Linear Algebra

Oleg Viro

02/13/2018

Linear operations in $\mathcal{L}(V, W)$

Linear operations in $\mathcal{L}(V, W)$
3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

Linear operations in $\mathcal{L}(V, W)$
3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by formulas

Linear operations in $\mathcal{L}(V, W)$
3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by formulas

$$
(S+T)(v)=S v+T v
$$

Linear operations in $\mathcal{L}(V, W)$
3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by formulas

$$
(S+T)(v)=S v+T v \quad \text { and } \quad(\lambda T)(v)=\lambda(T v)
$$

Linear operations in $\mathcal{L}(V, W)$
3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by formulas

$$
(S+T)(v)=S v+T v \quad \text { and } \quad(\lambda T)(v)=\lambda(T v) \quad \text { for all } v \in V
$$

Linear operations in $\mathcal{L}(V, W)$
3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by formulas

$$
(S+T)(v)=S v+T v \quad \text { and } \quad(\lambda T)(v)=\lambda(T v) \quad \text { for all } v \in V
$$

Theorem If S, T are linear maps,

Linear operations in $\mathcal{L}(V, W)$
3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by formulas

$$
(S+T)(v)=S v+T v \quad \text { and } \quad(\lambda T)(v)=\lambda(T v) \quad \text { for all } v \in V
$$

Theorem If S, T are linear maps, then $S+T$ and λT are linear maps.

Linear operations in $\mathcal{L}(V, W)$
3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by formulas

$$
(S+T)(v)=S v+T v \quad \text { and } \quad(\lambda T)(v)=\lambda(T v) \quad \text { for all } v \in V
$$

Theorem If S, T are linear maps, then $S+T$ and λT are linear maps.

Proof.
3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by formulas

$$
(S+T)(v)=S v+T v \quad \text { and } \quad(\lambda T)(v)=\lambda(T v) \quad \text { for all } v \in V
$$

Theorem If S, T are linear maps, then $S+T$ and λT are linear maps.

Proof. Exercise!
3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by formulas

$$
(S+T)(v)=S v+T v \quad \text { and } \quad(\lambda T)(v)=\lambda(T v) \quad \text { for all } v \in V
$$

Theorem If S, T are linear maps, then $S+T$ and λT are linear maps.

Proof. Exercise! It's easy!
3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by formulas

$$
(S+T)(v)=S v+T v \quad \text { and } \quad(\lambda T)(v)=\lambda(T v) \quad \text { for all } v \in V
$$

Theorem If S, T are linear maps, then $S+T$ and λT are linear maps.

Proof. Exercise!
3.7 Theorem. $\mathcal{L}(V, W)$ is a vector space. With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(V, W)$ is a vector space.
3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by formulas

$$
(S+T)(v)=S v+T v \quad \text { and } \quad(\lambda T)(v)=\lambda(T v) \quad \text { for all } v \in V
$$

Theorem If S, T are linear maps, then $S+T$ and λT are linear maps.

Proof. Exercise!
3.7 Theorem. $\mathcal{L}(V, W)$ is a vector space. With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(V, W)$ is a vector space.

Proof.
3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by formulas

$$
(S+T)(v)=S v+T v \quad \text { and } \quad(\lambda T)(v)=\lambda(T v) \quad \text { for all } v \in V
$$

Theorem If S, T are linear maps, then $S+T$ and λT are linear maps.

Proof. Exercise!
3.7 Theorem. $\mathcal{L}(V, W)$ is a vector space. With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(V, W)$ is a vector space.

Proof. Exercise!

3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by formulas

$$
(S+T)(v)=S v+T v \quad \text { and } \quad(\lambda T)(v)=\lambda(T v) \quad \text { for all } v \in V
$$

Theorem If S, T are linear maps, then $S+T$ and λT are linear maps.

Proof. Exercise!
3.7 Theorem. $\mathcal{L}(V, W)$ is a vector space. With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(V, W)$ is a vector space.

Proof. Exercise!
3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by formulas

$$
(S+T)(v)=S v+T v \quad \text { and } \quad(\lambda T)(v)=\lambda(T v) \quad \text { for all } v \in V
$$

Theorem If S, T are linear maps, then $S+T$ and λT are linear maps.

Proof. Exercise!
3.7 Theorem. $\mathcal{L}(V, W)$ is a vector space. With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(V, W)$ is a vector space.

Proof. Exercise! It's easy!

Composition

Composition

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.

Composition

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

Composition

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

$$
(S \circ T)(u)=S(T(u)) \text { for all } u \in U
$$

Composition

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

$$
(S \circ T)(u)=S(T(u)) \text { for all } u \in U
$$

Composition is called also product

Composition

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

$$
(S \circ T)(u)=S(T(u)) \text { for all } u \in U
$$

Composition is called also product, say, by Professor Axler and in his textbook.

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

$$
(S \circ T)(u)=S(T(u)) \text { for all } u \in U
$$

Composition is called also product, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted $S T$, like a product.

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

$$
(S \circ T)(u)=S(T(u)) \text { for all } u \in U
$$

Composition is called also product, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted $S T$, like a product.

