even oval has characteristic divisible by 2", then

either p —n=0 mod 2

orelse p—n =47y,

where g > 2 and ) = 1mod?2.
9.3.G. NIKULIN'S CONGRUENCE. If the curve is an M-curve, m = 2mod4,
and every odd oval has characteristic divisible by 2", then

p—n=1 m0d2r+3.

We let p+ denote the number of even ovals with positive characteristic, we
let po denote the number of even ovals with zero characteristic, and we let
p~ denote the number of even ovals with negative characteristic. We similarly
define n', n° and n~ for the odd ovals; and we let /", I and I~ be the
corresponding numbers for both even and odd ovals together.

Refined Petrovskil inequalities.

23H. p—n_ <3k’ —3k+2)/2.

230 n—p < (3k>=3k)/2.

Refined Arnol'd inequalities.

233, p +p° < (k- Dk —=2)/2+ (1 + (-15/2.

23K, n~ +n’ < (k—Dk=2)/2.

Extremal properties of the refined Arnol' d inequalities.

23.L. If k isevenand p~ +pl=(k-1k-2)/2+1, then p~ =p =0.

93 M. If k is odd and n~ +n° = (k= 1)(k =2)/2, then n~ =n" =0 and
there is only one outer oval in all.

Besides Harnack’s inequality, we know only one prohibition coming from
topology which extends to real schemes of both even and odd degree.

9.3.N. THE VIRO-ZVONILOV INEQUALITY. If h is a divisor of m which is a
power of an odd prime, and if m # 4, then

< (m= 3 A+ (m - n*y4ah" .

If m is even, this inequality follows from 2.3.J-L.

9 3.0. EXTREMAL PROPERTY OF THE VIRO-ZVONILOV INEQUALITY. If I+
1°=(m - 3)7‘/4 + (m2 - hz)/4h2 where h is a divisor of m and a power of an
odd prime p, then there exist ay, ..., &, €Z, and components B, ..., B, of

the complement RPZ\RA with y(B,) == x(B,)=0, such that the boundary
of the chain Z';:‘ o,[B;le CZ(RPZ; Z,) is [RA] € Cl(RPz; Z,).

9 4. Prohibitions on the complex schemes of degree m curves which come
from topology. Recall that | denotes the total number of ovals on the curve.

2.4.A. If the curve is a partitioning curve, then [ =[m/2]mod?2.

An injective pair of ovals (i.e., a pair of ovals one of which 1s enveloped by
the other) on an oriented topological plane curve is said to be positive if the
orientations of the ovals determined by the orientation of the entire curve are
induced by an orientation of the annulus bounded by the ovals. Otherwise, the
injective pair of ovals is said to be negative. It is clear that the division of pairs
of ovals into positive and negative pairs does not change if the orientation of
the entire curve is reversed; thus, the injective pairs of ovals on a curve of type 1
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are divided into positive and negative pairs relative to the complex orientations
of the curve. We let IT" denote the number of positive pairs, and II~ denote
the number of negative pairs.

2.4.B. ROKHLIN’S FORMULA. If the degree m is ever and the curve is of type
I, then

2O~ ) =1 —m*/4.

The ovals of an oriented curve can be divided into positive and negative ovals.
Namely, we consider the Mobius strip which is obtained when an inner oval is
removed from RP?. If the integral homology classes which are realized in this
strip by the oval and by the doubled one-sided component with orientations
determined by the orientation of the entire curve have different signs, then we
say that the oval is positive, otherwise, we say that it is negative. In the case of a
two-sided oriented curve, only the nonouter ovals can be divided into positive
and negative ovals. Namely, a nonouter oval is said to be positive if it forms
a positive pair with the outer oval which envelops it; otherwise, it is said to
be negative. As in the case of pairs, if the orientation of the curve is reversed,
the division of ovals into positive and negative ones does not change. We let
A" denote the number of positive ovals on a curve, and we let A~ denote the
number of negative ones.

2.4.C. THE ROKHLIN-MISHACHEV FORMULA. If m is odd and the curve is of
type 1, then

AT AT 42T - ) =1 — (m° — 1)/4.

Extremal properties of Harnack’s inequality.

2.4.D. Any M-curve is of type 1.

2.4.E. THE KHARLAMOV-MAREN CONGRUENCE. Any (M - 2)-curve of even
degree m = 2k with p —n = (k2 +4)mod 8 is of type 1.

Extremal properties of the refined Arnol'd inequalities.

24F.If m=0mod4 and p— +p0 = (m2 —6m+16)/8, then the curve is of
type 1.

2.4.G. If m=0mod4 and n~ +n’ = (m2 — 6m + 8)/8, then the curve is of
type 1.

Congruences.

2.4.H. THE NIKULIN-FIDLER CONGRUENCE. If m = Omod4, the curve is of
type 1, and every even oval has even characteristic, then p —n = 0mod8§.

I will state two more congruences, which are conseguences of Rokhlin’s for-
mula 2.4.B.

2.4.1. ARNOL'D’S CONGRUENCE. If m is even and the curve is of type 1, then
p—hn= m2/4m0d4,

2.4.J. SLEPIAN’S CONGRUENCE. If m is even, the curve is of type 1, and every
odd oval has even characteristic, then p — n = m* /4dmod 8 .

We let # and v denote the number of even and odd nonempty ovals, re-
spectively, bounding from the outside those components of the complement of
the curve which have the property that each of the ovals bounding them from
the inside envelops an odd number of other ovals.

Rokhlin’s inequalities.

2.4.K. If the curve is of type I and m = Omod 4, then

4y+p—n§(m2 —6m 4+ 16)/2.
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2.4.L. If the curve is of type 1 and m = 2mod4, then
4n+n——p§(m2w6m+ 14)/2.

95 Prohibitions not proved for flexible curves. As a rule, these prohibitions
are hard to visualize, in the sense that it is difficult to state in full generality
the results obtained by some particular method. To one extent or another all of
them are consequences of Bézout’s theorem.

To state the simplest of these prohibitions we introduce the following nota-
tion. We let &, denote the maximum number of ovals occurring in a union of

< r nestings. We let h: denote the maximum number of ovals in a set of ovals
contained in a union of <7 nestings but not containing an oval which envelops
all of the other ovals in the set. With this notation Theorems 1.3.C and 1.3.D
can be stated as follows: ;

25.A. hy<m/2;in particular, if h, =[m/2], then | =[m/2].

25.B. hy < m; in particular, if Wy, =m, then [ =m.

These statements suggest a whole series of similar assertions. We let c(q)
denote the greatest number ¢ such that there is a connected curve of degree
g passing through any ¢ points of RP? in general position. It is known that
c(l)y=2, c(2)y=5, c(3) =8, c(4)=13.

2.5.C (generalization of Theorem 2.5.A). If r < c(q) with ¢q odd, then

h, + [c(g)—r/2] < gm/2.
In particular, if hc(q),_l =[qm/2], then | = [gm/2].
2.5.D (generalization of Theorem 2.5.B). If r < c(q) with q even, then

K+ [(c(g) —1r)/21 < gm/2.

In particular, if hé(q)—l =qm/2, then [ = gm/2.
We have the following two restrictions on complex schemes which are similar

to Theorem 2.5.A and B. However, 1 do not know of analogues of 2.5.C and D.
28.E. If h, =[m/2], then the curve is of type 1.

2.5.F. If h, = m, then the curve is of type 1.

Here 1 will not discuss the methods of proof for prohibitions which do not
come from topology. See [8], [7]. I will only give some statements of results
which have been obtained for curves of small degree.

2.5.G. There is no curve of degree 1 with the real scheme (J11(14)).

2.5.H. If an M-curve of degree 8 has real scheme {(alL1({B)1L1(y)111(d)) with
nonzero f,y and &, then B,7 and 6 are odd.

2.5.1. If an (M — 2)-curve of degree 8 with p —n = 4mod8 has real
scheme {(all1(B)1L1(y)1L1{(3)) with nonzero B,y and &, then two of the numbers
B,v,d are odd and one is even.

2.6. Sharpness of the inequalities. The arsenal of constructions in §1 and
the supply of curves constructed there, which are very modest from the point
of view of classification problems, turm out to be quite rich if we are interested
in the problem of sharpness of the inequalities in §2.3.

The Harnack curves of even degree m with scheme

(3m* — 6m) /811 (m" — 6m +8)/8))

which were constructed in §1.6 (see also §1.9) not only show that Harnack’s in-
equality 2.3.B is best possible, but also show the same for the refined Petrovskii
inequality 2.3.H.
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One of the simplest variants of Hilbert’s construction (see §1.10) leads to
the construction of a series of M -curves of degree m = 2mod4 with scheme
((m2 — 6m + 8)/8&1((3m2 — 6m)/8)). This proves that the refined Petrovskii
inequality 2.3.1 for m = 2mod 4 is sharp. If m = 0mod4, the methods 1n §1
do not show that this inequality is best possible. That fact will be proved below
in §5.4.

The refined Arnol'd inequality 2.3.J is best possible for any even m. If
m = 2mod 4, this can be proved using the Wiman AM-curves (see the end of
§1.12). If m = Omod4, it follows using curves obtained from a modification
of Wiman’s construction: the construction proceeds in exactly the same way,
except that the opposite perturbation is taken, as a result of which one obtains a
curve that can serve as the boundary of a tubular neighborhood of an M -curve
of degree n1/2.

The last construction (doubling), if applied to an M-curve of odd degree,
shows that the refined Arnol'd inequality 2.3.K is best possible for m = 2mod 4.
If m = Omod4, almost nothing is known about sharpness of the inequality
2.3.K, except that fer-m = 8 -the right side can be lowered by 2.

CHAPTER 2
Constructions Using Curves with Complicated Singularities
and Their Perturbations

§3. Perturbations of curves with semi-quasihomogeneous singularities

The classical constructions in the topological theory of real algebraic curves
(i.e., the constructions considered above) proceed according to the following
general scheme. First one constructs two nonsingular curves which are transver-
sal to one another, and then one slightly perturbs their union to remove the
singularities. In his classification of curves of degree 6, Gudkov departed from
this scheme; however, as before, all of the curves that he perturbed had only
nondegenerate double points. There are two circumstances which stand in the
way of allowing more complicated singularities when constructing real algebraic
curves with prescribed topology. In the first place, if the singularities are not
very complicated, they give nothing more than one obtains with nondegener-
ate double points—to get something new one must go to nondegenerate 5-fold
multiple points or to points of tangency of three branches. In the second place,
one needs a special technique in order to carry out controlled perturbations of
curves with complicated singularities.

In 1980 I proposed a method of constructing perturbations of curves with
a semi-quasihomogeneous singularity. From a topological point of view, the
perturbation causes a neighborhood of the singular point to be replaced by a
model curve fragment prepared in advance. This technique made it possible
to enlarge the possible constructions significantly. We could then complete the
isotopy classification of nonsingular curves of degree 8 and refine Ragsdale’s
conjecture.

This section and the one that follows are devoted to developing perturbation
techniques for curves with singularities.

3.1. Newton polygons. Let f be a polynomial in two variables over C or

R:f(x,y)=), ;4 sz 3’ . The monomials which occur in f can be depicted
in a natural way on the plane: to a monomial g, jxl 3y’ we associate the point

(i, j) € R? . It was Newton who noticed the usefulness of this representation of
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the monomials: it turns out that the relative position of these points (i, j) has
4 remarkable connection with the role played by the corresponding monomials
for various special values of x and y. A lot of information about [ and
about the geometry of the curve flx,y)=101s contained even in the convex
hull of the set {(i, j) € R2|ai j # 0}, which we denote A(f) and call the Newton
polygon of | .

We list some obvious connections between the geometry of the curve f(x,¥)
— 0 and the properties of the Newton polygon A(f).

The polygon A(f) does not contain (0, 0) if and only if the curve flx,y)=
0 passes through the point (0, 0).

The polygon A(f) does not contain (0, 0) but does contain (1,0) or (0, 1)
if and only if the origin (0, 0) isa regular point of the curve flx,y)=0.

More generally, the point (0, 0) is an n-fold singular point of the curve
f(x,y)=0 if and only if n is the least number such that the line x+y=n
intersects A(f).

These facts are included in the following principle, various manifestations
of which we will encounter often: the behavior of the curve f(x,y) =0 near
the origin is determined 0 a first approximation by the monomials of f corre-
sponding to the points of the part of the boundary A(f) which faces the origin.
This is because those monomials are the leading terms of f as x and y tend
to zero.

