CONGRUENCE MODULO 8 FOR REAL ALGEBRAIC CURVES OF DEGREE 9

O.YA. VIRO, S.YU. OREVKOV

1. Introduction and statement of the result. Let A be a non-singular real algebraic curve of degree m in \mathbb{RP}^2 . Its connected components are embedded circles. Those of them whose complement in \mathbb{RP}^2 is not connected are called *ovals*. One says that an oval u lies *inside* an oval v if u is contained is the orientable component of the complement of v. A union of d ovals v_1, \ldots, v_d such that v_i is inside $v_{i+1}, 1 \leq i < d$, is called a *nest of the depth* d. An oval is called *exterior* if it does not lye inside any other oval; an oval is called *empty* if there is no other ovals inside it. An oval is called *even* if it is contained inside an even number of other ovals, and *odd* otherwise. Denote by p and n the number of even and odd ovals respectively. One says that A is an M-curve if it has the maximal possible number of connected components then it is called an (M - i)-curve Let CA be the complexification of A. If $CA \setminus A$ is not connected, A is a curve of type I; if $CA \setminus A$ is connected then A is a curve of type I.

For curves of an even degree m = 2k, in some cases, the difference p - n satisfies congruences. For example,

Gudkov-Rohlin congruence $p - n \equiv k^2 \mod 8$ for M-curves,

Gudkov-Krahnov-Kharlamov congruence $p-n \equiv k^2 \pm 1 \mod 8$ for (M-1)-curves, Kharlamov-Marin congruence $p-n \not\equiv k^2 + 4 \mod 8$ for M-curves of type II, and Arnold congruence $p-n \equiv k^2 \mod 4$ for curves of type I.

These statements do not extend to curves of *odd* degrees. So, for an *M*-curve of any odd degree 2k + 1 with $k \ge 3$, the residue $p - n \mod 8$ may take any values congruent to $k \mod 2$. As far as we know, the following theorem is the first result of this kind.

Theorem 1. Let A be a curve of degree m = 2k + 1 = 4d + 1 which has 4 paiwise distinct nests of the depth d. Then

if A is an M-curve then	$p-n \equiv k(k+1)$	$\mod 8;$	(1)
if A is an $(M-1)$ -curve then	$p-n \equiv k(k+1) \pm 1$	$\mod 8;$	
if A is an $(M-2)$ -curve of type II then	$n \ p - n \not\equiv k(k+1) + 4$	$\mod 8;$	
if A is a curve of type I then	$p-n \equiv k(k+1)$	$\mod 4;$	

It is clear that (1) for d = 2 is equivalent to the fact that the number of exterior empty ovals of an *M*-curve of degree 9 with 4 nests is divisible by 4. This was conjectured by Korchagin [2]. Theorem 1 is obtained below (see Sect. 4) as a consequence of Kharlamov-Viro congruence [1] which generalizes the classical congruences to the case of singular curves of even degrees.

Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}\text{-}T_{\!E} X$

2. Brown - van der Blij invariant. By a quadratic space we mean a triple (V, \circ, q) composed of a vector space V over the field \mathbf{Z}_2 , a bilinear form $V \times V \to \mathbf{Z}_2$, $(x, y) \mapsto x \circ y$, and a function $q: V \mapsto \mathbf{Z}_4$ which is quadratic with respect to \circ in the sense that $q(x + y) = q(x) + q(y) + 2x \circ y$. A quadratic space is determined by its Gram matrix with respect to a base e_1, \ldots, e_n of V, i.e. the matrix $Q = (q_{ij})$ where $q_{ii} = q(e_i)$ and $q_{ij} = e_i \circ e_j$ for $i \neq j$ (the diagonal entries are defined mod 4, the others mod 2; note that $q(x) \equiv x \circ x \mod 2$). It is easy to see that by elementary changes of the base, one can put the Gram matrix to the block-diagonal form diag $(d_1, \ldots, d_t) \oplus Q_1 \oplus \cdots \oplus Q_s$ where each block Q_i is either $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, or $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. If all $d_i \neq 2$, we say that the form q is informative and in this case we define its Brown - van der Blij invariant $B(q) = \sum B(d_i) + \sum B(Q_i) \mod 8$ where B(0) = 0, $B(1) = 1, B(-1) = -1, B\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 0$, and $B\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = 4$.