Theorem If S and T are linear maps,

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

$$
(S \circ T)(u)=S(T(u)) \text { for all } u \in U
$$

Composition is called also product, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted $S T$, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

$$
(S \circ T)(u)=S(T(u)) \text { for all } u \in U
$$

Composition is called also product, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted $S T$, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof.

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

$$
(S \circ T)(u)=S(T(u)) \text { for all } u \in U
$$

Composition is called also product, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted $S T$, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise!

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

$$
(S \circ T)(u)=S(T(u)) \text { for all } u \in U
$$

Composition is called also product, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted $S T$, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise! It's easy!

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

$$
(S \circ T)(u)=S(T(u)) \text { for all } u \in U
$$

Composition is called also product, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted $S T$, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise!

3.9 Algebraic properties of composition.

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

$$
(S \circ T)(u)=S(T(u)) \text { for all } u \in U
$$

Composition is called also product, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted $S T$, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise!

3.9 Algebraic properties of composition. associativity

$$
\left(T_{1} T_{2}\right) T_{3}=T_{1}\left(T_{2} T_{3}\right)
$$

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

$$
(S \circ T)(u)=S(T(u)) \text { for all } u \in U
$$

Composition is called also product, say, by Professor Axler and in his textbook.
Often a composition $S \circ T$ is denoted $S T$, like a product.
Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise!

3.9 Algebraic properties of composition.

associativity
$\left(T_{1} T_{2}\right) T_{3}=T_{1}\left(T_{2} T_{3}\right)$
identity
$T \mathrm{id}_{V}=T=\mathrm{id}_{W} T$

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

$$
(S \circ T)(u)=S(T(u)) \text { for all } u \in U
$$

Composition is called also product, say, by Professor Axler and in his textbook.
Often a composition $S \circ T$ is denoted $S T$, like a product.
Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise!

3.9 Algebraic properties of composition.

associativity

$$
\left(T_{1} T_{2}\right) T_{3}=T_{1}\left(T_{2} T_{3}\right)
$$

identity $T \operatorname{id}_{V}=T=\operatorname{id}_{W} T$
distributivity

$$
\left(S_{1}+S_{2}\right) T=S_{1} T+S_{2} T \quad \text { and } \quad\left(T_{1}+T_{2}\right) S=T_{1} S+T_{2} S
$$

Invertibility

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique.

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique. An invertible map has a unique inverse.

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique. An invertible map has a unique inverse.

Proof. Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$.

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique. An invertible map has a unique inverse.

Proof. Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$. Then

$$
\left(S_{1} T\right) S_{2}
$$

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique. An invertible map has a unique inverse.

Proof. Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$. Then

$$
\left(S_{1} T\right) S_{2}=\operatorname{id}_{V} S_{2}
$$

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique. An invertible map has a unique inverse.

Proof. Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$. Then

$$
\left(S_{1} T\right) S_{2}=\operatorname{id}_{V} S_{2}=S_{2}
$$

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique. An invertible map has a unique inverse.

Proof. Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$. Then

$$
S_{1}\left(T S_{2}\right)=\left(S_{1} T\right) S_{2}=\operatorname{id}_{V} S_{2}=S_{2}
$$

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique. An invertible map has a unique inverse.

Proof. Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$. Then

$$
S_{1} \mathrm{id}_{W}=S_{1}\left(T S_{2}\right)=\left(S_{1} T\right) S_{2}=\mathrm{id}_{V} S_{2}=S_{2}
$$

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique. An invertible map has a unique inverse.

Proof. Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$. Then

$$
S_{1}=S_{1} \mathrm{id}_{W}=S_{1}\left(T S_{2}\right)=\left(S_{1} T\right) S_{2}=\operatorname{id}_{V} S_{2}=S_{2}
$$

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique. An invertible map has a unique inverse.

Proof. Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$. Then

$$
S_{1}=S_{1} \mathrm{id}_{W}=S_{1}\left(T S_{2}\right)=\left(S_{1} T\right) S_{2}=\operatorname{id}_{V} S_{2}=S_{2}
$$

Invertibility

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique. An invertible map has a unique inverse.

Proof. Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$. Then

$$
S_{1}=S_{1} \mathrm{id}_{W}=S_{1}\left(T S_{2}\right)=\left(S_{1} T\right) S_{2}=\operatorname{id}_{V} S_{2}=S_{2}
$$

3.55 Notation If T is invertible, then its inverse is denoted by T^{-1}.

Invertibility

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique. An invertible map has a unique inverse.

Proof. Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$. Then

$$
S_{1}=S_{1} \mathrm{id}_{W}=S_{1}\left(T S_{2}\right)=\left(S_{1} T\right) S_{2}=\operatorname{id}_{V} S_{2}=S_{2}
$$

3.55 Notation If T is invertible, then its inverse is denoted by T^{-1}.

For a map $T: V \rightarrow W$, the inverse map T^{-1} is defined by two properties:

Invertibility

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique. An invertible map has a unique inverse.

Proof. Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$. Then

$$
S_{1}=S_{1} \mathrm{id}_{W}=S_{1}\left(T S_{2}\right)=\left(S_{1} T\right) S_{2}=\operatorname{id}_{V} S_{2}=S_{2}
$$

3.55 Notation If T is invertible, then its inverse is denoted by T^{-1}.

For a map $T: V \rightarrow W$, the inverse map T^{-1} is defined by two properties: $T T^{-1}=$

Invertibility

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique. An invertible map has a unique inverse.