Not only invariants of the singular points of the curve f(x, y) = 0, but
also several global invariants can be expressed in terms of the Newton polygon
A(f), see [271, [28]. In particular, if the curve f(x,y) =0 has no complex
singular points in (C\ 0) X (C\0) (i.e., in the complement of the coordinate
axes), then its genus is equal to the number of points with integer coordinates
lying inside A(f) .

Given a set I' ¢ R? and a polynomial f(x,y) = Zaijx’yj , we let fr

denote the polynomial > ; ierd; sz y’, ie., the sum of the monomials of [
which correspond to points in I'; we shall call this the I'-truncation of f .
The definition of the Newton polygon of a polynomial in two variables carries
over in the obvious way to any muliivariate polynomial (where, of course, we
speak of the Newton polyhedron rather than the Newton polygon). If our poly-
nomial is a homogeneous polynomial a of degree m in three variables, then it

turns out to be a polygon lying inside the triangle defined by the conditions
o+ i +iy=m, i, =20, i, 20, i,>0.

But in practice it is convenient to replace this polygon by its projection onto the
plane i, =0, which is the Newton polygon of the polynomial a(l, x, y). That

is, we represent the monomials in a in tabular form on the plane, associating a

monomial 4, jx(';" —i= xixﬁ to the point (i, j) € R? . This will be our convention:

thus, we let A(a) denote the Newton polygon of the polynomial a(l, x, V).

What was said before about the connection between the geometry of an
affine curve and the geometry of its Newton polygon has obvious analogues
in the projective situation. In particular, the behavior of a degree m curve
a(xy, X, %) = 0 nears the points (1 :0:0),(0:1: 0),and (0:0:1) is
determined to a first approximation by the monomials of a corresponding to
the points of the part of the boundary A(a) which faces (0, 0), (m, 0) and
(0, m), respectively.
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3.2. Singularities of a hypersurface. Much of what we say applies to either
real or complex curves. In such cases I will use the following notation to en-
compass both situations. We let K denote the ground field (R or C). When
we discuss the singular points of algebraic curves, it costs us almost nothing to
make another extension of the type of objects under consideration by passing
from singularities of algebraic curves to singularities of analytic curves. Fi-
nally, many of the statements carry over without change to the case of isolated
singularities on a hypersurface. One could go even further and not limit one-
self to hypersurfaces—but this would lead to essential complications. In this
subsection we shall consider some general definitions and results on isolated
singularities of real or complex analytic hypersurfaces.

Let G ¢ K" be an open set, and let ¢: G — K be an analytic function. For
U cC G welet V,(p) denote the set {x € U/p(x) = 0}. By a singularity of
the hypersurface V(g) at the point x;, € U,(¢) we mean the class of germs of
hypersurfaces which are diffeomorphic to the germ of the hypersurface Ve(o)
at x,. In other words, two hypersurfaces V;(¢) and V,(y) have the same
singularity at the points X, and y,, if there exist neighborhoods A and N of
X, and y, such that the pairs (M, V), (9)), (N, ¥V, (v)) are diffeomorphic.

When we consider the singularity of a hypersurface at a point Xy, to sim-
plify the formulas we shall suppose that X, = 0. The Milnor number of the
hypersurface V() at O is the dimension

dimg K{[x,, ..., x,11/(0f/8x,, ..., of/0x,)

of the quotient of the formal power series ring by the ideal generated by the
partial derivatives 0 f/9x,, ..., 8 f/0x_ of the Taylor series f of the function
¢ at 0. This number is an invariant of the singularity (see [3]). If it is finite,
then we say that the singularity has finite multiplicity. In order for the singularity
of the hypersurface V(¢) at zero to have finite multiplicity, it is necessary
(and when K = C it is also sufficient) that it be isolated, i.e., that there exist a
neighborhood U ¢ K" of zero which does not contain nonzero singular points
of V.(p). In the case of an isolated singularity, a ball B ¢ K" centered
at zero of sufficiently small radius has boundary B which intersects V(o)
only at nonsingular points and only transversally, and the pair (B, Vog(®)) is
homeomorphic to the cone over its boundary (9B, V,g(®)) (see[15], Theorem
2.10). In this case the pair (9B, V,,(p)) is called the /ink of the singularity of
Vo(p) at 0.

The next theorem shows that the class of singularities of finite multiplicity
coincides with the class of singularities of finite multiplicity on algebraic hyper-
surfaces.

3.2.A. TOUGERON’S THEOREM (see, for example, [3], §6.3). If the singularity
at 0 of the hypersurface Vil@) has finite Milnor number u, then there exist a
neighborhood U of 0 in K" and a diffeomorphism h from this neighborhood
onto a neighborhood of 0 in K" such that h(V,(9)) = Vhw)(f( )), where

f( urn) B the degree yu+ 1 Taylor polynomial of ¢ .

a1

The notion of Newton polyhedron carries over in a natural way to power

series. The Newton Polyhedron A(f) of the series f(x) = > wez, a,x” (where

x? = x"xy% - x) is the convex hull of the set {w € R"a_ # 0}. (Unlike

the case of a polynomial, the Newton polyhedron A(f) of a power series may
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have infinitely many faces.) But in the theory of singularities the notion of
the Newton diagram is of greater importance. The Newton diagram T'(f) of
a power series f is the union of the compact faces of the Newton polyhedron
which face the origin. From the definition of the Milnor number it follows
that, if the singularity of V,(p) at 0 has finite multiplicity, then the Newton
diagram of the Taylor series of ¢ is compact, and its distance from each of the
coordinate axes is at most 1. It follows from Tougeron’s theorem that in this
case adding a monomial of the form x:f"" to ¢ with m; sufficiently large does
not change the singularity. Thus, without changing the singularity, one can get
the Newton diagram to touch the coordinate axes.

3.3. Dissipating singularities. Now let the function ¢: G — K be included
as ¢, ina family of analytic functions ¢,: G — K with 1 € [0, t,], and suppose
that this is an analytic family in the sense that the function G x [0, {,] —
K:(x,t) — ¢/ (x) which it determines is real analytic. If the hypersurface
V;(@) has an isolated singularity at x,, and if there exists a neighborhood U
of x, such that the hypersurfaces V(p,) with 7€ [0, t,] do not have singular
points in U, then we say that the family of functions ¢, with ¢ € [0, to)

d’issipaxes(3) the singularity of V(9) at x;.

If the family 8, with ¢ € [0, ;] dissipates the singularity of the hypersurface
Ve(9,) at xq, then there exists a ball B c K" centered at x, such that

(i) for ¢ € [0, t,] the sphere 0B intersects V(8,) only at nonsingular points
of the hypersurface and only transversally;

(ii) for ¢t € (0, t,] the ball B contains no singular points of the hypersurface
Ve(8,)5

G(iiti) the pair (B, Vy(@,)) 1s homeomorphic to the cone over its boundary
(9B, Vy5(90)) -

Then the family of pairs (B, V;(8,)) with ¢ € [0, ¢,] 1s called the dissipation
of the germ of the hypersurface V(g,) at the point x, . (Following the accepted
terminology in the theory of singularities, we would be more correct in saying
not a family of pairs, but rather a family of germs or even germs of a family;
however, from a topological point of view, which is more natural in discussing
the topology of real algebraic varieties, the distinction between a family of pairs
satisfying (1) and (ii) and the corresponding family of germs is of no importance,
and so we shall ignore it.)

Conditions (i) and (ii) imply the existence of a smooth isotopy #h,: B — B
with ¢ € (0, t,], such that hto =1id and hr(VB(sz)) = V3(9,), so that the pairs
(B, Vy(p,) with 1€ (0, t,] are diffeomorphic to one another.

(3)This word (Russian: pacnyckanue) has not been used before in the literature. Instead, the
expressions “removing singularities” and “perturbing singularities” are used. The first term does not
seem to me to be a good choice, since what occurs is not so much an annihilation of the singularity
as its replacement by a rather complicated object, and another way of removing a singularity is to
resolve it. The second expression is also unfortunate, since the perturbed singularity is no longer a
singularity, while in other situations (perturbation of curves, operators, etc.) one does not leave the
class of objects under consideration (a perturbed operator is still an operator, for instance). This
terminology presumably arose because one has a perturbation of the singular hypersurface. The term
“dissipation” is close in meaning to the word “unfolding,” which refers to a versal deformation of a
singularity. An unfoldingisa deformation from which all deformations of the singularity, including
the dissipations in our sense, can be obtained. Since the term “unfolding” has already been used,
and the word “dissipation” is available and has much the same meaning, it seems to me 0 be an
appropriate term in this context. The word “smoothing” is also less suitable, since it implies the
introduction of a differentiable structure.
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If we have two germs determining the same singularity, then a dissipation
of one of them obviously corresponds to a diffeomorphic dissipation of the
other germ. Thus, we may speak not only of dissipations of germs, but also of
dissipations of singularities of a hypersurface.

The following three topological classification questions arise in connection
with dissipations.

3.3.A. Up to homeomorphism, what manifolds can appear as Vy(p
pations of a given singularity?

3.3.B. Up to homeomorphism, what pairs can appear as (B, Vy(g,)) in dissi-
pations of a given singularity?

Two dissipations (B, Vy(p,)) with ¢ € [0, ¢,] and (B, V() with ¢ €
[0, t'b] are said to be fopologically equivalent if there exists an isotopy /,: B —
B' with t e [0, min(¢,, z’d)], such that %, is a diffeomorphism and VB,((p;) =
h,Vy(p,) for t€[0, min(z,, #,)].

3.3.C. Up 1o topological equivalence, what are the dissipations of a given sin-
gularity?

These questions are analogous to the classification problems 1.1.A and 1.1.B
discussed above. Obviously, 3.3.C is a refinement of 3.3.B, which, in turn, is
a refinement of 3.3.A (since in 3.3.C we are interested not only in the type of
the pair obtained from a dissipation, but also the manner in which the pair is
attached to the link of the singularity).

In the case K = R, with which we are especially concerned, these questions
have been answered only for a very small number of singularities. In §4 below
we shall examine some of these cases. In general, the topology of dissipations
of real singularities has a development which runs parallel to the topology of
nonsingular real algebraic varieties. In particular, one encounters prohibitions
(see [38]) and constructions (see below).

In the case K = C, the dissipation of a given singularity is unique from all
three points of view, and there is an extensive literature (see, for example, [15])
devoted to its topology (i.e., questions 3.3.A and B). Incidentally, if we want to
obtain questions for K = C which are truly analogous to questions 3.3.A-C for
K =R, then we have to replace dissipations by deformations with singular fibers
and one-dimensional complex bases, and the manifolds V,(p,) and the pairs
(B, Vg(p,)) have to be considered along with monodromy transformations. it is
reasonable to suppose that there are interesting connections between questions
3.3.A-C for a real singularity and their analogues for the complexification of
the singularity.

3.4. Nondegenerate r-fold points. We return to singularities of plane curves.
A point (x,, y,) of the curve f(x,y) = 0 is said to be nondegenerate r-fold
point if it has multiplicity » (i.e., the partial derivatives of f through order
r — 1 inclusive vanish at the point, but not all rth partials vanish) and if the
curve

,) in dissi-

fxf(xo s yo)xr + rfxf*ly(x() ’ yo)xr ly +o fy’(xo 3 yo)yr =0
1s reduced (i.e., the polynomial 22:0 Crk kayr_k(xo , yo)xk yr“k 1s not divisible
by the square root of any polynomial of positive degree). This notion is clearly
a generalization of the notion of a nondegenerate double point.
When (x4, y,) = (0, 0), this definition has the following obvious convenient
reformulation in terms of the coefficients of f: the point (0, 0) is a nondegen-



REAL PLANE ALGEBRAIC CURVES 1091

erate r-fold point of the curve f(x,y) = 0 if and only if the Newton polygon
A(f) is supported by the part of its boundary facing the origin on the segment
I" joining the points (r, 0) and (0, r) (i.e., the Newton diagram I'(f) lies on
'), and the curve f r(x, y) = 0 consists of distinct lines.

We also give a geometrical reformulation of the definition.

3.4.A. A point on a curve is a nondegenerate r-fold point if and only if there are
exactly r branches of the curve passing through it, these branches are nonsingular,
and they have distinct tangents.

Before proving this, we make a preliminary remark that is of independent
interest.

