MAT 310, Linear Algebra Homework 6

Name _____

Score

- 1. Let T and S be operators in $\mathcal{P}_3(\mathbb{C})$ defined by Tp(z) = p(z-1), Sp(z) = p(1-z).
- (a) Find eigenvalues and eigenvectors of T and S.
- (b) Find subspaces invariant under T and invariant under S.

2. Let T be a linear operator over \mathbb{R} , let $p \in \mathcal{P}(\mathbb{R})$ such that p(T) = 0 and $\lambda \in \mathbb{R}$ be an eigenvalue of T. Is it true that $p(\lambda) = 0$? Prove or find a counter-example.

- 3. Let T be a linear operator over \mathbb{R} such that $T^2 = \text{id.}$ Prove that T is diagonalizable.
- 4. Let T be a linear operator over \mathbb{F} such that $T^3 = \mathrm{id}$. Prove that
- (a) if $\mathbb{F} = \mathbb{C}$ then T is diagonalizable
- (b) if $\mathbb{F} = \mathbb{R}$ and T is diagonalizable, then T = id.

5. Let T be the operator on $\mathcal{P}_2(\mathbb{R})$ defined by formula Tp(x) = (x-1)p'(x). Does there exists an operator $S \in \mathcal{L}(\mathcal{P}_2(\mathbb{R}))$ such that $S \neq p(T)$ for any polynomial p?