Proof. Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$. Then

$$
S_{1}=S_{1} \mathrm{id}_{W}=S_{1}\left(T S_{2}\right)=\left(S_{1} T\right) S_{2}=\operatorname{id}_{V} S_{2}=S_{2}
$$

3.55 Notation If T is invertible, then its inverse is denoted by T^{-1}.

For a map $T: V \rightarrow W$, the inverse map T^{-1} is defined by two properties: $T T^{-1}=\mathrm{id}_{W}$

Invertibility

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique. An invertible map has a unique inverse.

Proof. Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$. Then

$$
S_{1}=S_{1} \mathrm{id}_{W}=S_{1}\left(T S_{2}\right)=\left(S_{1} T\right) S_{2}=\operatorname{id}_{V} S_{2}=S_{2}
$$

3.55 Notation If T is invertible, then its inverse is denoted by T^{-1}.

For a map $T: V \rightarrow W$, the inverse map T^{-1} is defined by two properties: $T T^{-1}=\operatorname{id}_{W}$ and $T^{-1} T=$

Invertibility

Definition

Maps $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A map $T: V \rightarrow W$ is called invertible if there exists a map inverse to T.
3.54 Inverse is unique. An invertible map has a unique inverse.

Proof. Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$. Then

$$
S_{1}=S_{1} \mathrm{id}_{W}=S_{1}\left(T S_{2}\right)=\left(S_{1} T\right) S_{2}=\operatorname{id}_{V} S_{2}=S_{2}
$$

3.55 Notation If T is invertible, then its inverse is denoted by T^{-1}.

For a map $T: V \rightarrow W$, the inverse map T^{-1} is defined by two properties: $T T^{-1}=\operatorname{id}_{W}$ and $T^{-1} T=\operatorname{id}_{V}$.

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible,

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_{1}, w_{2} \in W$.

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_{1}, w_{2} \in W$. Then

$$
T^{-1}\left(w_{1}+w_{2}\right)
$$

Inverse to a linear map is linear

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_{1}, w_{2} \in W$. Then
$T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(\operatorname{id}_{W} w_{1}+\operatorname{id}_{W} w_{2}\right)$

Inverse to a linear map is linear

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_{1}, w_{2} \in W$. Then

$$
T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(\operatorname{id}_{W} w_{1}+\operatorname{id}_{W} w_{2}\right)=T^{-1}\left(T T^{-1} w_{1}+T T^{-1} w_{2}\right)
$$

Inverse to a linear map is linear

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_{1}, w_{2} \in W$. Then

$$
\begin{aligned}
& T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(\operatorname{id}_{W} w_{1}+\operatorname{id}_{W} w_{2}\right)=T^{-1}\left(T T^{-1} w_{1}+T T^{-1} w_{2}\right) \\
& =T^{-1} T\left(T^{-1} w_{1}+T^{-1} w_{2}\right)
\end{aligned}
$$

Inverse to a linear map is linear

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_{1}, w_{2} \in W$. Then

$$
\begin{aligned}
& T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(\operatorname{id}_{W} w_{1}+\operatorname{id}_{W} w_{2}\right)=T^{-1}\left(T T^{-1} w_{1}+T T^{-1} w_{2}\right) \\
& =T^{-1} T\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=\operatorname{id}_{V}\left(T^{-1} w_{1}+T^{-1} w_{2}\right)
\end{aligned}
$$

Inverse to a linear map is linear

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_{1}, w_{2} \in W$. Then

$$
\begin{aligned}
& T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(\operatorname{id}_{W} w_{1}+\operatorname{id}_{W} w_{2}\right)=T^{-1}\left(T T^{-1} w_{1}+T T^{-1} w_{2}\right) \\
& =T^{-1} T\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=\operatorname{id}_{V}\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=T^{-1} w_{1}+T^{-1} w_{2}
\end{aligned}
$$

Inverse to a linear map is linear

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_{1}, w_{2} \in W$. Then

$$
\begin{aligned}
& T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(\operatorname{id}_{W} w_{1}+\operatorname{id}_{W} w_{2}\right)=T^{-1}\left(T T^{-1} w_{1}+T T^{-1} w_{2}\right) \\
& =T^{-1} T\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=\operatorname{id}_{V}\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=T^{-1} w_{1}+T^{-1} w_{2}
\end{aligned}
$$

Homogeneity.
$T^{-1}(\lambda w)$

Inverse to a linear map is linear

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_{1}, w_{2} \in W$. Then

$$
\begin{aligned}
& T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(\operatorname{id}_{W} w_{1}+\operatorname{id}_{W} w_{2}\right)=T^{-1}\left(T T^{-1} w_{1}+T T^{-1} w_{2}\right) \\
& =T^{-1} T\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=\operatorname{id}_{V}\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=T^{-1} w_{1}+T^{-1} w_{2}
\end{aligned}
$$

Homogeneity.
$T^{-1}(\lambda w)=T^{-1}\left(\lambda \operatorname{id}_{W} w\right)$