We consider the homothety c? - ¢ (x, )+ (tx, ty). It takes the curve

f(x,y) = 0 to the curve f(flx, z“ly) = 0. The monomial al.jxlyj in
f(x,y) corresponds to the monomial aijl"’_jx'y’ in f(t"'x,t"'y), so that

the monomials on the line [+ j = n are multiplied by t~" in the homothety
(x,y) v~ (tx,ty). In addition, the equation of the curve can be multiplied
through by any number, in particular by t” , without changing the curve. Thus,
“the homothety (x, y) — (tx, 1y) corresponds to the following transformation
of the equation of the curve: for some fixed p, multiply the monomials on the
line i+ j =n (i.e., the monomials a,x'y’ with i+ j = n) by /7. :
We now prove the above geometrical reformulation 3.4.A of the definition
of a nondegenerate r-fold point. It is sufficient to consider the case when the
singularity is at the origin. Suppose that the origin is a nondegenerate r-fold
point. We apply the homothety (x, y) — (tx, ty) to the curve, at the same
time performing the above transformation on the equation with p =r. The
monomials in ' remain unchanged, and the other monomials are multiplied
by negative powers of 7. We let ¢ approach oo. Then the equation approaches
f lr()c ,y) = 0, ie, the equation of a union of r distinct lines through (0, 0).

This union intersects any sphere in C? centered at (0, 0) transversally in a
union of r great circles. Under a small perturbation of the equation, the inter-
section remains transversal, and it consists of r unknotted circles with pairwise
linking coefficients equal to 1. Consequently, if the curve is subjected to the
homothety for ¢ sufficiently large, it will have r branches through the origin,
and they will be nonsingular and transversal to one another. Thus, the same is
true of the branches of the original curve.

Conversely, suppose that the curve f(x,y) =0 has r branches at the origin,
and they are nonsingular and transversal to one another. Then the origin is an
r-fold point, and the Newton polygon A(f) is situated on the segment I.
Under the homothety (x, y) — (tx, ty) with ¢ — o0 the curve f(x,y) =
approaches the curve | F(x, y) = 0 in a neighborhood of the origin. On the
other hand, each of the branches stretches out into a line (the tangent line to
the branch). Consequently, f r(x, y) = 0 is a union of distinct lines through
(0, 0), i.e., (0,0) is a nondegenerate r-fold point of the curve f(x,y)=0.

3.5. Dissipation of a nondegenerate r-fold point. Our next goal is to con-
struct perturbations of a curve with nondegenerate r-fold point under which

the topology of the curve in a neighborhood of the point changes in a way that
can be controlled.

We first consider a special case—when the e 1o be perturbed consists of 7
distinct lines through the origin. The Newton polygon of this curve is a segment
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of the line I' joining the points (r, 0) and (0, r). (It clearly either coincides
with T" or is strictly smaller, and the latter can happen when one or both of the
extreme monomials ariﬂxr , ao’ryr are missing. )

The argument used above to prove the equivalence cf the two definitions of
a nondegenerate r-fold point (3.4.A) gives us an indication of how to construct
the perturbations. We take an affine curve of degree » which has r asymptotes
whose directions coincide with those of our given lines. The Newton poly-
gon of such a curve is contained in the triangle with vertices (0, 0), (r, 0),
(0, r), and the defining polynomial can be normalized in such a way that its
I-truncation coincides with the polynomial defining our original curve. We ap-
ply the homothety (x, y) ~ (tx, ty) to the affine curve, where, as before, we
also transform the equation, again with p = r. The monomials in I" remain
unchanged, and the other monomials are multiplied by negative powers of ¢
(a; jx’y] is multiplied by ¢~ '7/). We let ¢ approach zero. Then in the limit
we obtain the equation of the original curve, i.e., a union of r lines, while the
curves of the family are all images of the same affine curve under different ho-
motheties. Thus, an affine curve of degree r with r distinct asymptotes may be
regarded as the result of a perturbation of a union of r lines through a point.

In the more general case—when the curve to be perturbed has degree greater
than r and, as above, it has the origin as a nondegenerate r-fold point—the
monomials of degree > r do not have a noticeable influence near the origin
(compare with §3.4). Hence, it is natural to expect that the same adjustment
to the equation as above will have a similar effect. But before examining this
generalization, we make more precise what we mean by nearby curves.

We say that a smooth submanifold 4 of a manifold X approximates the
smooth submanifold B of X in the open set U Cc X if, for some tubular
neighborhood 7" of BN U in U, the intersection 4 N U is contained in T
and is a section of the tubular fibration 7" — BN U .

It follows from the implicit function theorem (see 1.5.A(3) and §1.7 above)
that, if the degree m curve a(x,, x,, x,) = 0 has no singular points in the

closure of the open set U C RPZ, then in the space RC, of real curves of
degree m it has a neighborhood all curves of which have no singular points in
U and approximate one another in U .

Let a(x,, x,, x,) = 0 be a real projective curve of degree m which has no
singular points except for the point (1 : 0 : 0), and suppose that (1 : 0 : 0)
is a nondegenerate r-fold point. Let g(x,y) = 0 be a nonsingular real affine
curve of degree r, and suppose that g(x, y) and a(l, x, y) have the same
I'-truncation, where I" is the line segment joining (r, 0) and (0, r). We set

flx,y)=a(l, x,y),

1 - r
h(x,y)=fx,y)+1g(t x, 0 y)—f (x,),
¢, (xq, X, X%,) = a(xy, x;, x;) + !'x; g(x,, x(’)‘llﬁl , xzx()_]z‘"l)
r
—a (Xxg, X, , X;).

Since clearly ¢, (1, x,y) = h(x,y) and c¢,(xy, x;, x,) = alxy, x;, x,), it
follows that the family of curves ¢, (x,, x,, x,) = 0 is a perturbation of the
curve a(x,, x,, x,) =0.

3.5.A. There exist circular neighborhoods U DV of the point (1 : 0 : 0)
in RP® such that for t > 0 sufficiently small the curve c¢,(x,, x;, x,) = 0 is
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approximated by the curve a(xy, X5 Xy) = 0 outside V , and is approximated
by the curve x(';g(flxlxo'i , t"1x2x5i) — 0 inside U ( ie., the latter curve is
the image of the curve g(x,y) = 0 under the composition of the homothety
(x,y)— (tx,ty) and the canonical imbedding R — RP%: (x,y) = (1:x:

y))-

ProoF. We include the family of polynomials A, in a larger family

_ -1 ~1 r
by (x,y) =8 flsx, sy)+ 18X, 1Y) —f(x, ).
The homothety (x, )+ (ux, uy) takes the curve hs, (X, )= 0 to the curve

u'h, z(uﬁlx ,u"'y) =0, but we have
Why (X, )= s fsu x, suty) g (T e uTy)

r
“f (X9 y) :hsu—l’tu(x’ y)
Thus, the curves hs’ (x, )= 0 corresponding to points (s, t) of the parameter

plane which lie on the hyperbolas s¢ = const can be obtained from one another
by means of homotheties.

Weset ¢, (X5, Xy X,) = xg’hs’t(xlxgl , xzx(;l) . The curve (,”070()60, Xy 5 Xy)
— 0 is clearly the union of the (m — r)-fold line xg =0 and the r lines
through (1:0:0) defined by the equation ar(x0 Xy, Xy) = 0. The origin in
the parameter plane has a circular neighborhood P such that for (s, t) € P the
curves /1 [(x,»)=0 approximate one another in the annulus 1 < 2+ y2 <4,
and, in particular, they approximate the curve f r(x, y) = 0 there.

We take (s,,0) € P with s, > 0. The corresponding curve cso’o(xo, Xy s Xy)
— 0 is obtained from the curve a(xy, X;, x,) = 0 by means of the dilatation
(g 0 X, @ X) P (xg - s'ix}i : S_lxz) (Figure 15). Like the latter curve, it
has a singularity only at (1 : 0 : 0). If we go a sufficiently small distance
from (s,,0) in the region ¢ > 0, this singularity is perturbed, while outside
some neighborhood of the singularity (say, the disc x” + y2 < 1) the curve

cso,t(xo, Xy, %) =0 is approximated by the curve CSO’O()CO L Xy, %) =0.

In exactly the same way, the curve ho, [O()C, y)=0 corresponding to (0, ¢)) €
P with t, > 0 can be obtained from the curve g(x, y) = 0 by means of
the contraction (x,y) = (foX, V). If we go a sufficiently small distance

from (0, ¢;) in the region s > 0, the curve hy (%, y) = 0 experiences only
a small isotopy in the disc Xt + y2 < 4, and is approximated by the curve
ho’to(x ,y) =0, i.e., by the curve g(z(‘)"lx, z(‘;}‘y) =0.

We choose points (s, f;) and (s,, t,) close to (s4,0) and (0, t,) in the
above sense, where Syf; = S, i.e., they lie on the same hyperbola st =
const. When we move from (s, ) to0 (54, ;) along this hyperbola, the
curve CS,[(XO, Xy, Xy) = 0 is subjected to an isotopy made up of homoth-
eties, i.e., contractions toward the point (1:0:0), and it turns into the curve
cso’tl(x0 Xy Xy) = 0. Since the point (s, ) does not leave P in the course
of this isotopy, it follows that the curve does not change in an essential way n
the annulus 1 < x*+ y2 < 4 it merely slides along the curve f r(x ,y)=0, at
all times approximating that curve. Hence, the curve hso»h (x,y) =0 approxi-

mates the curve ho,tl(x, y) =0 (i.e., the image of the curve g(x,y) =0 under
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the contraction (x, y) — (t,x, t,y)) not only in the disc x2+y2 < 45%50_2 (i.e.,
in the image of the disc x” + y2 < 4 under the homothety) but even in the disc
x* +y? < 4 itself.

We now notice that the curve c 50 (Xg> X, X)) = 0 (ie., the curve

. . 12001
€l sy, (x5, X, X,) = 0) is the image of the curve Cso,tl(x()’ X5 Xy) = 0 un-
der the homothety (x, : x; : x,) — (X 1 8gX, : Sgx,). Thus, outside the disc
X2+ y2 < Sé the curve Co.t (xy, X,, Xx,) = 0 is approximated by the curve
1
¢, ,o(xo’ X, X%,) = 0, 1e., by the original curve a(x,, x,, x,) = 0, and inside
the disc x> + y2 < 433 it is approximated by the curve Co.sp (Xgs Xy 5 X,) =
=001

0, i.e., by the image of the curve xgg(xlx(; : ) Xy Xy l) under the contraction
(Xg 0 X, 0 ,y) — (xg = Splyx; @ Syt x,) . Hence, if we set ¢ = Sot, and take U to
be the disc x° + y2 < 433 and V to be the disc x? + y2 < Sé , we obtain the
objects whose existence is asserted in the theorem. @

3.6. Quasihomogeneity. The method of perturbing a curve with a nonde-
generate r-fold point has an immediate generalization to a much broader class
of singularities. Roughly speaking, the generalization comes from replacing the
homotheties (x, y) ~ (tx, ty) by maps of the form (x, y) — (“x, t'y) with
relatively prime integers u and v—such maps are called quasihomotheties. As
in the case of homotheties, the quasihomotheties with fixed exponents u and
v form a one-parameter group of linear transformations.

Under the action of a quasihomothety (x, y) — (“x, ty) the curve given

by the equation f(x,y) = 0 with f(x,y) = Zaijxiy’, goes to the curve
f(t7x,t7"y) = 0, or equivalently, to the curve #*f(t “x, t7°y) = 0. The
monomial a,,x'y’ in f(x, y) correspond to the monomial a, """ x'y in
the polynomial ¢ f(: “x, ¢ "y); thus, under the quasihomothety (x, y) —
(t“x, t"y) the monomials on the line ui+vj=#n are multiplied by 7",

The curves which are defined by quasihomogeneous polynomials of weight
u, v, Le., polynomials whose Newton polygon lies on the line ui+ v J = const,
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are invariant relative to all quasihomotheties (x, y) — (x, t"y) with fixed
u and v. Such a curve is a union of orbits of the action of the group of
quasihomotheties with exponents ¥ and v, i.e., a union of curves of the form
ax’ + By = 0. We call the latter curve a quasiline of weight u, v .

We now consider the corresponding singularities of plane curves. We shall
suppose that the singularity of the curve f(x,y) =0 that is being examined
is at the origin. If the Newton polygon A(f) has a side T facing the origin
such that the I'-truncation defines a curve with no multiple components (i.e., if

f Iﬁ(x, y) is not divisible by the square of any polynomial of nonzero degree),
then we say that the curve f(x,y)=0 hasa semi-quasihomogeneous singularity
at the origin. If the segment I’ is on the line iu+ vj = r with « and v
relatively prime, then we say that the pair u, v 1is the weight of the semi-
quasihomogeneous singularity and r is its degree.

