$\qquad$

## Score

$\qquad$

1. Let $V$ and $W$ be finite-dimensional vector spaces and let $S: V \rightarrow W$ and $T: W \rightarrow V$ be linear maps such that $T S=\mathrm{id}_{V}$.
(a) Express the dimensions of the null spaces and ranges of $S$ and $T$
in terms of dimensions of $V$ and $W$.
(b) Which values $\operatorname{dim} V$ and $\operatorname{dim} W$ can take in this situation?
2. Let $U, V, W$ be finite-dimensional vector spaces.
(a) If any linear map $T: U \rightarrow W$ can be presented as a composition of linear maps $U \rightarrow V \rightarrow W$, then what can be the dimensions of the spaces?
(b) What linear maps $U \rightarrow W$ can be presented as compositions $U \rightarrow V \rightarrow W$ ?
3. Find a basis of the subspace $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \mathbb{F}^{6} \mid x_{2}=4 x_{1}\right.$ and $\left.x_{6}=x_{3}=x_{4}\right\}$.
4. For which vector spaces $V$ the set of non-invertible operators $V \rightarrow V$ is a subspace of $\mathcal{L}(V)$ ?
5. Let $V$ be a finite-dimensional vector space, and $T_{1}, T_{2}, \ldots, T_{n}$ be linear maps $V \rightarrow V$. Prove or find counter-example: if the composition $T_{1} T_{2} \ldots T_{n}$ is surjective then each of $T_{i}$ is surjective.
