Geometry for Teachers MAT515, Fall 2010, Lecture 3

Oleg Viro

September 8, 2010

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Let a line $A B$ and an arbitrary point M outside the line be given.

- M

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Let a line $A B$ and an arbitrary point M outside the line be given. Drop a perpendicular from M to $A B$.

- M

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Apply the axial symmetry about $A B$.

- M

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Apply the axial symmetry about $A B$.

- M

- M^{\prime}

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Apply the axial symmetry about $A B$.
Connect M and M^{\prime} by a line.

- M

- M^{\prime}

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Apply the axial symmetry about $A B$.
Connect M and M^{\prime} by a line.

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Prove that $M M^{\prime}$ is perpendicular to $A B$!

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Prove that $M M^{\prime}$ is perpendicular to $A B$!
$\angle M C A=\angle A C M^{\prime}$ as symmetric.

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Prove that $M M^{\prime}$ is perpendicular to $A B$!
$\angle M C A=\angle A C M^{\prime}$ as symmetric. $\angle M C A+\angle A C M^{\prime}=180^{\circ}$ as $\angle M C A$ and $\angle A C M^{\prime}$ are supplementary.

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Prove that $M M^{\prime}$ is perpendicular to $A B$!
$\angle M C A=\angle A C M^{\prime}$ as symmetric. $\angle M C A+\angle A C M^{\prime}=180^{\circ}$ as $\angle M C A$ and $\angle A C M^{\prime}$ are supplementary.
Hence $\angle M C A=\angle A C M^{\prime}=90^{\circ}$ and $M M^{\prime} \perp A B$.

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Uniqueness.

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Uniqueness. Assume there is another perpendicular $M D$.

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Uniqueness. Assume there is another perpendicular $M D$.

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Uniqueness. Assume there is another perpendicular $M D$.
Take its image under the symmetry about $A B$.

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Uniqueness. Assume there is another perpendicular $M D$.
Take its image under the symmetry about $A B$.

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Uniqueness. Assume there is another perpendicular $M D$.
Take its image under the symmetry about $A B$.
Angles $\angle M D A$ and $\angle A D M^{\prime}$ are right, therefore $\angle M D M^{\prime}$ is straight.

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Uniqueness. Assume there is another perpendicular $M D$.
Take its image under the symmetry about $A B$.
Angles $\angle M D A$ and $\angle A D M^{\prime}$ are right, therefore $\angle M D M^{\prime}$ is straight. Hence $M D M^{\prime}=M M^{\prime}$ and $D=C$.

Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Uniqueness. Assume there is another perpendicular $M D$.
Take its image under the symmetry about $A B$.
Angles $\angle M D A$ and $\angle A D M^{\prime}$ are right, therefore $\angle M D M^{\prime}$ is straight. Hence $M D M^{\prime}=M M^{\prime}$ and $D=C$.

SAS-test

Theorem. If two sides and the angle enclosed by them in one triangle are congruent respectively to two sides and the angle enclosed by them in another triangle, then such triangles are congruent.

SAS-test

Theorem. If two sides and the angle enclosed by them in one triangle are congruent respectively to two sides and the angle enclosed by them in another triangle, then such triangles are congruent.
Proof. Let $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ be triangles such that
$A C=A^{\prime} C^{\prime}, A B=A^{\prime} B^{\prime}, \angle A=\angle A^{\prime}$.

SAS-test

Superimpose $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$ in such a way that A would coincide with A^{\prime}

SAS-test

Superimpose $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$ in such a way that A would coincide with A^{\prime}

SAS-test

Superimpose $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$ in such a way that A would coincide with A^{\prime}, the side $A C$ would go along $A^{\prime} C^{\prime}$

SAS-test

Superimpose $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$ in such a way that A would coincide with A^{\prime}, the side $A C$ would go along $A^{\prime} C^{\prime}$

SAS-test

Superimpose $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$ in such a way that A would coincide with A^{\prime}, the side $A C$ would go along $A^{\prime} C^{\prime}$, and the side $A B$ would lie on the same side of $A^{\prime} C^{\prime}$ as $A^{\prime} B^{\prime}$.

SAS-test

Superimpose $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$ in such a way that A would coincide with A^{\prime}, the side $A C$ would go along $A^{\prime} C^{\prime}$, and the side $A B$ would lie on the same side of $A^{\prime} C^{\prime}$ as $A^{\prime} B^{\prime}$.

Pons asinorum

Theorem. In isosceles triangles the angles at the base equal one another.

Pons asinorum

Theorem. In isosceles triangles the angles at the base equal one another.

Pons asinorum

Theorem. In isosceles triangles the angles at the base equal one another.

Pons asinorum

Theorem. In isosceles triangles the angles at the base equal one another.

Pons asinorum

Theorem. In isosceles triangles the angles at the base equal one another.

Pons asinorum

Theorem. In isosceles triangles the angles at the base equal one another.

Pons asinorum

Theorem. In isosceles triangles the angles at the base equal one another.