There is one essential difference between semi-quasihomogeneous singulari-
ties and nondegenerate singularities. In the above definition of semi-quasihomo-
geneity, the choice of coordinate system plays a much more important role
than in the definition of a nondegenerate r-fold point. In fact, if a semi-
quasihomogeneous singular point is not a nondegenerate singularity, then the
coordinate axis corresponding to the smaller weight plays a special role. The
singular point will not be semi-quasihomogeneous with respect 10 an affine co-
ordinate system in which this axis is not a coordinate axis.

Thus, semi-quasihomogeneity of a singularity is closely connected with the
coordinate system. When we speak of a semi-quasihomogeneous singularity,
we usually mean that it is semi-quasihomogeneous in a suitable coordinate sys-
tem. If we want to emphasize that the definition of semi-quasihomogeneity
is realized with respect to a given affine coordinate system, or with respect to
one of the three affine coordinate systems which are canonically associated with
a given projective coordinate system, then we say that the singularity is semi-
guasihomogeneous with respect [0 the given coordinate system. '

Another, perhaps even more fundamental difference between semi-quasi-
homogeneity and nondegeneracy is that, even when semi-quasihomogeneity is
understood in the broader sense, 1.€., relative to any affine coordinate system,
the property is generally not preserved under local diffeomorphisms. For ex-
ample, the curve x> - y2 = 0 has a semi-quasihomogeneous singularity at the
origin; however, its image under the diffeomorphism (x, y)+— (X, Y — xz) , 1.e.,
the curve x° — xt - 2x2y — yz = 0, has a singularity at the origin which is not
semi-quasihomogeneous relative to any affine coordinate system.

But for our purposes what is important is that many of the features of nonde-
generate r-fold singular points are also characteristic of semi-quasihomogeneous
singularities. Theorem 3.4.A generalizes to the semi-quasihomogeneous case as
follows. In a suitable neighborhood of a semi-quasihomogeneous singular point
the curve looks like a union of a number of quasilines. The words “looks like”
here mean that there exists a homeomorphism of the neighborhood which takes
the curve to a union of quasilines. The union of quasilines is the curve defined
by the truncation of the equation of the original curve to the side of the Newton
polygon facing the origin. All of this is proved in the same way as Theorem
3.4.A.

3.7. Examples of semi-quasihomogeneous singularities. The simplest sin-

gularities are semi-quasihomogeneous (or, more precisely, they become semi-
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quasthomogeneous after a suitable change of local coordinates). The hierarchy
of singularities starts with the simple ones, or equivalently, the zero-modal sin-
gularities, i.e., the singularities 4, , D, , E., E,, E, , all of which can be taken
to semi-quasihomogeneous form by local diffeomorphisms.

A, singularities (with k > 1). Here one distinguishes between the cases of
odd and even k. If k is odd, then there are two nonsingular branches tangent
to one another with multiplicity k — 1 (i.e., with local intersection index equal

to k) passing through a point of type A . - Here either both of the branches are

real (with normal form L y2 = (), or else they are conjugate imaginary

(with normal form x**' + v = 0). If k is even, then there is one branch and it
has cusps. If k = 2, they are ordinary cusps, but when k > 2 they are “sharp”

cusps. The normal form is x**' — 2 = 0.

D, singularities (k > 4) . Topologically, a D, singularity looks like an A,
singularity through which one more nonsingular branch of the curve passes,
situated in general position with respect to the other branches. In particular, a
D, singularity is a nondegenerate triple point.

Eg, E,, E; singularities. The normal forms are: for E,, xt - y3 = (; for
E,, (x3-y2)yz0;for Eg, x5—y330.

But we shall need more complicated singularities. The first is the type of
singularity which Arnol'd [3] denoted by the symbol J,,. In a neighborhood
of such a point the curve has three nonsingular branches which have second
order tangency to one another at the point. This is a semi-quasihomogeneous
singularity of weight (2, 1) and degree 6. We shall only need the real form of
the singularity for which all three branches are real. J,, singularities are useful
in constructing real curves, because curves with a J,, singularity can be built up
easily using obvious modifications of classical methods of construction, while
at the same time they are complicated enough so that interesting new curves
appear when one perturbs curves with Jy, singularities. From this point of
view one has good singularities of type N, (nondegenerate 5-fold points),
X,, (a point where four nonsingular branches have a second order tangency—
this is a semi-quasihomogeneous singularity of weight 2, 1 and degree 8),
Z,s (a point where three nonsingular branches have second order tangency and
a fourth nonsingular branch intersects the other three transversally—this is a
semi-quasihomogeneous singularity of weight 1,2 and degree 7). (The symbols
Nig, X, and Z, are also Arnol'd’s notation in [3].)

3.8. Dissipation of semi-quasihomogeneous singularities. Let a(xy, x; , x,)
= 0 be a real projective curve of degree m with no singular points except for
the point (1:0:0), and suppose that this point is a semi-quasihomogeneous
singular point of weight ¥, v and degree r. Further, suppose that the curve
is situated (relative to the canonical coordinate system) in such a way that
the Newton polygon A(a) has side I" facing the origin which lies on the line
ui +vj = r, and the curve al (1, x, y) =0 has no multiple components. Let
g(x,y) =0 be a curve having no singularities in R”. Suppose that A(g) is

contained between the origin and the line i + vj = r, and the truncation gr
coincides with the T'-truncation of the polynomial f(x,y) = a(l, x, ). We
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set

- - r
hx,y) =S, y)+ gt x, 7y = [ (%,
1,1 ~1 1 r
ct(xo,xl,xz):a(xo,xl,x2)+lrxgqg(xhx0 X%, L) —a (Xg, Xy s Xy) -

It is clear that ¢,(1, x,y) = A(x, y) and cy(Xg, Xy, X5) = a(xy, X, » X;) -

3.8.A. There exist neighborhoods U DV of the point (1:0:0) in RP? such
that for t > O sufficiently small the curve ¢,(Xy, X, x,) =0 is approximated
by the curve a(xy, X, , X,) = 0 outside V , and it is approximated inside U by
the image of the curve g(x,y) =0 under the composition of quasihomothety
(x, )~ ("x, t'y) and the canonical imbedding R — RP*: (x, )+ (11 x:
y)-

This theorem generalizes Theorem 3.5.A, and its proof, which is a direct
generalization of the proof of Theorem 3.5.A, will be left as an exercise for the
reader. ,

The dissipations of a semi-quasihomogencous singular point which are ob-
tained by means of the construction in this subsection will be called quasiho-
mogeneous dissipations.

3.9. Perturbation of curves with several singular points. In Theorems 3.4.A
and 3.8.A the curves being perturbed have only one singular point, namely, the
singular point which is dissipated and for which the variation of topology in a
neighborhood is described in the theorems. If we suppose in Theorem 3.5.A
that the curve a(x,, X;, X;) = 0 has other singular points as well, then those
singularities will generally also dissipate in the family c,(x,, X, X;) = 0, and
some additional information about the polynomial g is needed in order to
describe the topology of that dissipation.

However, there is an important special case when, independently of g, the
singular points of the curve a(xy, X, x,) = 0 other than (1 :0:0) are
preserved under the dissipation described above. This is the case when these
singular points are (0:1:0) or (0: 0:1) orboth (0:1:0) and (0:0:
1), and they are semi-quasihomogeneous relative to this projective coordinate
system.

In fact, the Newton polygons of the polynomials a = ¢, and ¢, for ¢ > 0
on the side of the points (m, 0) and (0, m) coincide, as do the monomials
corresponding to points on these parts of the boundary of the Newton polygons.

Thus, the dissipations described in the previous subsection (i.e., quasihomoge-
neous ones) can be carried out at two or three semi-quasihomogeneous singular
points independently, if the singularities are all semi-quasihomogeneous relative
to the same projective coordinate system.

3.10. Multidimensional generalizations. The definitions in §3.6 of a quasiho-
mothety, a quasihomogeneous polynomial, a quasililne, and a semi-quasihomo-
geneous singularity generalize in the obvious way to the case of a space of
arbitrary dimension. So do the method of dissipating semi-quasihomogeneous
singularities in §3.8, Theorem 3.8.A and the remarks in §3.9. The exact state-
ments will be left as an exercise.

4. Dissipating concrete singularities of curves
This section is devoted to a discussion of dissipations of concrete singular-

ities on plane curves. The topological classification of dissipations has been
completed only for certain very simple types of singularities. We begin with
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simple singularities whose dissipations are completely understood; but such in-
formation is of little interest for constructions. We then examine two types of
unimodal singularities: J,, (three nonsingular branches which are second order
tangent to each other at a point) and X, (nondegenerate 4-fold singularities).
As in the case of simple singularities, dissipations of X, give almost nothing
of use for constructions of curves. On the other hand, J,,—or more precisely,
its real form with three real branches—is very useful, and we shall give a de-
tailed discussion of the structure of its dissipations for all possible topological
types. We then examine dissipations of nondegenerate 5-fold points and more
complicated singularities.

Results on the topology of dissipations of some type of singularity can be
divided into three categories. The first consists of prohibitions on the topol-
ogy of the dissipation. They are similar to the prohibitions on the topology
of nonsingular curves, and I shall limit myself to the statement of results for
concrete singularities. The second category of results relates to the construction
of concrete dissipations. In the case of semi-quasihomogeneous singularities,
Theorem 3.8.A reduces the problem of constructing dissipations to the problem
of constructing curves. We shall sometimes include proofs of results of this sec-
ond type; however, as a rule the purpose of the proofs is merely to provide an
illustration of new methods and give an idea of how the proofs go. Finally, the
third category of results concern how the topology of the dissipations of some
family of singularities depends on the parameters which determine a singular-
ity in the family. For example, we consider all nondegenerate r-fold singular
points at which all of the branches are real, and we prove that for fixed r the
supply of dissipations of a given singularity does not depend on the location of
the branches (i.e., the angles between them, their curvature, etc.). In all cases
except for the important and first nontrivial case of Jio » I will limit myself to
stating the results.

4.1. Zero-modal singularities. Singularities of the A, series with k odd and

with two real branches (A, ). Any such singularity can be taken by a local

diffeomorphism to the normal form yz — Xt =0, Any dissipation of this

singularity is topologically equivalent to one of the dissipations in Figure 16.
In this diagram and the ones that follow, the symbol («) replaces a group of
ovals lying outside one another. The dissipations in Figure 16 are constructed
as follows: the dissipation on the right is given by the formula y2 —x =0
with ¢ > 0; the dissipations shown beneath the original singularity are given by
the formulas y2 —(x=rx)(x —tx,) - (x— [x2a+2)(x2 + 12)('1(“1)/2““ = (0, where
Xy -vos Xy, are distinct real numbers (and, as usual, 7 is a parameter which
in a given dissipation varies over an interval of the form [0, 1,1 .
Singularities of the A, series with k odd and with conjugate imaginary

branches (AZ) . Any such singularity can be taken by a local diffeomorphism to

the normal form yz +xtl =g, Any dissipation of this singularity is topologi-

cally equivalent to one of the dissipations in Figure 17. These dissipations are
given by the formula y2 + (X —tx;) - (x = t)cza)()c2 + 12)(k+1)/2_a = 0, where
Xi» ..., Xy, are distinct real numbers.

Note that the singularities whose dissipations we have Just described include

singularities of type A, i.e., nondegenerate double points (crossings A, and
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isolated double points An+) . We considered the removal of such singularities
in §1. |
Singularities of the A, series with k even. Any such singularity can be taken

by a local diffeomorphism to the normal form yz X' =0. Any dissipation of

such a singularity is topologically equivalent to one of the dissipations in Figure
18. They are given by the formula y2~—(x—lx1) e (x~lx2a+1)(x2+lz)k/2_a =0,
where x,, ..., X,,, are distinct real numbers.

In particular, when k = 2 we obtain two types of dissipations of an ordinary
cusp.

REMARK. If we make a suitable choice of x,, we can arrange it so that the
curves defined by the polynomials constructed above are situated relative to
the y-axis in any of the ways shown in Figure 19. This can be interpreted
as constructing all possible (up to topological equivalence) dissipations of the
boundary singularities of the B, series (see §17.4 of [3] concerning boundary
singularities). By a dissipation of a boundary singularity we mean a dissipation
of the singularity with boundary neglected, in the course of which the hypersur-
face being perturbed (in our case a curve) is transversal to the boundary (i.e.,
to a fixed hyperplane, in our case the line x = 0).