Inverse to a linear map is linear

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_{1}, w_{2} \in W$. Then

$$
\begin{aligned}
& T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(\operatorname{id}_{W} w_{1}+\operatorname{id}_{W} w_{2}\right)=T^{-1}\left(T T^{-1} w_{1}+T T^{-1} w_{2}\right) \\
& =T^{-1} T\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=\operatorname{id}_{V}\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=T^{-1} w_{1}+T^{-1} w_{2}
\end{aligned}
$$

Homogeneity.
$T^{-1}(\lambda w)=T^{-1}\left(\lambda \operatorname{id}_{W} w\right)=T^{-1}\left(\lambda T T^{-1} w\right)$

Inverse to a linear map is linear

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_{1}, w_{2} \in W$. Then

$$
\begin{aligned}
& T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(\operatorname{id}_{W} w_{1}+\operatorname{id}_{W} w_{2}\right)=T^{-1}\left(T T^{-1} w_{1}+T T^{-1} w_{2}\right) \\
& =T^{-1} T\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=\operatorname{id}_{V}\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=T^{-1} w_{1}+T^{-1} w_{2}
\end{aligned}
$$

Homogeneity.
$T^{-1}(\lambda w)=T^{-1}\left(\lambda \operatorname{id}_{W} w\right)=T^{-1}\left(\lambda T T^{-1} w\right)=T^{-1}\left(\lambda T\left(T^{-1} w\right)\right)$

Inverse to a linear map is linear

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_{1}, w_{2} \in W$. Then

$$
\begin{aligned}
& T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(\operatorname{id}_{W} w_{1}+\operatorname{id}_{W} w_{2}\right)=T^{-1}\left(T T^{-1} w_{1}+T T^{-1} w_{2}\right) \\
& =T^{-1} T\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=\operatorname{id}_{V}\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=T^{-1} w_{1}+T^{-1} w_{2}
\end{aligned}
$$

Homogeneity.

$$
\begin{aligned}
& T^{-1}(\lambda w)=T^{-1}\left(\lambda \operatorname{id}_{W} w\right)=T^{-1}\left(\lambda T T^{-1} w\right)=T^{-1}\left(\lambda T\left(T^{-1} w\right)\right) \\
& =T^{-1} T\left(\lambda T^{-1} w\right)
\end{aligned}
$$

Inverse to a linear map is linear

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_{1}, w_{2} \in W$. Then

$$
\begin{aligned}
& T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(\operatorname{id}_{W} w_{1}+\operatorname{id}_{W} w_{2}\right)=T^{-1}\left(T T^{-1} w_{1}+T T^{-1} w_{2}\right) \\
& =T^{-1} T\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=\operatorname{id}_{V}\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=T^{-1} w_{1}+T^{-1} w_{2}
\end{aligned}
$$

Homogeneity.

$$
\begin{aligned}
& T^{-1}(\lambda w)=T^{-1}\left(\lambda \operatorname{id}_{W} w\right)=T^{-1}\left(\lambda T T^{-1} w\right)=T^{-1}\left(\lambda T\left(T^{-1} w\right)\right) \\
& =T^{-1} T\left(\lambda T^{-1} w\right)=\operatorname{id}_{V}\left(\lambda T^{-1} w\right)
\end{aligned}
$$

Inverse to a linear map is linear

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_{1}, w_{2} \in W$. Then

$$
\begin{aligned}
& T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(\operatorname{id}_{W} w_{1}+\operatorname{id}_{W} w_{2}\right)=T^{-1}\left(T T^{-1} w_{1}+T T^{-1} w_{2}\right) \\
& =T^{-1} T\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=\operatorname{id}_{V}\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=T^{-1} w_{1}+T^{-1} w_{2}
\end{aligned}
$$

Homogeneity.

$$
\begin{aligned}
& T^{-1}(\lambda w)=T^{-1}\left(\lambda \operatorname{id}_{W} w\right)=T^{-1}\left(\lambda T T^{-1} w\right)=T^{-1}\left(\lambda T\left(T^{-1} w\right)\right) \\
& =T^{-1} T\left(\lambda T^{-1} w\right)=\operatorname{id}_{V}\left(\lambda T^{-1} w\right)=\lambda T^{-1} w
\end{aligned}
$$

Inverse to a linear map is linear

Theorem. If V and W are vector spaces and a linear map $T: V \rightarrow W$ is invertible, then T^{-1} is linear.

Proof. Additivity. Let $w_{1}, w_{2} \in W$. Then

$$
\begin{aligned}
& T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(\operatorname{id}_{W} w_{1}+\operatorname{id}_{W} w_{2}\right)=T^{-1}\left(T T^{-1} w_{1}+T T^{-1} w_{2}\right) \\
& =T^{-1} T\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=\operatorname{id}_{V}\left(T^{-1} w_{1}+T^{-1} w_{2}\right)=T^{-1} w_{1}+T^{-1} w_{2}
\end{aligned}
$$

Homogeneity.

$$
\begin{aligned}
& T^{-1}(\lambda w)=T^{-1}\left(\lambda \operatorname{id}_{W} w\right)=T^{-1}\left(\lambda T T^{-1} w\right)=T^{-1}\left(\lambda T\left(T^{-1} w\right)\right) \\
& =T^{-1} T\left(\lambda T^{-1} w\right)=\operatorname{id}_{V}\left(\lambda T^{-1} w\right)=\lambda T^{-1} w
\end{aligned}
$$

Nicolas Bourbaki
3.20 Definition A map $T: V \rightarrow W$ is called surjective if
3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if
3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.
3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

Definition

A map $T: V \rightarrow W$ is called bijective if
3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

Definition

A map $T: V \rightarrow W$ is called bijective if T is both injective and surjective.
3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

Definition

A map $T: V \rightarrow W$ is called bijective if T is both injective and surjective.

