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Theorem. Any isometry of R2 is a composition

of ≤ 3 reflections in lines.

Lemma. A plane isometry is determined by its restriction

to any three non-collinear points. �
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of ≤ 3 reflections in lines.

Proof of Theorem.
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Theorem. Any isometry of R2 is a composition

of ≤ 3 reflections in lines.

Proof of Theorem.

A

B

C

f(C)

f(B)

f(A)f

We are done.�
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is a translation

x Rm(x) Rl ◦Rm(x)

m l

The decomposition is not unique:

Rl ◦Rm = Rl′ ◦Rm′

iff l′,m′ can be obtained from l,m by a translation.
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is a translation

x Rl′ ◦Rm′(x)

m′ l′

Rm′(x)

The decomposition is not unique:

Rl ◦Rm = Rl′ ◦Rm′

iff l′,m′ can be obtained from l,m by a translation.
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is a rotation

α
α

β
β
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Rm(x)

Rl ◦Rm(x)

m

l

Decomposition of rotation is not unique:
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is a rotation

α
α

β
β

x

Rm(x)

Rl ◦Rm(x)

m

l

Decomposition of rotation is not unique:

Rl ◦Rm = Rl′ ◦Rm′

iff l′,m′ can be obtained from l,m by a rotation

about the intersection point m ∩ l .
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is a rotation

x

Rl′ ◦Rm′(x)

Rm′(x)

m′

l′

Decomposition of rotation is not unique:

Rl ◦Rm = Rl′ ◦Rm′

iff l′,m′ can be obtained from l,m by a rotation

about the intersection point m ∩ l .
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ∦ 2 and 3 ∦ 4 .
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ∦ 2 and 3 ∦ 4 .
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Theorem. Any relation among reflections in lines follow from relations

R2

l
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let either 1 ∦ 2 or 3 ∦ 4 .
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Theorem. Any relation among reflections in lines follow from relations

R2

l
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Lemma. A composition of any 4 reflections in lines can be transformed
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Let either 1 ∦ 2 or 3 ∦ 4 .
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .



Relations

5 / 23

Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .
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Theorem. Any relation among reflections in lines follow from relations

R2
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Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .

1 4

2

3



Relations

5 / 23

Theorem. Any relation among reflections in lines follow from relations
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Theorem. Any relation among reflections in lines follow from relations
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= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.
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Theorem. Any relation among reflections in lines follow from relations
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l
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by these relations to a composition of 2 reflections in lines.
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines.

Let 1 ‖ 2 and 3 ‖ 4 .
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

�

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines. �

Proof of Theorem. By Lemma, any relation can be reduced to a

relation of length ≤ 3 .

A composition of odd number of reflections reverses orientation

and cannot be id .

A composition of two different reflections is not identity. �
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R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

�

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines. �

Generalization of Lemma. In Rn ,

a composition of any n+ 2 reflections in hyperplanes

is a composition of n reflections in hyperplanes.
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Theorem. Any relation among reflections in lines follow from relations

R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ , where l,m, l′,m′ are as above.

�

Lemma. A composition of any 4 reflections in lines can be transformed

by these relations to a composition of 2 reflections in lines. �

Generalization of Lemma. In Rn ,

a composition of any n+ 2 reflections in hyperplanes

is a composition of n reflections in hyperplanes.

Generalization of Theorem. Any relation among reflections in

hyperplanes of Rn follow

from relations R2

l
= 1 and Rl ◦Rm = Rl′ ◦Rm′ .
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a 7→ 2a− a = a
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Generalize reflections!

A flip is an isometry which is

an involution (i.e., has period 2) and

is determined by its fixed point set.

Flipper is the fixed point set of a flip.

Key example: R→ R : x 7→ 2a− x , the reflection of R in a point a .

Generalization: a symmetry of Rn in a k -subspace.

Further examples in hyperbolic spaces, spheres, projective spaces

and other symmetric spaces.

Correspondence Flipper S←→ Flip in S is

the shortest connection between

simple static geometric objects - flippers - and isometries.
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AB = 1
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Symmetry about a point
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is a flip. Composition of flips in points is a translation:

RB(RA(X))

RA(X)

X

BA

−→
AB = 1

2

−−−−−−−−−→
X RB(RA(X)

−→
AB is half the arrow representing RB ◦RA .
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Compare the head to tail addition
−→
AB +

−−→
BC =

−→
AC

to (RC ◦RB) ◦ (RB ◦RA) = RC ◦R
2

B
◦RA = RC ◦RA .
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( Product of two involutions, Arch. Math. 18 (1967), 582-584.)
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Flip-flop decomposition
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Which isometries are compositions of two flips?

Any isometry of Rn .

Djokovič Theorem. Any isometry of a non-degenerate inner product

space over any field can be presented as a composition of two

involutions isomteries.

( Product of two involutions, Arch. Math. 18 (1967), 582-584.)

Corollary. Any isometry of an affine space with a non-degenerate

bilinear form can be presented as a composition of two flips.

Corollary. Any isometry of a hyperbolic space, sphere, projective space,

etc. is a composition of two flips.

A flip-flop decomposition.
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An ordered pair of flippers (A,B) is a biflipper,

an analogue for an arrow representing a translation.

If A ∩B = ∅ , then we connect A and B with the shortest arrow.

A B

If A ∩B 6= ∅ ,

A
B

To what extent are the representations non-unique?

Equivalence relation:

(A,B) ∼ (A′, B′) if RB ◦RA = RB′ ◦RA′ .

Problem. Find an explicit description for the equivalence.
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By rotating the biflippers,
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Head to tail for rotations
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Given two rotations, present them by biflippers.

By rotating the biflippers,

make the second line in the first biflipper

to coincide with the first line in the second,

so that the biflippers are (l,m) and (m,n) .

Erase m and draw an oriented arc from l to n ,

i.e., form the ordered angle (l, n) .

l n

C
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Exercise. Find head to tail rules for rotation ◦ glide reflection.
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Biflippers:

Head to tail for rotations:

Biflipper vs. angular displacement vector vs. unit quaternion.

The rotation encoded by bilipper
−→wv is defined by quaternion

vw = v × w − v · w .
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On plane:

translations rotation glide  reflections reflections
On sphere:

rotations reflectionsrotary reflections

On the hyperbolic plane:

reflectionstranslation glide  reflectionsrotation parallel
motion
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rotationstranslations

central symmetries symmetries about a line (half−turns)

reflections glide symmetries about a line

glide reflections screw
motion

rotary reflections
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translationrotation parallel motion screw
motion

parallel reflections glide reflectionsrotary reflections
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A biflipper presenting a screw displacement is an arrow with two

perpendicular lines at the end points skew to each other.
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