Singularities of the D, series with even k > 4 and with three real branches
(D, ). Such a singularity can be taken by a local diffeomorphism to the normal
form xyz — x¥=' = 0. Any dissipation is topologically equivalent to one of
those in Figure 20.

In particular, when k = 4 (i.e, when D, is a nondegenerate triple point) one
has seven dissipations (Figure 21). To construct the dissipations in Figure 20
we note that, since a type D, germ can be obtained from a type 4, _, germ by
adding a line in general position, it follows that a dissipation of a type D, germ
can be obtained from a dissipation of the germ of a B, , boundary singularity
by adding a boundary line and then making a perturbation. In this way one can

obtain all of the dissipations in Figure 20 from the dissipations in the upper
left part of Figure 19. ’

Singularities of the D, series with even k > 4 and one real branch (DZ).
Such a singularity can be taken by a local diffeomorphism to the normal form
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xyz +x =0, Any dissipation is topologically equivalent to one of those in

Figure 22. These dissipations can also be constructed from those in Figure 19
(in the upper right part).
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Singularities of the D, series with odd k > 5. Such a singularity can be

taken by a local diffeomorphism to the normal form xy2 —x*' = 0. Any
dissipation is topologically equivalent to one of those in Figure 23. They can be
constructed in the same way from the dissipations in the lower part of Figure
19.

E, singularities. Such a singularity can be taken by a local diffeomorphism

to the normal form x*~y® = 0. We note that all germs of an E singularity are
semi-quasihomogeneous, so that by rotating the coordinate axes we can make
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FIGURE 25

the Newton diagram into the segment joining the points (4,0) and (0,3). Any
dissipation is topologically equivalent to one of the five dissipations in Figure
24. All of the dissipations in Figure 24 can be obtained as quasihomogeneous
dissipations. In this case the curves needed to construct the quasihomogeneous
dissipations are nonsingular curves of degree 4 which are tangent to the line at
infinity at (0 : 0 : 1) with the greatest possible multiplicity (i.e., biquadratic
tangency). Such curves can be obtained, for example, by making small pertur-
bations of a curve which splits into four lines. The construction is shown in
Figure 25. The perturbation consists each time in adding the product of four
linear forms defining lines through (0:0: 1) to the equation of the union of
four lines, one of which is the line X, =0.

E, singularities. Such a singularity can be taken by a local diffeomorphism

to the normal form y3 - xzy = 0. As in the case of E, it is alway semi-
quasthomogeneous. Any dissipation is topologically equivalent to one of the ten
dissipations in Figure 26. All of the dissipations in Figure 26 can be obtained
as quasihomogeneous dissipations. The curves needed for the construction are
nonsingular curves of degree 4 which have third order tangency with the line
X, = 0 at the point (0 : 0 : 1). For example, as in the E, case they can be
obtained by small perturbations of a curve which splits into four lines. In Figure
27 we show the construction of one such curve, which gives the dissipations at
the top of Figure 26.

Eg singularities. Such a singularity can be taken by a local diffeomorphism

to the normal form x° — y3 = 0. It is always semi-quasihomogeneous. Any

dissipation is topologically equivalent to one of those in Figure 28. All of the
dissipations in Figure 28 can be obtained as quasihomogeneous dissipations.
The curves needed for the construction are curves of degree 5 with a singular
singularity at (0 : 0 : 1) which is of type A, and 1s semi-quasihomogeneous
relative to the canonical coordinate system. One can obtain such curves, for
example, from small perturbations of curves which split into the line X, =0
and the degree 4 curves constructed in the dissipations of an E.-singularity.
The perturbation consists in adding to the equation of the curve that splits the
product of the equations of five lines distinct from X, = 0 and passing through
(0:0:1).
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4.2. Three branches with second order tangency (J,,). The germ of a curve
of type J,, consists of three nonsingular branches which have second order
tangency with one another. Any germ of this type is semi-quasihomogeneous.
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Its Newton diagram lies on the segment I" joining the points (6, 0) and (0, 3)
if the x-axis is tangent to all three branches at the origin. From a real view-
point there are two types of J,, singularities: J,, singularities, where all three

branches are real, and J;{) singularities, where one branch is real and the other
two are conjugate imaginary. Let f(x,y) = 0 be the equation of a curve
with J,, singularity at the origin, and suppose that the x-axis is tangent at
the origin to the branches of the curve f(x, y) = 0 which pass through the
origin. Then fr(x, y) = ﬂ(ymalxz)(y—azxz)(y—%xz) for some real S # 0,
oy > a, > a,. The curves y = aixz approximate the curve f(x, y) = 0 near
the origin. The numbers «; have the following geometric meaning 2ai; 1s the
curvature of the /th branch of the curve f(x,y) =0 at (0, 0). The diffeo-
morphism of the affine plane given by (x, y) — (x, ky + lxz) preserves the
semi-quasihomogeneity of the germ of the f(x, y) curve relative to the stan-
dard coordinate system, but it changes the curvature of the branches, since it
takes the curve y = aixz to y = (ka;+/ )x2 . Thus, this transformation enables
us to make the two curvatures equal to 1 and 2. Moreover, it can be shown that
any germ of type J,, is diffeomorphic to the germ of a curve defined by the

equation
2 2 2

Y =x)y-2x)(y—ax’)=0
with a > 2. A germ of type ]f(') is diffeomorphic to the germ of a curve defined
by the equation

v —x)0 +ax) =0
with o > 0.

The next two theorems give a complete topological classification of dissipa-
tions of singularities of type J,.

4.2.A. Any dissipation of a germ of a curve which is of type J,o is topologically
equivalent to one of the 31 quasihomogeneous dissipations in Figure 29.

4.2.B. Any type J,, germ has quasihomogeneous dissipations of ail of the 31
topological types in Figure 29.

Theorem 4.2.A is essentially a theorem about prohibitions. We shall not
prove it here; however, we shall return to it when we take up the construction of
nonsingular curves of degree 6 (see §5.1). At that point we will be able to derive
the theorem from the topological prohibitions on the topology of nonsingular
curves.

To prove Theorem 4.2.B we must construct curves g(x, y) = 0 with Newton
polygon contained in the triangle with vertices (0, 0), (6, 0) and (0, 3), such
that the truncation gr(x ,y) isequal to (y— alxz)(y - azxz)(y o a3x2) , where
a; > a, > a4 are any real numbers prescribed in advance, and such that the set
of real points of the curve g(x, y) =0 are situated in RP’ in the way shown
in Figure 29.

We can obtain the curve in the middle of Figure 29 that is beneath the drawing
of the singularity to be dissipated, if we take the equation (y — ozl()c2 + 1)) x

(y — ozz(x:Z + D))y - 0z3(x2 + 1)) = 0 or a nearby irreducible equation. The
other curves are constructed by a method which can be regarded as a version of
Hilbert’s method in §1.10. We take the union of the parabolas y = kx*—1 and

y = Ix? with k>1>0 , and we perturb it as shown in Figure 30. We then add
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one of the original parabolas to the resulting curve and subject the union (which
is a curve of degree 6) to a small perturbation. It is easy to see that the other
30 curves in Figure 29 can be obtained using different small perturbations.

It remains to concern ourselves with gr . This requires us practically to go
through the above construction once again.

4.2.C. LEMMA. For any four numbers ay > oy > a, > a; >0 with ay+ay =
a, +a, and for each of the drawings (a)—(c) in Figure 30, there exists a real
polynomial h in two variables such that

(i) the Newton polygon A(h) is the triangle bounded by the coordinate axes
and the segment T joining the points (0, 2) and (4, 0);

(i) B (x, ) = (v = o X))y —ayx’);

(iii) the curve h(x,y) = 0 is nonsingular, and it is situated relative to the
parabolas y = aoxz —1 and vy = %xz in the manner shown in Figure 30.

Proor. We let p, and p, denote the polynomials y — a0x2 4+1 and y =

a3x2, Clearly the parabolas py(x,y) =0 and pg (x,y) =0 intersect at two

real points. We set /(x, y) = x—p; with i =1, ..., 4 and &, = pop,+tl L1,
It is clear that htr(x, y)=(y — aoxz)(y - a3x2) +tx*. On the other hand, hf
factors as hf(x, y) = (y - ylxz)(y - yzxz). Here y, + 7, = ag +a; and
Y7y = g 1. Since oy + oy = a; +a, and oy > a; > a, > ay, it
follows that o a, > a;oq, and for ¢ = a,a, — aja; > 0 the polynomial h;r 1S
equal to (y — alxz)(y - ozzxz) . Thus, hal%_%% satisfies conditions (i) and (ii)
independently on the choice of £, ..., B4-

We shall show that the choice of these numbers can be made in such a way that
the polynomial also satisfies (iii). If the lines /,(x,y) =0 are situated relative
to the parabolas p j(x, y) = 0 as shown in Figure 31, then there exists € > 0
such that for ¢ € (0, &] the curve h,(x,y) = 0 consists of three components
and is situated relative to the parabolas p j(x, y) = 0 in the way shown in
Figure 30. We show that by suitably choosing the lines /,(x,y) = 0 we can
arrange it so that the role of ¢ can be played by any number in the interval
(0, (aé + a:?;)/?.) , and in particular by o, a, — ay0;.

Since the Newton polygon A(#,) has only one interior point, the genus of
the curve defined by A, is at most 1 (see §3.1). Hence, as { increases from
zero, the first modification of the curve #,(x, y) = 0 must either decrease the
number of components, or else give a curve which decomposes. The latter case
cannot occur for ¢ € (0, +00) . In fact, by considering the truncation hi,r we see
that the curves into which the curve &,(x, y) =0 can decompose are either two
conjugate imaginary curves or else two parabolas. The first is impossible, since
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for any ¢ > 0 a line of the form x =y with y € (B, B,) intersects the curve
h,(x,y) = 0 at two real points; and the second case is impossible, because
the vertical line through a point of intersection of the parabolas Pylx,y)=0
and p;(x,y) = 0 does not intersect the curve h(x,y) =0 for t > 0. For

t e (0, (a(z, + ag) /2), the branches going out to infinity are preserved. If we
place the lines [,(x,y) = 0 near the point of intersection of the parabolas
po(x,y) =0 and p,(x, y) = 0, we can arrange it so that two branches of the
curve /,(x,y) = 0 pass through a prescribed neighborhood of this point for

all e (0, (ag + ag) /2) , and hence the oval is preserved and no modifications
have occurred. @ _
END OF THE PROOF OF THEOREM 4.2.B. As we said before, the equation

(= o (" + D) — ay (7 + D)y = ay (3 + 1)) = 0

(and nearby irreducible equations) give the curve that is shown in the middle of
Figure 29. The remaining curves in Figure 29 can be realized using polynomials
which are obtained from small perturbations of products of the form p jh , Where

p; and & are as in 4.2.C. The perturbations involve adding polynomials of the

form & Hle (= 7,;) . Under such a perturbation there is no change in the terms
corresponding to points on the side of the Newton polygon joining (6, 0) and
(0, 3).

However, in this way one does not obtain dissipations of all of the type

Jio germs. In the case when the polynomials pyh are perturbed, one ob-

tains dissipations of type J,o germs for which all branches are convex in the
same direction and have arbitrary curvature (of the same sign). The point is

that the type J,, germ given by a polynomial with T'-truncation (y — alxz)

X (y — azxz)(y - a3x2), is a union of three branches with curvature 2a;. On
the other hand, in 4.2.C the numbers « 1 » &y, a4 are subject only to the condi-
tion o, > a, > oy > 0. In the case when the polynomials pyh are perturbed,

one obtains dissipations only of type J,, germs for which all branches are con-
vex in the same direction and, moreover, the curvature satisfies the conditions
Ky > K, > i, >0 and i, + ¥, — %, > 0, since the numbers g, a;, @, in4.2.C
must satisfy the inequalities ay > ap >a, >0 and o, +a, —a, = a; > 0.
In the case of type J|, germ with arbitrary curvature values Koy > K, > Ky, We
choose ¢ so that the numbers k, = k;+0d satisfy the inequalities k, >0 and (to
provide for all cases) ki +k,— k, > 0; we then use the above construction to ob-
tain a polynomial which gives the required dissipation of a germ with curvature
ko, k,, k,; and, finally, we apply the transformation (x,y)—(x,y+6 /2x2)
to this polynomial. It is easy to see that this transformation leaves the Newton
polygon inside the triangle with vertices (0, 0), (6, 0) and (0, 3), and it does
not affect the topological type of the dissipation. @

The next two theorems 4.2.D and 4.2.E give a complete topological classifi-
cation of dissipations of type J1+0 singularities. These theorems are analogous
to Theorems 4.2.A and 4.2.B, and, since they will not be needed later, we shall
not concern ourselves with the proofs. '

4.2.D. Any dissipation of a type JI“B germ of a curve is topologically equivalent
to one of the ten quasihomogeneous dissipations in Figure 32.