Pons asinorum

Theorem. In isosceles triangles the angles at the base equal one another.

Pons asinorum

Theorem. In isosceles triangles the angles at the base equal one another.

Lines in traingle

altitude $B D$

Lines in traingle

Lines in traingle

Lines in traingle

altitude $B D$, bisector $B F$, median $B E$

Lines in traingle

altitude $B D$, bisector $B F$, median $B E$

Theorem. If the triangle is isosceles (i.e., $A B$ is congruent to $B C$), then $D=F=E$ and all three lines coincide.

Lines in traingle

altitude $=$ bisector $=$ median
Theorem. If the triangle is isosceles (i.e., $A B$ is congruent to $B C$), then $D=F=E$ and all three lines coincide.
Lemma. If $A B$ is congruent to $B C$, then the triangle $A B C$ is symmetric about its bisector $B F$.

Lines in traingle

altitude $=$ bisector $=$ median
Theorem. If the triangle is isosceles (i.e., $A B$ is congruent to $B C$), then $D=F=E$ and all three lines coincide.
Theorem. If $A B$ is congruent to $B C$, then $\angle A=\angle C$.

Lines in traingle

altitude = bisector = median

Theorem. If the triangle is isosceles (i.e., $A B$ is congruent to $B C$), then $D=F=E$ and all three lines coincide.

Theorem. If $A B$ is congruent to $B C$, then $\angle A=\angle C$.

SSS-test

Theorem. SSS-test. If three sides of one triangle are congruent respectively to three sides of another triangle, then the triangles are congruent.

SSS-test

Theorem. SSS-test. If three sides of one triangle are congruent respectively to three sides of another triangle, then the triangles are congruent.

SSS-test

Juxtapose $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ in such a way that $B C$ and $B^{\prime} C^{\prime}$ would coincide, and A and A^{\prime} would lie on the opposite sides of $B^{\prime} C^{\prime}$.

SSS-test

Juxtapose $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ in such a way that $B C$ and $B^{\prime} C^{\prime}$ would coincide, and A and A^{\prime} would lie on the opposite sides of $B^{\prime} C^{\prime}$.

SSS-test

Joining A^{\prime} and $A^{\prime \prime}$ we obtain isosceles triangles $A^{\prime} B^{\prime} A^{\prime \prime}$ and $A^{\prime} C^{\prime} A^{\prime \prime}$ with the common base $A^{\prime} A^{\prime \prime}$.

SSS-test

Joining A^{\prime} and $A^{\prime \prime}$ we obtain isosceles triangles $A^{\prime} B^{\prime} A^{\prime \prime}$ and $A^{\prime} C^{\prime} A^{\prime \prime}$ with the common base $A^{\prime} A^{\prime \prime}$.

SSS-test

The angles at the base are congruent.

SSS-test

The angles at the base are congruent.

SSS-test

The angles at the base are congruent. Apply SAS-test.

SSS-test

Another case to consider?

SSS-test

Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Put midpoint E on $B C$.

Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Put midpoint E on $B C$.

Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Put midpoint E on $B C$.
Draw the median $A E$ and extend it to F so that $E F=A E$.

Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Put midpoint E on $B C$.
Draw the median $A E$ and extend it to F so that $E F=A E$.

Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Put midpoint E on $B C$.
Draw the median $A E$ and extend it to F so that $E F=A E$.
Draw segment $C F$.

Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Put midpoint E on $B C$.
Draw the median $A E$ and extend it to F so that $E F=A E$.
Draw segment $C F$.

Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.
Put midpoint E on $B C$.
Draw the median $A E$ and extend it to F so that $E F=A E$.
Draw segment $C F$.
Triangles $A B E$ and $E F C$ are congruent by SAS-test.

Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.
Put midpoint E on $B C$.
Draw the median $A E$ and extend it to F so that $E F=A E$.
Draw segment $C F$.
Triangles $A B E$ and $E F C$ are congruent by SAS-test.
$\angle B=\angle E C F<\angle C$.

Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.
Put midpoint E on $B C$.
Draw the median $A E$ and extend it to F so that $E F=A E$.
Draw segment $C F$.
Triangles $A B E$ and $E F C$ are congruent by SAS-test.
$\angle B=\angle E C F<\angle C$.

Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Corllary. If in a triangle one angle is not acute, then the other two angles are acute.

Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Corllary. If in a triangle one angle is not acute, then the other two angles are acute.
Proof. The exterior angle at the vertex with non-acute angle is not obtuse (i.e., $\leq 90^{\circ}$).

Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Corllary. If in a triangle one angle is not acute, then the other two angles are acute.
Proof. The exterior angle at the vertex with non-acute angle is not obtuse (i.e., $\leq 90^{\circ}$).

Other interior angles are smaller.

Angle opposite to side

Theorem. In any triangle the angle opposite to a greater side is greater.

Angle opposite to side

Theorem. In any triangle the angle opposite to a greater side is greater.