3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

Definition

A map $T: V \rightarrow W$ is called bijective if T is both injective and surjective.

surjection,
3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

Definition

A map $T: V \rightarrow W$ is called bijective if T is both injective and surjective.

surjection, but not injection
3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

Definition

A map $T: V \rightarrow W$ is called bijective if T is both injective and surjective.

surjection, but not injection
"onto"
3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

Definition

A map $T: V \rightarrow W$ is called bijective if T is both injective and surjective.

injection,

surjection, but not injection
"onto"
3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

Definition

A map $T: V \rightarrow W$ is called bijective if T is both injective and surjective.

injection, but not surjection

surjection, but not injection
"onto"
3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

Definition

A map $T: V \rightarrow W$ is called bijective if T is both injective and surjective.

injection, but not
surjection
1-to-1

surjection, but not injection
"onto"
3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

Definition

A map $T: V \rightarrow W$ is called bijective if T is both injective and surjective.

injection, but not
surjection
1-to-1

surjection, but not injection
"onto"

bijection
3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

Definition

A map $T: V \rightarrow W$ is called bijective if T is both injective and surjective.

injection, but not
surjection
1-to-1

surjection, but not injection
"onto"

bijection
invertible
3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

Definition

A map $T: V \rightarrow W$ is called bijective if T is both injective and surjective.

not
a map

injection, but not surjection

1-to-1

surjection, but not injection "onto"

bijection
invertible

surjectivity, injectivity and bijectivity

3.20 Definition A map $T: V \rightarrow W$ is called surjective if range $T=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

Definition

A map $T: V \rightarrow W$ is called bijective if T is both injective and surjective.

injection, but not
surjection
1-to-1

surjection, but not injection "onto"

bijection
invertible

Invertible $=$ bijection
3.56 Theorem. Invertibility is equivalent to bijectivity.

Invertible $=$ bijection

3.56 Theorem. Invertibility is equivalent to bijectivity.

You should know this.

Invertible $=$ bijection

3.56 Theorem. Invertibility is equivalent to bijectivity.

You should know this. If not, see the textbook, page 81.

Isomorphic vector spaces

3.58 Definition An ivertible linear map is called an isomorphism.
3.58 Definition An ivertible linear map is called an isomorphism.

Vector spaces V and W are called isomorphic if \exists an isomorphism $V \rightarrow W$.
3.58 Definition An ivertible linear map is called an isomorphism.

Vector spaces V and W are called isomorphic if \exists an isomorphism $V \rightarrow W$.

Properties of isomorphisms
3.58 Definition An ivertible linear map is called an isomorphism.

Vector spaces V and W are called isomorphic if \exists an isomorphism $V \rightarrow W$.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
3.58 Definition An ivertible linear map is called an isomorphism.

Vector spaces V and W are called isomorphic if \exists an isomorphism $V \rightarrow W$.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
3.58 Definition An ivertible linear map is called an isomorphism.

Vector spaces V and W are called isomorphic if \exists an isomorphism $V \rightarrow W$.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.
3.58 Definition An ivertible linear map is called an isomorphism.

Vector spaces V and W are called isomorphic if \exists an isomorphism $V \rightarrow W$.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.
3.58 Definition An ivertible linear map is called an isomorphism.

Vector spaces V and W are called isomorphic if \exists an isomorphism $V \rightarrow W$.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.
It is reflexive,
3.58 Definition An ivertible linear map is called an isomorphism.

Vector spaces V and W are called isomorphic if \exists an isomorphism $V \rightarrow W$.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.
It is reflexive, symmetric
3.58 Definition An ivertible linear map is called an isomorphism.

Vector spaces V and W are called isomorphic if \exists an isomorphism $V \rightarrow W$.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.
It is reflexive, symmetric and transitive.
3.58 Definition An ivertible linear map is called an isomorphism.

Vector spaces V and W are called isomorphic if \exists an isomorphism $V \rightarrow W$.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.
It is reflexive, symmetric and transitive.
An isomorphism maps a linear independent list to a linear independent list
3.58 Definition An ivertible linear map is called an isomorphism.

Vector spaces V and W are called isomorphic if \exists an isomorphism $V \rightarrow W$.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.
It is reflexive, symmetric and transitive.
An isomorphism maps a linear independent list to a linear independent list a spanning list to a spanning list,
3.58 Definition An ivertible linear map is called an isomorphism.

Vector spaces V and W are called isomorphic if \exists an isomorphism $V \rightarrow W$.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.
It is reflexive, symmetric and transitive.
An isomorphism maps a linear independent list to a linear independent list
a spanning list to a spanning list, a basis to a basis.
3.58 Definition An ivertible linear map is called an isomorphism.