4.2.E, Any type J 1*6 germ has quasihomogeneous dissipations of all of the ten
types in Figure 32.
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4.3. Dissipations of nondegenerate r-fold peints. Recall that a nondegen-
erate r-fold point of a plane curve is a point where the curve has 7 nonsin-
gular branches which intersect transversally. Any germ of this type is semi-
quasihomogeneous relative to any coordinate system with origin at the r-fold
point. In the cases r = 2 and 3, we obtain the singularities of type A4, and
D, considered above. Nondegenerate 4-fold singularities are denoted by the
symbol X, and 5.fold points are denoted N . :

As we showed in §3.5, dissipations of nondegenerate r-fold singularities are
closely connected with nonsingular affine real plane algebraic curves of degree
r whose projectivization is nonsingular and transverse to the line at infinity.
In particular, any such curve gives a quasihomogeneous dissipation of germs of
this type. Here the dissipations of a given germ are obtained from affine curves
whose asymptotes point in the directions of the tangent lines to the branches of
the germ-—this is the obvious geometrical meaning of the requirement that the
coefficients corresponding to points of the Newton diagram coincide.

There are three types of real nondegenerate 4-fold points: type ng singu-
larities, where all four branches are real, or where there is a pair of conjugate
imaginary branches; and type Xg singularities, where all four branches are
imaginary.

The next two theorems give a complete topological classification of dissipa-
tions of X, singularities.

4.3.A. Any dissipation of a type X, germ of a plane curve is topologically
equivalent to one of the quasihomogeneous dissipations in Figure 33.

4.3.B. Any type X, germ of a plane curve has quasihomogeneous dissipations
of all of the topological types in the corresponding part of Figure 33 (with the
appropriate number of real branches), and it also has quasihomogeneous dissi-
pations of all of the topological types obtained by rotating the ones-in Figure 33
in the plane by multiples of /4. :

Theorems 4.3.A and 4.3.B can easily be obtained from the results we have
about the topology of curves of degree 4. As in the case of zero-modal singular-
ities, singularities of type X, are 100 simple for their dissipations to be applied
directly to give something beyond what the classical methods give in construct-
ing nonsingular projective plane curves. Thus, Theorems 4.3.A and 4.3.B will
not be used later, and were only given for the sake of completeness.

But dissipations of nondegenerate 5-fold singularities are of interest from our
point of view. The corresponding classification problems for affine real plane
curves of degree 5 have been completely solved. Namely, Polotovskii [19], [20]
gave a classification up 10 isotopy for the curves of degree 6 that split into a
union of two nonsingular curves of degree 5 and 1 transversal to each other (and
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hence for the nonsingular affine curves of degree 5 having 5 (real or imaginary)
asymptotes pointing in different directions), and Shustin [31] proved that for any
fixed isotopy type of such a split degree 6 curve, all positions of the intersection
points on the line are realized (i.e., for a given isotopy type of degree 5 affine
curve as above, all sets of directions of the asymptotes are realized). These two
results, together with the known prohibitions on nonsingular curves, leads to a
complete topological classification of the dissipations of nondegenerate 5-fold
points; we shall state the result in Theorems 4.3.C and 4.3.D below.

4.3.C. Any dissipation of a type N,c germ of a plane curve is topologically
equivalent to one of the quasihomogeneous dissipations in Figure 34.

4.3.D. Any type N, germ of a plane curve has quasihomogeneous dissipa-
tions of all of the topological types in the corresponding part of Figure 34 (with
the appropriate number of real branches), and it also has quasthomogeneous dis-
sipations of all of the topological types which are obtained from these as a result
of rotating the plane by multiples of 2n/5.

A reasonably complete proof of Theorem 4.3.D would take up a lot of space.
I shall thus limit myself to a small part: the construction of two affine curves
of degree 5 which give two of the four quasihomogeneous dissipations enabling
us to construct M-curves. All four of these dissipations are shown in Figure
35. What we construct below are the curves which give the dissipations on the
right in Figure 35. I shall give two constructions. One gives a dissipation with
a =0, f =26 and is carried out by Hilbert’s method; the other gives both of
the dissipations and is obtained by a new method. The first construction is in
some sense contained in the second, and is being considered here mainly for
the purpose of illustrating the difference between the methods. It is shown in
Figure 36. ‘

For the second construction we take a union of two real conics C , and C,
tangent to one another at two real points and a line L tangent to C ; and C, at
one of these two points (Figure 37). We place this union of curves on the plane
in such a way that the two common tangent lines are the coordinate axes X, =0
and x, = 0, and the points of intersection of the conics are (1:0:0) and
(0:0:1). We then obtain a curve of degree 5 with two singular points of type

A, and J, which are semi-quasihomogeneous relative to the coordinate Sys-
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tem. Their quasihomogeneous dissipations give nonsingular projective curves
which can be transformed into the required curves by a projective transforma-
tion taking the line M to the line at infinity x, =0 (Figure 36).

The topological classification problem for dissipations of nondegenerate r-
fold singular points on plane curves has not been solved for any r = 6. Some
results for r = 6 were obtained by Chislenko [29]. The topological classification
problem for dissipations is immense when r is large. However, there are partial
results which are within reach and also worthwhile. For example, in §5.4 below
we shall need the dissipations given in the following theorem.
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4.3.E. For any odd r, there is g quasihomogeneous dissipation of the form in

Figure 38 for any germ of a nondegenerate r-fold singularity on a plane curve at
which all branches are real.

The affine curves of degree » which are needed to prove this theorem can be
constructed by Harnack’s method (see §1.6). The projective curve of odd degree
r with scheme (JU(r — 1)(r —2)/2) that can be obtained by Harnack’s method




REAL PLANE ALGEBRAIC CURVES 1111

is subjected to a projective transformation which takes a generating line to the
line at infinity. ,

4.4. Three crossed-out doubly tangent branches (Z; singularities). In this
subsection we examine dissipations of a singular point through which four non-
singular branches pass, of which three have a second order tangency at the
point, while the fourth intersects the other three transversally. There are two
real forms for such singularities: Z,., with four real branches, and Z1+5 , with
two real and two conjugate imaginary branches (clearly, the imaginary branches
must be tangent to one another). ‘

A type Z; singularity is semi-quasihomogeneous relative to any coordinate
system in which one axis is tangent at the singularity to the branches that are
tangent to one another. If this axis is the x-axis and the singularity is of type

Z, then the truncation to the line segment from (7, 0) to (1, 3) of the
polynomial which in this situation gives the curve has the form fx(y — alxz )

x (y — azxz)(y - a3x2) , where «,, a,, a, are distinct real numbers, which can
be interpreted as half of the curvature of the branches tangent to the x-axis.

Although the complete topological classification of dissipations of points of
type Z,s is not known, much in this direction has already been done. All
of the results T am aware of were obtained by Korchagin [40]. It seems that
there is in principle no obstacle to completing the topological classification of
dissipations of this type of singularity. Most likely, it remains only to prove a
few prohibitions and prove in the 7, case that any dissipation is topologically
equivalent to a quasihomogeneous dissipation. Here we shall limit ourselves to
the statement of a result relating to Z,5 .

4.4.A. Any germ of type Z g has the quasihomogeneous dissipations shown in
Figure 39, and also has the quasihomogeneous dissipations which are symmetri-
cal to them relative to the vertical axis.

A proof of this theorem is contained in Korchagin’s article [40], except for
one thing: in the case of the dissipation in Figure 40, Korchagin does not
prove that it can be applied to a germ with arbitrary curvature of the branches.
However, Korchagin’s construction enables one to do this without difficulty.
In Figure 41 we show a construction of the curves which are needed to obtain
some of the dissipations in Figure 39. The construction is carried out by a slight
modification of Hilbert’s method, followed by dissipation of a type J,, point.

4.5. Hyperbolism. In the constructions that follow an important role will be
played by a certain birational transformation of the plane, the use of which
goes back to Huyghens [37] and Newton [16]. Following Newton, we shall call
this map a hyperbolism and shall denote it by the symbol 4y . In homogeneous
coordinates it is given by the formula

2
hy(xg:x, 2 x,) = (XgX; 0 X L XgXs) 5

and in affine coordinates x = X, [Xg, ¥ =X/ X it is given by the formula

hy(x, y)=(x,y/x).
The inverse transformation acts according to the formula

—1 2
hy  (xg:x; X)) = (xg XX X, X5)
or, in affine coordinate,
~1
hy” (x,y)=(x, yx).
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hy~! is obtained from hy by conjugation by the projective involution
(g 1 1 x) = (g 1 xg 1 x,) (Le. (o, ¥) = (1/x, y/x)).

The fundamental points of the hyperbolism (i.e., the points where it is not
defined as a map) are (1 :0:0) and (0: 0 : 1), and the latter point has
multiplicity two. The point (1 : 0 : 0) is blown up to the line x, =0, and
the point (0 : 0 : 0) is blown up to the line Xy = 0. The hyperbolism also
contracts two lines: the line x; = 0 is contracted to the point (0:0: 1), and
the line x; = 0 is contracted to the point (0:1:0). The set of fixed points of
the hyperbolism consists of the line x, = 0. The first and fourth quadrants are
each mapped into themselves, while the second and third quadrants are mapped
into each other. The action of the hyperbolism is shown schematically in Figure
42. In Figure 43 we show how the hyperbolism decomposes into a composition
of three o-processes and three inverse g-processes. In Figure 44 we show what
the hyperbolism does to some curves of degree < 2. The name “hyperbolism”
comes from the first example in Figure 44: a line being transformed into a
hyperbola.
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The hyperbolism takes the curve f(x,y) = 0 to the curve flx,yx) =0.
We note that the Newton polygon of g(x, y) = f(x, yx) is obtained from that
of f by means of a shear along the x-axis of the form (x, ) (x,y+Xx).

4.6. Some dissipations of boundary singularities of type F; 4 and F, ,. In
this subsection we construct polynomials which give dissipations of singularities
of type D, and J,. However, we shall pay special attention to the location of
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FIGURE 43

the curves relative to a distinguished line through the singular point. Thus, es-
sentially what we are constructing here is dissipations of boundary singularities
of type F, o and F, o, (see [3], §17.4). :

4.6.A. There exists a nonsingular projective cubic curve which is situated rela-
live to the axes as shown in Figure 45a and which intersects the axis x, =0 at
any three potwts given in advance and the axis X, = 0 at any three points given
in advance lying in the region X, <0,

Proor. We perturb the curve XgX; (%, — ax,) in the way shown in Figure
45b. The coefficient o and the perturbation can clearly be chosen in such a
way that the required curve is obtained. e

4.6.B. COROLLARY. Any germ of type D, (ie. a nondegenerate triple point)
of a plane curve at the origin whose branches are transversal to the y-axis admits
a quasihomogeneous dissipation shown in Figure 46 such that the perturbed curve
intersects the y-axis at three points near the origin, with the ratio of distances
between neighboring points equal to any preassigned value. ®

4.6.C. LEMMA. There exist curves whose Newton polygon is the triangle with
vertices (0, 0), (6, 0) and (0, 3) and which are situated relative to the coordi-
nate axes as shown in Figure 47.

