MAT 310, Linear Algebra
Homework 5

Name \qquad

Score

\qquad

1. Let V, W_{1} and W_{2} be finite-dimensional vector spaces and let $T_{1}: V \rightarrow W_{1}, T_{2}: V \rightarrow W_{2}$ be linear maps. Prove that there exists a linear map $S: W_{1} \rightarrow W_{2}$ such that $T_{2}=S T_{1}$ if and only if $\operatorname{null} T_{1} \subset \operatorname{null} T_{2}$.
2. (a) For any vector space V over a field \mathbb{F}, construct an isomorphism $S_{V}: V \rightarrow \mathcal{L}(\mathbb{F}, V)$ (don't forget to prove that this is an isomorphism indeed).
(b) Find an isomorphism $\mathcal{L}\left(\mathbb{F}^{n}, V\right) \rightarrow V^{n}$.
3. Let U and V be subspaces of a vector space W. Prove that if $U+w=V$ for some vector $w \in W$, then $w \in U$ and $U=V$.
4. Following the proof of Theorem 4.8 from the textbook (page 121), prove the following Euclidean division theorem: For any positive integers p, s, there exist unique non-negative integers q, r such that
$p=s q+r$ and $r<s$. What objects in your proof would replace $\mathcal{P}_{n}(\mathbb{F})$ and its dimension?
5. Let V, U and W be finite-dimensional vector spaces over a field \mathbb{F} and $p: V \rightarrow U$ and $q: V \rightarrow W$ be linear surjective maps such that $V=$ null $p \oplus$ null q.
(a) Prove that V is isomorphic to $U \times W$.
(b) Construct an isomorphism explicitly.
(c) Are the spaces V and $U \oplus W$ still isomorphic if they are not assumed to be finite-dimensional?