Vector spaces V and W are called isomorphic if \exists an isomorphism $V \rightarrow W$.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.
It is reflexive, symmetric and transitive.

An isomorphism maps a linear independent list to a linear independent list
a spanning list to a spanning list, a basis to a basis.

Isomorphic finite-dimensional vector spaces have the same dimension.

Linear maps $\mathbb{F}^{n} \rightarrow V$

Linear maps $\mathbb{F}^{n} \rightarrow V$

Let V be a vector space

Linear maps $\mathbb{F}^{n} \rightarrow V$

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.

Linear maps $\mathbb{F}^{n} \rightarrow V$

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.

Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear.

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.
Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear. Proof

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.

Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear.

Proof

Additivity: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.
Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear.

Proof

Additivity: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$

$$
T_{u}(x+y)=\left(x_{1}+y_{1}\right) u_{1}+\cdots+\left(x_{n}+y_{n}\right) u_{n}
$$

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.
Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear.

Proof

Additivity: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$

$$
\begin{aligned}
T_{u}(x+y)=\left(x_{1}+y_{1}\right) u_{1} & +\cdots+\left(x_{n}+y_{n}\right) u_{n} \\
& =x_{1} u_{1}+y_{1} u_{1}+\ldots x_{n} u_{n}+y_{n} u_{n}
\end{aligned}
$$

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.
Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear.

Proof

Additivity: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$

$$
\begin{aligned}
T_{u}(x+y)=\left(x_{1}+y_{1}\right) u_{1} & +\cdots+\left(x_{n}+y_{n}\right) u_{n} \\
& =x_{1} u_{1}+y_{1} u_{1}+\ldots x_{n} u_{n}+y_{n} u_{n} \\
& =x_{1} u_{1}+\cdots+x_{n} u_{n}+y_{1} u_{1}+\cdots+y_{n} u_{n}
\end{aligned}
$$

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.
Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear.

Proof

Additivity: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$

$$
\begin{aligned}
T_{u}(x+y)=\left(x_{1}+y_{1}\right) u_{1} & +\cdots+\left(x_{n}+y_{n}\right) u_{n} \\
& =x_{1} u_{1}+y_{1} u_{1}+\ldots x_{n} u_{n}+y_{n} u_{n} \\
& =x_{1} u_{1}+\cdots+x_{n} u_{n}+y_{1} u_{1}+\cdots+y_{n} u_{n}=T_{u}(x)+T_{u}(y)
\end{aligned}
$$

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.
Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear.

Proof

Additivity: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$

$$
\begin{aligned}
T_{u}(x+y)=\left(x_{1}+y_{1}\right) u_{1} & +\cdots+\left(x_{n}+y_{n}\right) u_{n} \\
& =x_{1} u_{1}+y_{1} u_{1}+\ldots x_{n} u_{n}+y_{n} u_{n} \\
& =x_{1} u_{1}+\cdots+x_{n} u_{n}+y_{1} u_{1}+\cdots+y_{n} u_{n}=T_{u}(x)+T_{u}(y)
\end{aligned}
$$

Homogeneity: $\quad T_{u}(\lambda x)=\lambda x_{1} u_{1}+\cdots+\lambda x_{n} u_{n}=\lambda\left(x_{1} u_{1}+\cdots+x_{n} u_{n}\right)=\lambda T_{u}(x)$.

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.
Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear.

Proof

Additivity: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$

$$
\begin{aligned}
T_{u}(x+y)=\left(x_{1}+y_{1}\right) u_{1} & +\cdots+\left(x_{n}+y_{n}\right) u_{n} \\
& =x_{1} u_{1}+y_{1} u_{1}+\ldots x_{n} u_{n}+y_{n} u_{n} \\
& =x_{1} u_{1}+\cdots+x_{n} u_{n}+y_{1} u_{1}+\cdots+y_{n} u_{n}=T_{u}(x)+T_{u}(y)
\end{aligned}
$$

Homogeneity: $\quad T_{u}(\lambda x)=\lambda x_{1} u_{1}+\cdots+\lambda x_{n} u_{n}=\lambda\left(x_{1} u_{1}+\cdots+x_{n} u_{n}\right)=\lambda T_{u}(x)$.

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.
Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear.

Proof

Additivity: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$

$$
\begin{aligned}
T_{u}(x+y)=\left(x_{1}+y_{1}\right) u_{1} & +\cdots+\left(x_{n}+y_{n}\right) u_{n} \\
& =x_{1} u_{1}+y_{1} u_{1}+\ldots x_{n} u_{n}+y_{n} u_{n} \\
& =x_{1} u_{1}+\cdots+x_{n} u_{n}+y_{1} u_{1}+\cdots+y_{n} u_{n}=T_{u}(x)+T_{u}(y)
\end{aligned}
$$

Homogeneity: $\quad T_{u}(\lambda x)=\lambda x_{1} u_{1}+\cdots+\lambda x_{n} u_{n}=\lambda\left(x_{1} u_{1}+\cdots+x_{n} u_{n}\right)=\lambda T_{u}(x)$. Let $e_{1}=(1,0 \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 0,1)$.

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.
Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear.