Proof. Let $A B<B C$.

Angle opposite to side

Theorem. In any triangle the angle opposite to a greater side is greater.

Proof. Let $A B<B C$.
On $B C$, mark the segment $B D$ congruent to $A B$.

Angle opposite to side

Theorem. In any triangle the angle opposite to a greater side is greater.

Proof. Let $A B<B C$.
On $B C$, mark the segment $B D$ congruent to $A B$.

Angle opposite to side

Theorem. In any triangle the angle opposite to a greater side is greater.

Proof. Let $A B<B C$.
On $B C$, mark the segment $B D$ congruent to $A B$. Draw the segment $A D$.

Angle opposite to side

Theorem. In any triangle the angle opposite to a greater side is greater.

Proof. Let $A B<B C$.
On $B C$, mark the segment $B D$ congruent to $A B$. Draw the segment $A D$.

Angle opposite to side

Theorem. In any triangle the angle opposite to a greater side is greater.

Proof. Let $A B<B C$.
On $B C$, mark the segment $B D$ congruent to $A B$.
Draw the segment $A D$.
$\angle A>\angle B A D=\angle B D A>\angle C$.

Angle opposite to side

Theorem. In any triangle the angle opposite to a greater side is greater.

We have proved earlier that the angles opposite to congruent sides are congruent.

Angle opposite to side

Theorem. In any triangle the angle opposite to a greater side is greater.

We have proved earlier that the angles opposite to congruent sides are congruent.

Converse Theorem. In any triangle
(1) the sides opposite to congruent angles are congruent;
(2) the side opposite to a greater angle is greater.

Angle opposite to side

Theorem. In any triangle the angle opposite to a greater side is greater.

We have proved earlier that the angles opposite to congruent sides are congruent.

Converse Theorem. In any triangle
(1) the sides opposite to congruent angles are congruent;
(2) the side opposite to a greater angle is greater.

Proof by contradiction reductio ad absurdum.

Angle opposite to side

Theorem. In any triangle the angle opposite to a greater side is greater.

We have proved earlier that the angles opposite to congruent sides are congruent.

Converse Theorem. In any triangle
(1) the sides opposite to congruent angles are congruent;
(2) the side opposite to a greater angle is greater.

Corollary.

(1) In an equilateral triangle all angles are congruent.
(2) In an equiangular triangle all sides are congruent.

Triangle inequality

Theorem. In a triangle, each side is smaller than the sum of other two sides.

Triangle inequality

Theorem. In a triangle, each side is smaller than the sum of other two sides.

Triangle inequality

Theorem. In a triangle, each side is smaller than the sum of other two sides.

Proof. Let the greatest side be $A C$. Continuing the side $A B$ past B mark on it the segment $B D=B C$.

Triangle inequality

Theorem. In a triangle, each side is smaller than the sum of other two sides.

Proof. Let the greatest side be $A C$. Continuing the side $A B$ past B mark on it the segment $B D=B C$.

Triangle inequality

Theorem. In a triangle, each side is smaller than the sum of other two sides.

Proof. Let the greatest side be $A C$. Continuing the side $A B$ past B mark on it the segment $B D=B C$. Draw $D C$.

Triangle inequality

Theorem. In a triangle, each side is smaller than the sum of other two sides.

Proof. Let the greatest side be $A C$. Continuing the side $A B$ past B mark on it the segment $B D=B C$. Draw $D C$.

Triangle inequality

Theorem. In a triangle, each side is smaller than the sum of other two sides.

Proof. Let the greatest side be $A C$. Continuing the side $A B$ past B mark on it the segment $B D=B C$. Draw $D C$. Since $\triangle B D C$ is isosceles, then $\angle D=\angle D C B$.

Triangle inequality

Theorem. In a triangle, each side is smaller than the sum of other two sides.

Proof. Let the greatest side be $A C$. Continuing the side $A B$ past B mark on it the segment $B D=B C$. Draw $D C$. Since $\triangle B D C$ is isosceles, then $\angle D=\angle D C B$.

Triangle inequality

Theorem. In a triangle, each side is smaller than the sum of other two sides.

Proof. Let the greatest side be $A C$. Continuing the side $A B$ past B mark on it the segment $B D=B C$. Draw $D C$. Since $\triangle B D C$ is isosceles, then $\angle D=\angle D C B$.
Therefore $\angle D<\angle D C A$.

Triangle inequality

Theorem. In a triangle, each side is smaller than the sum of other two sides.

Proof. Let the greatest side be $A C$. Continuing the side $A B$ past B mark on it the segment $B D=B C$. Draw $D C$. Since $\triangle B D C$ is isosceles, then $\angle D=\angle D C B$.
Therefore $\angle D<\angle D C A$. Hence $A C<A D=A B+B D=$ $A B+B C$.

Table of Contents

Dropping perpendicular
SAS-test
SSS-test
Pons asinorum
Lines in traingle
Exterior angle
Angle opposite to side
Triangle inequality