3. Kharlamov-Viro congruence for nodal curves. Let A be a curve in \mathbb{RP}^2 of degree 2k defined by f = 0 and let each of its singular points is the point of transverse intersection of two smooth real local branches. A is called an M-curve (a curve of type I) if the normalization of any its irreducible component is an Mcurve (a curve of type I). A curve which is not of type I, is of type II. Let x_1, \ldots, x_s be the singular points and Γ_A be the union of the connected components of Apassing through them. Let b = 0 if $\mathbb{RP}^2_+ = \{f \ge 0\}$ is contractable in \mathbb{RP}^2 and $b = (-1)^k$ otherwise. Let C_1, \ldots, C_r be the components of $\mathbb{RP}^2 \setminus \Gamma_A$ where f > 0near Γ_A .

Let us define a quadratic space (V, \circ, q) as follows. Let (V_0, \circ, q_0) be the quadratic space with the orthogonal base e_1, \ldots, e_s such that $q_0(e_1) = \cdots = q_0(e_s) = -1$. Set $c_i = \sum_{j \in \alpha_i} e_j$ where $\{x_j\}_{j \in \alpha_i}$ are the singular points through which ∂C_i passes only once. In the cases when either A is contractible in \mathbb{RP}^2 or, as in Sect. 4, there is a branch of A (i.e. a smoothly immersed circle) which is non-contractible in \mathbb{RP}^2 , we define $V \subset V_0$ as the subset generated by c_1, \ldots, c_r and we set $q = q_0|_V$.

In the case when A is not contractible in \mathbb{RP}^2 but all its branches are, let us choose a simple closed curve in A which is not contractible in \mathbb{RP}^2 . Let (V'_0, \circ, q'_0) be the quadratic space with the base (e_0, \ldots, e_s) which contains V_0 as a quadratic subspace $(q'_0|_{V_0} = q_0)$ and let $q'_0(e_0) = (-1)^k$, $e_0 \circ e_j = 0$ iff $L \sim 0$ in $H_1(\mathbb{RP}^2_+, \mathbb{RP}^2_+ X_j)$. Let $V \subset V'_0$ be the subspace generated by c_1, \ldots, c_r , and $e_0 + \sum_{j \in \alpha_0} e_j$ where $\alpha_0 = \{j \mid L \sim 0 \text{ in } H_1(\mathbb{RP}^2_-, \mathbb{RP}^2_- \setminus x_j)\}$, and let $q = q'_0|_V$.

Theorem 2. Suppose that each branch of A which is conractable in \mathbb{RP}^2 cuts other branches at $n \equiv 0 \mod 4$ singular points and each branch which is not contractible in \mathbb{RP}^2 , at $n \equiv (-1)^{k+1} \mod 4$ singular points. If A is an M-curve then $\chi(\mathbb{RP}^2_+) \equiv k^2 + B(q) + b \mod 8$ and also the corresponding analogues of Gudkov-Krahnov-Kharlamov, Kharlamov-Marin, and Arnold congruences take place.

Theorem 2 is a corollary of Theorem (3.B) on curves with arbitrary singularities from the paper by Kharlamov and Viro [1]. Theorem 2 is formulated here because there are mistakes in [1] in the discussion of the corresponding particular case (4.I), (4.J) of Theorem (3.B).

4 Proof of Theorem 1. Let us choose any three pairwise distinct nests of the depth d and a point inside the innermost oval of each of them. Theorem 1 follows from Theorem 2 applied to the union of A and the three straight lines passing

through the three chosen points. Indeed, the union of the three chosen lines and the non-contractible branch of A divides \mathbf{RP}^2 into 4 triangles and 3 quadrangles (curvilinear). All ovals not belonging to the three chosen nests lye in the quadrangles (otherwise would exist a conic having too many intersections with A). Therefore, after the suitable choice of the sign, one has $\chi(\mathbf{RP}^2_+) = \chi(\bigcup \overline{C}_j) + p' - n'$ where p' and n' are the numbers of even and odd ovals, not belonging to the three chosen nests. B(q) can be computed according to Sect. 2.

References

- V.M. Kharlamov, O.Ya. Viro, Extension of the Gudkov-Rohlin congruence, Lect. Notes. Math. 1346 (1988), 357–406.
- 2. A.B. Korchagin, Construction of new M-curves of 9th degree, Lect. Notes. Math. 1524 (1991), 407–426.

ST.PETERSBURG BRANCH OF STEKLOV MATH. INST. AND UPSALA UNIV.

STEKLOV MATH. INST. (MOSCOW) AND UNIV. PAUL SABATIER (TOULOUSE)