Proof

Additivity: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$

$$
\begin{aligned}
T_{u}(x+y)=\left(x_{1}+y_{1}\right) u_{1} & +\cdots+\left(x_{n}+y_{n}\right) u_{n} \\
& =x_{1} u_{1}+y_{1} u_{1}+\ldots x_{n} u_{n}+y_{n} u_{n} \\
& =x_{1} u_{1}+\cdots+x_{n} u_{n}+y_{1} u_{1}+\cdots+y_{n} u_{n}=T_{u}(x)+T_{u}(y)
\end{aligned}
$$

Homogeneity: $\quad T_{u}(\lambda x)=\lambda x_{1} u_{1}+\cdots+\lambda x_{n} u_{n}=\lambda\left(x_{1} u_{1}+\cdots+x_{n} u_{n}\right)=\lambda T_{u}(x)$. Let $e_{1}=(1,0 \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 0,1)$.

Clearly, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} e_{1}+\cdots+x_{n} e_{n}$ for any $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$.

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.

Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear.

Proof

Additivity: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$

$$
\begin{aligned}
T_{u}(x+y)=\left(x_{1}+y_{1}\right) u_{1} & +\cdots+\left(x_{n}+y_{n}\right) u_{n} \\
& =x_{1} u_{1}+y_{1} u_{1}+\ldots x_{n} u_{n}+y_{n} u_{n} \\
& =x_{1} u_{1}+\cdots+x_{n} u_{n}+y_{1} u_{1}+\cdots+y_{n} u_{n}=T_{u}(x)+T_{u}(y)
\end{aligned}
$$

Homogeneity: $\quad T_{u}(\lambda x)=\lambda x_{1} u_{1}+\cdots+\lambda x_{n} u_{n}=\lambda\left(x_{1} u_{1}+\cdots+x_{n} u_{n}\right)=\lambda T_{u}(x)$. Let $e_{1}=(1,0 \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 0,1)$.

Clearly, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} e_{1}+\cdots+x_{n} e_{n}$ for any $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$.
Theorem. Any linear $T: \mathbb{F}^{n} \rightarrow V$ is $T_{\left(u_{1}, \ldots, u_{n}\right)}$ where $u_{i}=T\left(e_{i}\right)$ for $\forall i$.

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.

Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear.

Proof

Additivity: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$

$$
\begin{aligned}
T_{u}(x+y)=\left(x_{1}+y_{1}\right) u_{1} & +\cdots+\left(x_{n}+y_{n}\right) u_{n} \\
& =x_{1} u_{1}+y_{1} u_{1}+\ldots x_{n} u_{n}+y_{n} u_{n} \\
& =x_{1} u_{1}+\cdots+x_{n} u_{n}+y_{1} u_{1}+\cdots+y_{n} u_{n}=T_{u}(x)+T_{u}(y)
\end{aligned}
$$

Homogeneity: $\quad T_{u}(\lambda x)=\lambda x_{1} u_{1}+\cdots+\lambda x_{n} u_{n}=\lambda\left(x_{1} u_{1}+\cdots+x_{n} u_{n}\right)=\lambda T_{u}(x)$. Let $e_{1}=(1,0 \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 0,1)$.

Clearly, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} e_{1}+\cdots+x_{n} e_{n}$ for any $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$.
Theorem. Any linear $T: \mathbb{F}^{n} \rightarrow V$ is $T_{\left(u_{1}, \ldots, u_{n}\right)}$ where $u_{i}=T\left(e_{i}\right)$ for $\forall i$.

Proof

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.
Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear.

Proof

Additivity: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$

$$
\begin{aligned}
T_{u}(x+y)=\left(x_{1}+y_{1}\right) u_{1} & +\cdots+\left(x_{n}+y_{n}\right) u_{n} \\
& =x_{1} u_{1}+y_{1} u_{1}+\ldots x_{n} u_{n}+y_{n} u_{n} \\
& =x_{1} u_{1}+\cdots+x_{n} u_{n}+y_{1} u_{1}+\cdots+y_{n} u_{n}=T_{u}(x)+T_{u}(y)
\end{aligned}
$$

Homogeneity: $\quad T_{u}(\lambda x)=\lambda x_{1} u_{1}+\cdots+\lambda x_{n} u_{n}=\lambda\left(x_{1} u_{1}+\cdots+x_{n} u_{n}\right)=\lambda T_{u}(x)$. Let $e_{1}=(1,0 \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 0,1)$.

Clearly, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} e_{1}+\cdots+x_{n} e_{n}$ for any $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$.
Theorem. Any linear $T: \mathbb{F}^{n} \rightarrow V$ is $T_{\left(u_{1}, \ldots, u_{n}\right)}$ where $u_{i}=T\left(e_{i}\right)$ for $\forall i$.
Proof $T\left(x_{1}, \ldots, x_{n}\right)=T\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)=T\left(x_{1} e_{1}\right)+\cdots+T\left(x_{n} e_{n}\right)$

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.

Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear.

