MAT 310, Linear Algebra
Homework 6

Name \qquad
Score \qquad

1. Let T and S be operators in $\mathcal{P}_{3}(\mathbb{C})$ defined by $T p(z)=p(z-1), S p(z)=p(1-z)$.
(a) Find eigenvalues and eigenvectors of T and S.
(b) Find subspaces invariant under T and invariant under S.
2. Let T be a linear operator over \mathbb{R}, let $p \in \mathcal{P}(\mathbb{R})$ such that $p(T)=0$ and $\lambda \in \mathbb{R}$ be an eigenvalue of T. Is it true that $p(\lambda)=0$? Prove or find a counter-example.
3. Let T be a linear operator over \mathbb{R} such that $T^{2}=\mathrm{id}$. Prove that T is diagonalizable.
4. Let T be a linear operator over \mathbb{F} such that $T^{3}=\mathrm{id}$. Prove that
(a) if $\mathbb{F}=\mathbb{C}$ then T is diagonalizable
(b) if $\mathbb{F}=\mathbb{R}$ and T is diagonalizable, then $T=\mathrm{id}$.
5. Let T be the operator on $\mathcal{P}_{2}(\mathbb{R})$ defined by formula $T p(x)=(x-1) p^{\prime}(x)$. Does there exists an operator $S \in \mathcal{L}\left(\mathcal{P}_{2}(\mathbb{R})\right)$ such that $S \neq p(T)$ for any polynomial p ?
