MAT 310, Linear Algebra Homework 5

Name _____

Score

1. Let V, W_1 and W_2 be finite-dimensional vector spaces and let $T_1 : V \to W_1, T_2 : V \to W_2$ be linear maps. Prove that there exists a linear map $S : W_1 \to W_2$ such that $T_2 = ST_1$ if and only if null $T_1 \subset$ null T_2 .

2. (a) For any vector space V over a field \mathbb{F} , construct an isomorphism $S_V : V \to \mathcal{L}(\mathbb{F}, V)$ (don't forget to prove that this is an isomorphism indeed). (b) Find an isomorphism $\mathcal{L}(\mathbb{F}^n, V) \to V^n$.

3. Let U and V be subspaces of a vector space W. Prove that if U + w = V for some vector $w \in W$, then $w \in U$ and U = V.

4. Following the proof of Theorem 4.8 from the textbook (page 121), prove the following Euclidean division theorem: For any positive integers p, s, there exist unique non-negative integers q, r such that

p = sq + r and r < s. What objects in your proof would replace $\mathcal{P}_n(\mathbb{F})$ and its dimension?

5. Let V, U and W be finite-dimensional vector spaces over a field \mathbb{F} and $p: V \to U$ and $q: V \to W$ be linear surjective maps such that $V = \operatorname{null} p \oplus \operatorname{null} q$.

(a) Prove that V is isomorphic to $U \times W$.

(b) Construct an isomorphism explicitly.

(c) Are the spaces V and $U \oplus W$ still isomorphic if they are not assumed to be finite-dimensional?