Proof

Additivity: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$

$$
\begin{aligned}
T_{u}(x+y)=\left(x_{1}+y_{1}\right) u_{1} & +\cdots+\left(x_{n}+y_{n}\right) u_{n} \\
& =x_{1} u_{1}+y_{1} u_{1}+\ldots x_{n} u_{n}+y_{n} u_{n} \\
& =x_{1} u_{1}+\cdots+x_{n} u_{n}+y_{1} u_{1}+\cdots+y_{n} u_{n}=T_{u}(x)+T_{u}(y)
\end{aligned}
$$

Homogeneity: $\quad T_{u}(\lambda x)=\lambda x_{1} u_{1}+\cdots+\lambda x_{n} u_{n}=\lambda\left(x_{1} u_{1}+\cdots+x_{n} u_{n}\right)=\lambda T_{u}(x)$. Let $e_{1}=(1,0 \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 0,1)$.

Clearly, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} e_{1}+\cdots+x_{n} e_{n}$ for any $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$.
Theorem. Any linear $T: \mathbb{F}^{n} \rightarrow V$ is $T_{\left(u_{1}, \ldots, u_{n}\right)}$ where $u_{i}=T\left(e_{i}\right)$ for $\forall i$.
Proof $T\left(x_{1}, \ldots, x_{n}\right)=T\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)=T\left(x_{1} e_{1}\right)+\cdots+T\left(x_{n} e_{n}\right)$ $=x_{1} T\left(e_{1}\right)+\cdots+x_{n} T\left(e_{n}\right)=x_{1} u_{1}+\cdots+x_{n} u_{n}=T_{u}(x)$.

Let V be a vector space and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a list of vectors of V.

Theorem. The map $T_{u}: \mathbb{F}^{n} \rightarrow V:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} u_{1}+\cdots+x_{n} u_{n}$ is linear.

Proof

Additivity: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$

$$
\begin{aligned}
T_{u}(x+y)=\left(x_{1}+y_{1}\right) u_{1} & +\cdots+\left(x_{n}+y_{n}\right) u_{n} \\
& =x_{1} u_{1}+y_{1} u_{1}+\ldots x_{n} u_{n}+y_{n} u_{n} \\
& =x_{1} u_{1}+\cdots+x_{n} u_{n}+y_{1} u_{1}+\cdots+y_{n} u_{n}=T_{u}(x)+T_{u}(y)
\end{aligned}
$$

Homogeneity: $\quad T_{u}(\lambda x)=\lambda x_{1} u_{1}+\cdots+\lambda x_{n} u_{n}=\lambda\left(x_{1} u_{1}+\cdots+x_{n} u_{n}\right)=\lambda T_{u}(x)$. Let $e_{1}=(1,0 \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 0,1)$.

Clearly, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} e_{1}+\cdots+x_{n} e_{n}$ for any $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$.
Theorem. Any linear $T: \mathbb{F}^{n} \rightarrow V$ is $T_{\left(u_{1}, \ldots, u_{n}\right)}$ where $u_{i}=T\left(e_{i}\right)$ for $\forall i$.
Proof $T\left(x_{1}, \ldots, x_{n}\right)=T\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)=T\left(x_{1} e_{1}\right)+\cdots+T\left(x_{n} e_{n}\right)$ $=x_{1} T\left(e_{1}\right)+\cdots+x_{n} T\left(e_{n}\right)=x_{1} u_{1}+\cdots+x_{n} u_{n}=T_{u}(x)$.

Linear maps $\mathbb{F}^{n} \rightarrow V$ vs. lists of vectors

Linear maps $\mathbb{F}^{n} \rightarrow V$ vs. lists of vectors

A linear map $T_{u}: \mathbb{F}^{n} \rightarrow V \leftrightarrow$ a list u of n vectors in V

Linear maps $\mathbb{F}^{n} \rightarrow V$ vs. lists of vectors

A linear map $T_{u}: \mathbb{F}^{n} \rightarrow V \leftrightarrow$ a list u of n vectors in V

$$
T_{u}\left(\mathbb{F}^{n}\right)=V \quad \Longleftrightarrow \quad V=\operatorname{span}(u)
$$

Linear maps $\mathbb{F}^{n} \rightarrow V$ vs. lists of vectors

A linear map $T_{u}: \mathbb{F}^{n} \rightarrow V \leftrightarrow$ a list u of n vectors in V

$$
T_{u}\left(\mathbb{F}^{n}\right)=V \quad \Longleftrightarrow \quad V=\operatorname{span}(u)
$$

T_{u} is injective $\Longleftrightarrow u$ is a linear independent list

A linear map $T_{u}: \mathbb{F}^{n} \rightarrow V \leftrightarrow a$ a list u of n vectors in V

$$
T_{u}\left(\mathbb{F}^{n}\right)=V \Longleftrightarrow V=\operatorname{span}(u)
$$

T_{u} is injective $\Longleftrightarrow u$ is a linear independent list
T_{u} is an isomorphism $\Longleftrightarrow u$ is a basis of V

```
A linear map }\mp@subsup{T}{u}{}:\mp@subsup{\mathbb{F}}{}{n}->V un a list u of n vectors in V
```

$$
T_{u}\left(\mathbb{F}^{n}\right)=V \quad \Longleftrightarrow \quad V=\operatorname{span}(u)
$$

T_{u} is injective $\Longleftrightarrow u$ is a linear independent list
T_{u} is an isomorphism $\Longleftrightarrow u$ is a basis of V

Theorem. Each finite-dimensional vector space V is isomorphic to $\mathbb{F}^{\operatorname{dim} V}$.