PrOOF. We perturb the union of the circle (x + 5)2 +(y+ 5)2 = 36 and the
lines y =0 and y = 10 in the two ways shown in Figure 48. We then add the
x-axis to the resulting curves and perturb the union as in Figure 49. We again
add the x-axis and make a perturbation; see Figure 50. We now perform the
projective transformations (@ o i — (X, 1 =X, x,) for the curve on the
left in Figure 50, and (Xg 12, 1) = (x5, 1 x; x,) for the curve on the right.
As a result we obtain the curves in Figures 47a—b. We now subject them to the
projective transformation (Xg 1, 1) = (g 0, X, — aX,) with a chosen
S0 as to obtain the curves in Figure 51. We now apply the hyperbolism, which
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gives us the curves in Figure 52. If we apply suitable projective transformations,
we obtain the curves in Figures 47c-d. @

4.6.D. For any o > a, > a; > 0 and B, > B, > B; there exists a real
polynomial f in two variables such that

(1) A(f) is the triangle with vertices (0, 0), (6, 0), (0, 3);

(1) the curve xg flx/xy, x,/%y) = 0 s situated relative to the coordinate
axes in the same way as the curve given in advance in Lemma 4.6.C;

(iii) if T is the segment joining the points (0, 3) and (6, 0), then fr(x, y) =
(y"alxz)(y“azxz)(y"a3x2); _

(iv) if E is the segment joining the points (0, 0) and (0, 3), then ~(x,¥y) =
(v =B =B —By).

Proor. By Lemma 4.6.C, there exists a polynomial f satisfying (i) and (i1).
Using a parallel translation along the x-axis (x, y) +— (x + ¢, y) (which does
not change f r) . we can arrange that the curve f(x, y) =0 intersect the y-axis
at three points having any preassigned ratio of distances between neighboring
points. We choose such a parallel translation so that we obtain the same ratio
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as for the points a,, a,,a; € R. Using a parallel translation of the form
(x,y) = (x, y+c) (which again does not affect the polynomial f F) , We arrange
to have f~(x,y) become equal to Yy = da )y —da,)(y - day) for some
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§ > 0 and y. Using the quasihomothety (x, y) (5“1/ ’x, 67! y) (which
causes [ " {0 be multiplied by ¢ 3), we make the polynomial f~(x,y) equal
to y53(y —a)(y—a,)(y —ay). We divide the resulting polynomial f by yd3 .
We now perform the hyperbolism, followed by the transformation (x; @ X, :
Xy) (X Xg X)) The resulting curve turns out to be (topologically) situated
as before relative to the coordinate axes—see Figure 53, where this is carried
out for the case shown in Figure 47c. The corresponding transformation of the
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Newton polygon and the equation takes = to I” and fE to f r’ 5o that we now
have fr(x V)= (- ozlxz)(y - oyz)cz)(y - 053)(2) . Finally, proceeding as before,
we use parallel translations and quasihomotheties which keep the truncation f r
unchanged and*8ive usa polynomial f satisfying condition (iv) as well. @
4.6.E. COROLLARY. Any type Jio germ of a plane curve at the origin whose

branches are tangent to the x axis from above(4) admits quasihomogeneous dis-
sitpations shown in Figure 54 such that the perturbed curve intersects the y-axis
at three points near the origin, with ratio of distance between neighboring points
equal to any preassigned value.

4.7. Four branches with second order tangency (X,, singularities). In this
subsection we examine dissipations of singularities of type X, , Le., singular-

(4)11 is not hard to remove the condition that they must be tangent from above.
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ities where four nonsingular branches are tangent to one another with second
order tangency. Any germ of this type is semi-quasihomogeneous relative to
any coordinate system one of whose axes is tangent to the branches. We shall
only be interested in germs for which all of the branches are real. The polyno-
mial defining the curve with type X,, point at the origin has truncation to the
Newton diagram determined up to a constant of proportionality by the values
of the curvature of the branches at the singular point.

We do not yet have a complete topological classification of the dissipations
of X,, singularities. Shustin [32] proved that all dissipations of type X,, sin-
gularities with a given number of real branches have the same topological type;
however, there is still a big gap between what is given by the constructions and
the prohibitions. Curiously, the problem has been completely solved for dis-
sipations that can occur in the construction of nonsingular M-curves. These
dissipations are considered in the next theorem. It can be shown that any dissi-
pation of an X,, singularity with four real branches in the course of which nine
new small ovals appear (this is the maximum possible number) is topologically
equivalent to one of the dissipations in Theorem 4.5.A.

4.1.A. Any type X,, germ with four real branches has all of the quasihomoge-
neous dissipations in Figure 55, and also all of the quasihomogeneous dissipations
obtained from them by reflection about the vertical axis. o

I will give a construction of curves realizing these dissipations, where (as
above) the curvature of the branches is ignored. In Figure 56 a curve is con-
structed from the dissipations on the left in Figure 55 with o = 8 and 4. If
we apply the transformation (x,y) = (x,y -+ axz) to these curves with a
sufficiently large, we obtain curves which give the two remaining dissipations
on the left in Figure 55.
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Curves giving the rest of the dissipations in Figure 55 can be constructed in
a uniform manner. As shown by Polotovskii [ 19], a nonsingular M-curve of
degree 5 whose one-sided component intersects some line in five points can be
situated relative to this line in any of four possible ways (see Figure 57, where
the papers in which the cases were first realized are indicated). If we rotate the
line around one of its points of intersection with the one-sided component and
then apply projective transformations which take this line to the line x, =0,
from the curves in Figure 57 we can obtain curves of degree 5 which are situated
relative to the projective coordinate system in the manner shown in Figure 58.

We apply a hyperbolism to all of these curves, obtaining curves of degree 8
with a nondegenerate triple point at (0:1:0) and with a type X ,; Singularity
that is solitary (i.e., it lies only on imaginary branches) at the point (0:0: 1)
(Figure 59).

We next apply the transformation T A (=5 :x; 1 x,) to the first,
third, fifth and sixth of these curves; the results are shown in Figure 60.

We now dissipate the singularity at (0: 1 : 0) in the resulting ten curves in
Figures 59-60. By 4.6.B, thére exist quasihomogeneous dissipations of these
triple points such that the resulting curves have the form in Figure 61. It is
essential that in place of the singularity one obtains three points of intersection
of the perturbed curve with the line Xy = 0 which lie on the same branch. If

we now apply the transformation hy_l to these curves, we obtain curves of
degree 8 which give the required quasihomogeneous dissipations of a point of
type X, . @

4.8. Dissipation of a point of second order tangency of 2k —1 nonsingular real
branches. Of course, the topological classification problem for such dissipations
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very quickly becomes hopeless as k increases. However, Theorem 3.8.A enables
us to construct dissipations for some concrete types with k arbitrary.

4.8.A. Any germ of a curve consisting of 2k — 1 nonsingular real branches
(k > 1) which have second order tangency to one another and to the x-axis at
the origin admits a quasihomogeneous dissipation shown in Figure 62.

ProOF. We begin the construction with the parabola y = (x — a)(x — f),
where a > f# > 0, or, in homogeneous coordinates x,x,—(x, —ax,)(x,~Bx)) =
0. Next, we take the union of this curve with the y-axis and perturb by means
of the polynomial (x, — 7, ,Oxo)xg , 1.e., we construct the curve

2
(X, — (6, — axg)(x; — Bxg))x, +&(x, — vy %)% = 0.

Here Y10 < 0, and ¢ is a small positive number. In the projective plane this
looks like the drawmg in Figure 63. To understand what happens at the point
(0:0: 1) it suffices to look at the Newton polygon. The degree 3 polynomial
we constructed has as its Newton polygon a trapezoid with two sides meeting
at (0, 3). It is clear that the singularity at (0 : O : 1) is of type A, ; but
one of the branches is tangent to the line x, = 0. Now we again add the line

x, = 0 and perturb by means of the polynomial (x, —4J; x))(x, —J; X)X 3

2
with , | >4, , > 0. We now have a type 4, singuﬂamy at (O 0:1). We
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continue in the same way. Suppose that we have already constructed a curve of
degree 4r — 2 having 2r — 1 nonsingular branches at (0:0:1) tangent to the
axis x, = 0 and situated as in Figure 64 on the left. After twice adding a line
and perturbing, we obtain an analogous curve of greater by 2 in degree. This
curve gives the dissipation whose existence is claimed in the theorem. However,
this dissipation is not suitable for any germ, only for a germ with a certain fixed
set of values of curvature of the branches, and we have no control over this set of
values. Nevertheless, we note that our curve intersects the y-axis at points which
depend only on the last step of the construction and can be made to be whatever
we want. We apply the hyperbolism to this curve, followed by the symmetry
(Xg 7% 1 x,) = (X, - Xg © X,). A curve of the same form is obtained. But
the branches of our original curves which intersect the y-axis become branches
tangent to the line x, = 0; and the y-coordinates of the points of intersection
are proportional to the values of the curvature of the branches of the new curve
which pass through (0:0: 1). Since these values are arbitrary distinct positive
numbers, we have obtained the required dissipation. e
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§5. Construction of nonsingular curves

5.1. Curves of degree 6. Gudkov’s theorem on the isotopy classification of
nonsingular projective curves of degree 6 has already been stated in §1.13.

5.1.A. Any nonsingular curve of degree 6, except for an empty curve or a curve
with the scheme (10) or (1(9)), is isotopic to the curve resulting from a small
perturbation of a union of three ellipses which are tangent to one another at two
points, as shown in Figure 65.

To prove this is sufficient, using Theorem 3.8.A and Remark 3.9, to perturb
the union by means of the dissipations in Theorem 4.2.B.

5.1.B. REMARK. Curiously, perturbations of the curve in Figure 66 can also
be used to prove prohibitions on the topology of dissipations of a type J,
singularity. In fact, Theorem 4.2.B along with the prohibitions on the topology
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of nonsingular projective curves of degree 6 imply the prohibitions in Theorem
4.2.A. The point is that prohibitions on the topology of curves of degree 6 come
from topology, and any dissipation of a singularity of a curve obtained from
Theorem 4.2.B at least gives a flexible curve of degree 6.

Degree 6 curves with the schemes (10) and (1(9)) can easily be constructed
by Hilbert’s method (the former can also be constructed by Harnack’s method);
see §§1.9~1.10.

In my article [46] it is erroneously stated that all nonsingular curves of degree
6 are isotopic to curves resulting from small perturbations of the curve in Figure
65. It can be shown that this is the case for a union of three ellipses which
are tangent to one another with multiplicity 3 at a single point and which are
situated as in Figure 66. But we shall not prove this, since we have not examined
dissipations of a second order point of tangency of three branches ( Jr) -

3.2. Curves of degree 7. Since the isotopy classification problem has not yet
been examined separately for the case of nonsingular curves of degree 7, I will
begin with prohibitions. Unlike the lower degree cases, here the prohibitions
coming from topology have so far turned out to be much weaker than the sin-
plest corollaries of Bézout’s theorem. Corollary 1.3.C (1.e., the consideration of
intersections with auxiliary lines) implies that the real schemes of nonsingular
curves of degree 7 have the form (Jlla), (Jllall1(8)) or (JALI(1(1))), where
>0 and f > 1. By Harnack’s inequality, the total number of components is
at most 16, so that the number of ovals is < 15.

This is almost all. In 1979, when all of the real schemes satisfying these
prohibitions except for (J11(14)) had been realized by nonsingular degree 7
curves, I was able to show that (JIL1(14)) is prohibited (thereby completing
the isotopy classification of nonsingular curves of degree 7) (see [7]). This was
done using auxiliary curves of degree 2 and the theory of complex orientations.

Thus, the solution of the isotopy classification problem for nonsingular real
projective algebraic plane curves of degree 7 can be stated as follows.

5.2.A. There exist nonsingular plane curves of degree 7 with the Jollowing real
schemes:

(1) (Jla) with 0 < a < 15;

(1) (Jlalll(f)) with a+8 <14, 0<a <13, 1< B <13,

(iii) (JLI(I(D))).

Any nonsingular plane curve of degree 7 has one of these 121 real schemes.

We now consider how to construct the curves needed to prove this theo-
rem. The following real schemes can be realized using Harnack’s method:
(Jla) with 0 < a < 15; (Jllalll(1)) with 0 < a < 13 (see Figure 7,
which shows a realization of the scheme (J 1L131L1(1))) and also the schemes
(JLalll(B)) with 0<a<9 and 0< B < 4.

The following real schemes can be obtained by Hilbert’s method: (JULall1{B))
with a + f < 12; (JUallI(f)) with a+ 8 < 14, a < 2, B < 13 and
(JLall1(f)) with a+ f < 14, a < 12, B < 3. Of course, the scheme
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(JUL1(1(1))) can be realized as well, but it can also be realized using a split
curve.

Gudkov’s construction [11], which we alluded to in §1.12, gives the schemes
(Jlall1{B)) with a <9, §<35.

These are all of the schemes which have been realized by means of small
perturbations of curves which split into a transverse union of nonsingular curves
of lower degree. The theory of complex orientations has made it possible to
determine some limitations on this method. In particular, Zvonilov and Fidler
showed that the scheme (J1411(10)) cannot be realized in this way.

The next construction gives all of the missing schemes. The construction
described here immediately gives (Jllall1{8)) with 6 <a+p <14, a>1,
B > 2; small modifications then enable one to obtain many other real schemes
(including the ones we have already obtained).

52.B. LEMMA. There exist four curves of degree 7 which each have two type
Jyo Singular points and are situated as shown in Figure 67.
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Proor. We use Hilbert’s method, adapted to the construction of singular

curves. Using small perturbations of the various unions of the conic x2x0~x12 =
0 and a line shown in Figure 68, we construct four nonsingular curves of degree

3 which are situated relative to the coordinate axes and the conic Xy Xy — xlz =0

as shown in Figure 69. We perturb the unions of these degree 3 curves with the
conic x,x, — xlz = 0 in such a way as to obtain the curves in Figure 70.

The unions of the resulting degree 5 curves with the conic XX — x12 = (0 can
obviously be perturbed in such a way as to obtain the required curves. ®

We now subject each of the curves in Lemma 5.2.B to perturbations which
dissipate the singular points. We do this using the quasihomogeneous dissi-
pations in Theorem 4.2.B. Even just the dissipations on the left in Figure 46
already give all of the real schemes (Jlall1(8)) with 6 <a+8<14, a> 1,
B>2. o

Another realization of almost real schemes of nonsingular curves of degree 7
is given by the following theorem of Korchagin [40].

3.2.C. Every nonsingular curve of degree 7 except for a curve with scheme
(JUL1(13)) is isotopic to a curve resulting from a small perturbation of the union
of three ellipses which are tangent to one another at two points and the line
through these points, as shown in Figure 71.

To prove this it suffices, by Theorem 3.8.A and Remark 3.9, to perturb this
union by means of the dissipations in Theorem 4.4.A.

5.3. Curves of degree 8. The isotopy classification of nonsingular real projec-
tive algebraic plane curves of degree 8 has not yet been completed, although it
is reasonable to think that it will be completed within the next few years. In
any case, the last ten years have seen much progress, and no diminishing of the
intensity of work on the subject.

I will list the prohibitions currently known on the real schemes of nonsingular
curves of degree 8.

5.3.A. COROLLARY OF BEZOUT’S THEOREM. The real scheme of a nonsingu-
lar curve of degree 8 has the form (a), or (all1(B)), or (allI(BYLL(y)), or
(@l I(BYLI()LI(S)) , or (4(1)), or (alll(B)LL1(y)), or (1{1{1{1)})).

5.3.B. HARNACK’S INEQUALITY: p 4+ 1 < 22.

3.3.C. EXTREMAL CONGRUENCES FOR HARNACK’S INEQUALITY. If p+n =22,
then p—n =0 mod8, and hence p = n = 3 mod4. If p+n =21, then
p—n==41 mod8§.

5.3.D. COROLLARY OF PETROVSKII'S INEQUALITY. There is no singular curve
of degree 8 with real scheme (20) .

5.3.E. (see [7]). If (all1(B)LL1(y)IL1(8)) is the real scheme of an M -curve of
degree 8 with B,y and § nonzero, then B,y and & are odd.

3.3.F. (see [7]). If («Ll1(B)IL1(y)IL1(d)) is the real scheme of an (M —2)-curve
of degree 8 with B,y and & nonzero and with f+v+6 =0 mod4, then two
of the number B, 7y, are odd and one is even.

5.3.G. (see [8], [43]). If (1{a)L1(B)LL1(y)) is the real scheme of an M-curve of
degree 8, then (o, B, y) cannot be any of the following seven triples: (1,3,15),
(1,5,11), (1,9,9), (3,3,13), (3,5,11), (3,7,9), (5,5,9). There is
no curve of degree 8 with real scheme (4111(3)1L1(3)1L1(9)) .

The last three restrictions were proved using Bézout’s theorem; thus, they
might not come from topology.
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Very recently I received a manuscript from Shustin in which he proves two
more series of prohibitions of the same sort.

5.3. 1. There are no M-curves of degree 8 with scheme 1{all1(20—a)), where
a=2,6,10, 14 or 18.

The second series contains 50 (M — 1)-curves of degree 8.

The above prohibitions are satisfied by 91 real schemes with 22 ovals and 193
schemes with 21 ovals. Of them 78 schemes with 22 ovals and 171 schemes
with 21 ovals have been realized by nonsingular curves of degree 8. 1 do not
have the very latest information on (M — 2)-schemes. As of a year ago, 337 of
the 409 (M — 2)-schemes that are not prohibited had been realized (largely due
to the work of Polotovskii, see his survey [43]), and 332 of the 367 permitted
(M — 3)-schemes had been obtained.

Clearly, it would be unwieldy to examine here all of the schemes realized by
nonsingular curves of degree 8. So I shall limit myself to a few examples.

A very large number of schemes are realized by our means of small perturba-
tions of the curve in Figure 72, which is a union of four ellipses having second
order tangency at two points. This curve has two type X, singularities. If we
dissipate them using all of the known methods (see 4.7.A), we can realize 47 real
schemes with 22 ovals, 117 schemes with 21 ovals, 319 schemes with 20 ovals,
and 213 schemes with 19 ovals (see Polotovskii [43]). One might think that
almost all of the real schemes of degree 8 can be realized by small perturbations
of this curve—indeed, in the case of curves of lower degree the analogous curve
gives almost all of them (compare with 5.2.C and 5.1.A). However, we shall sec
that this is far from true.

531 LemMa. There exists a curve of degree 8 which has a nondegenerate
5-fold singular point at (1 :0:0) and a type J,, singular point at (0:0:1)
and which is situated as shown in Figure 73.

ProoOE. We construct a conic C and a line L which are situated relative to
one another and relative to the axes in the way shown in Figure 74.
We perturb the union C U L in such a way as to obtain a nonsingular curve
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of degree 3 which, like C, passes through the point (0:1:0) and which is
situated relative to C and the axes as shown in Figure 75.

We perturb the union of this curve and the conic C in such a way as to
obtain a curve of degree 5 which has a nondegenerate double point at (0:1:0)
and is situated relative to the coordinate axes as shown in Figure 76.

We apply the transformation hy_ﬁ to the resulting curve. Obviously, the
result will be the required curve. @

If we perturb the curve in Lemma 5.3.4 so that dissipations of its germs at the
points (1:0:0) and (0:0:1) give six and four new small ovals, respectively
(see Theorems 4.3.D and 4.2.B), we obtain M-curves of degree 8 with the
schemes in Figure 77.

The real scheme (1111(21L1(7))), for example, can be realized in this way
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and cannot be realized by a small perturbation of the curve in Figure 72.

There is another construction of nonsingular curves of degree §—involving
first constructing a curve of degree 8 with N,, and J, singularities—which
leads to interesting curves and can be generalized. It will be described (in a
special case) in the next subsection.

8.4. Refinement of Ragsdale’s conjecture. Recall (§1.11) that in 1906, based
on an analysis of the constructions of Harnack and Hilbert, Ragsdale made a
conjecture to the effect that for any nonsingular curve of even degree

p<(3m’ —6m+8)/8 and n<(3m’ —6m)/8.

Curiously, in 1938 Petrovskii [42] (independently) proposed the weaker conjec-
ture:

p<(3m’—6m+8)/8 and n<(3m —6m+8)/8.

In the note [6] I announced that there are counterexamples to Ragsdale’s
second inequality for any m > 8 with m =0 mod4. In this subsection I will
describe how these counterexamples are constructed. They are curves with real
schemes ((m2 — 6m)/8ﬂ1((3m2 —6m+8)/8)) of degree m > 8, m =0 mod4.
We note that they establish that the strengthened Petrovskii inequality 2.3.1 is
best possible.

The question of whether the Petrovskii conjecture (or the refined Ragsdale
conjecture) is correct, remains open. The question can be generalized as follows
(see [6]): Is it true that, if X 1s the set of fixed points of an antiholomorphic
involution of a simply connected nonsingular compact complex surface Z,
then

dim H,(X; Z,) < h"'(2)?

We begin the construction of our counterexamples by constructing some non-
singular curves.

5.4.A. For every k > 1 there exists a curve of degree 4k of the form in Figure
78, where a = (k> —k —2)/2, B =(k*—k+2)/2, and y =k’ — 1, which has
a nondegenerate (2k + 1)-fold singular point at (1:0:0) and a point of second
order tangency of (2k — 1) nonsingular branches at (0:0:1).

ProOF. We construct a nonsingular cubic curve C, which is situated relative
to the lines L and L, as shown in Figure 79. We perturb the union C UL
in such a way as to obtain a nonsingular curve C, of degree 4 which is situ-
ated relative to L and L, as shown in Figure 80. After that we use a series
of Harnack constructions, taking the line L as the generating curve and as bases
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taking intervals above and the points of intersection with L, below (compare
with §1.12). We obtain the curve C,, , in Figure 81.

We now perturb the union C,, UL in such a way as to obtain a nonsingular
curve C,, of degree 2k which is situated relative to L and L, as shown in
Figure 82. It is important that the nonempty oval of C,, intersect L at 2k
points, and that the second and third points from the top—we shall denote them
by p and g—bound an interval which contains LN L, and is small compared
to the other intervals on L cut out by the curve C,, .

We perturb the union C,, UL, and, by continuing the perturbation, we obtain
a contraction of the oval obtained from the lune with vertices p and ¢ to an
isolated double point. Because these points are so close to one another, this
modification occurs first (before any others that may occur). We have obtained
a curve C,, , of degree 2k + 1 with a single nondegenerate isolated double
point, where the curve is situated as shown in Figure 83 relative to the line L
and a line L' which is near L, and passes through the singular point.

We now perform a projective transformation which takes L to the axis x, =
0, L' to the axis x, = 0, and the singular point on C,, , to the point (O :
1 :0). The broken line in Figure 83 shows the preimage of the axis x, = 0
under this transformation (its location is actually not essential in what follows).
Applying the transformation hym1 to the image of our curve, we obtain the
required curve. @

If we perturb the curve in Lemma 5.4.A in such a way that the dissipations
of its singularities at (0 : 0: 1) and (1:0:0) are as in 4.8.A and 4.3.E, we
obtain a nonsingular curve of degree m = 4k with the required real scheme
(m* — 6m)/81L1(3m> — 6m + 1)/8)).

The rest of the survey is expected to be published in the next issue of this
journal. The third and final chapter will be devoted to the further development
of techniques for constructing real algebraic varieties with controlled topology.
The central construction which is studied and applied in Chapter 3 puts to-
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gether several algebraic hypersurfaces into a new algebraic hypersurface, which
from a topological point of view is obtained by gluing together the original hy-
persurfaces. This construction arose as a result of analyzing the perturbations
of curves with semi-quasihomogeneous singularities which were described and
applied in Chapter 2 above. The construction in Chapter 2 of a quasihomo-
geneous dissipation of singularities is a special case of the gluing construction.
The gluing construction can be explained on the same elementary level as the
construction of quasihomogeneous dissipations (such an explanation 1s sketched
in §6 of the first section—Chapter 3). However, a much clearer picture emerges
if we enlarge our repertory of objects-—by including the hypersurfaces of toric
manifolds. The basic theory of toric manifolds that is needed will be explained
in §7.

Roughly speaking, the transition from quasihomogeneous dissipations to the
gluing construction equates the role of the singular curve which is perturbed
and that of the curves which determine quasihomogeneous dissipations of its
semi-quasihomogeneous singularities. Here a new object appears which is very
useful from a technical standpoint—the map of a polynomial. This is a copy
of the curve defined by the polynomial, placed in a natural way in a union
of four copies of its Newton polygon. In the construction of the map, the
singularities governed by the Newton polygon undergo a resolution. From a
purely algorithmic point of view, the gluing construction consists in putting
together maps of polynomials to form the map of a new polynomial. Of course,
the maps that are put together must satisfy some compatibility conditions—
analogues of the condition that the tangent directions to the branches of a curve
at a nondegenerate r-fold point must coincide with the asymptotic directions of
the affine curve which gives a quasihomogeneous dissipation of the point (see
§3.5 above). The usefulness of this formulation of constructions of curves can
be felt even in the case of quasihomogeneous dissipations. The reader can see
this by repeating the above constructions in the language of maps and gluings, as
well as by learning the new constructions. In addition, at the end of the article
we shall examine constructions of curves with controlled complex scheme, and
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also some new constructions which do not fit into the framework of the basic
methods.
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