Linear Algebra Lecture 7

Linear Algebra

Oleg Viro

02/13/2018

The sum S+T and the product λT are maps $V \to W$ defined by formulas

The sum S+T and the product λT are maps $V \to W$ defined by formulas

(S+T)(v) = Sv + Tv

The sum S + T and the product λT are maps $V \to W$ defined by formulas

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$

The sum S + T and the product λT are maps $V \to W$ defined by formulas

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

The sum S+T and the product λT are maps $V \to W$ defined by formulas

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps,

The sum S+T and the product λT are maps $V \to W$ defined by formulas

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps.

The sum S+T and the product λT are maps $V \to W$ defined by formulas

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps.

Proof.

The sum S+T and the product λT are maps $V \to W$ defined by formulas

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps.

Proof. Exercise!

The sum S+T and the product λT are maps $V \to W$ defined by formulas

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps.

Proof. Exercise! It's easy!

The sum S+T and the product λT are maps $V \to W$ defined by formulas

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps.

Proof. Exercise!

3.7 **Theorem.** $\mathcal{L}(V, W)$ is a vector space. With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(V, W)$ is a vector space.

The sum S+T and the product λT are maps $V \to W$ defined by formulas

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps.

Proof. Exercise!

3.7 **Theorem.** $\mathcal{L}(V, W)$ is a vector space. With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(V, W)$ is a vector space.

Proof.

The sum S + T and the product λT are maps $V \to W$ defined by formulas

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps.

Proof. Exercise!

3.7 **Theorem.** $\mathcal{L}(V, W)$ is a vector space. With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(V, W)$ is a vector space.

Proof. Exercise!

The sum S+T and the product λT are maps $V \to W$ defined by formulas

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps.

Proof. Exercise!

3.7 **Theorem.** $\mathcal{L}(V, W)$ is a vector space. With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(V, W)$ is a vector space.

Proof. Exercise!

The sum S+T and the product λT are maps $V \to W$ defined by formulas

(S+T)(v) = Sv + Tv and $(\lambda T)(v) = \lambda(Tv)$ for all $v \in V$.

Theorem If S, T are linear maps, then S + T and λT are linear maps.

Proof. Exercise!

3.7 **Theorem.** $\mathcal{L}(V, W)$ is a vector space. With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(V, W)$ is a vector space.

Proof. Exercise! It's easy!

Definition Let $T: U \to V$ and $S: V \to W$ be maps.

Definition Let $T: U \to V$ and $S: V \to W$ be maps.

The composition $S \circ T$ is a map $U \to W$ defined by formula

Definition Let $T: U \to V$ and $S: V \to W$ be maps.

The composition $S \circ T$ is a map $U \to W$ defined by formula

 $(S \circ T)(u) = S(T(u))$ for all $u \in U$.

Composition is called also product

Composition is called also **product**, say, by Professor Axler and in his textbook.

Composition is called also **product**, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted ST, like a product.

Composition is called also **product**, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted ST, like a product.

Theorem If S and T are linear maps,

Composition is called also **product**, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Composition is called also **product**, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof.

Composition is called also **product**, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise!

Composition is called also **product**, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise! It's easy! ■

Composition is called also **product**, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise!

3.9 Algebraic properties of composition.

associativity

Definition Let $T: U \to V$ and $S: V \to W$ be maps. The composition $S \circ T$ is a map $U \to W$ defined by formula $(S \circ T)(u) = S(T(u))$ for all $u \in U$.

Composition is called also **product**, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise! ■ 3.9 Algebraic properties of composition.

 $(T_1 T_2) T_3 = T_1 (T_2 T_3)$

Composition is called also **product**, say, by Professor Axler and in his textbook. Often a composition $S \circ T$ is denoted ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise!

3.9 Algebraic properties of composition.associativity $(T_1T_2)T_3 = T_1(T_2T_3)$ identity $T \operatorname{id}_V = T = \operatorname{id}_W T$

Composition is called also **product**, say, by Professor Axler and in his textbook.

Often a composition $S \circ T$ is denoted ST, like a product.

Theorem If S and T are linear maps, then $S \circ T$ is a linear map.

Proof. Exercise!

3.9 Algebraic properties of composition. associativity $(T_1T_2)T_3 = T_1(T_2T_3)$ identity $T \operatorname{id}_V = T = \operatorname{id}_W T$ distributivity $(S_1 + S_2)T = S_1T + S_2T$ and $(T_1 + T_2)S = T_1S + T_2S$.

Definition

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = id_V$ and $T \circ S = id_W$. Definition

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 Inverse is unique.

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 **Inverse is unique.** An invertible map has a unique inverse.

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 **Inverse is unique.** An invertible map has a unique inverse.

Proof. Let S_1 and S_2 be inverse to $T: V \to W$.

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 **Inverse is unique.** An invertible map has a unique inverse.

Proof. Let S_1 and S_2 be inverse to $T: V \to W$. Then $(S_1T)S_2$

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 Inverse is unique. An invertible map has a unique inverse.

Proof. Let S_1 and S_2 be inverse to $T: V \to W$. Then $(S_1T)S_2 = \operatorname{id}_V S_2$

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 **Inverse is unique.** An invertible map has a unique inverse.

Proof. Let S_1 and S_2 be inverse to $T: V \to W$. Then $(S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 **Inverse is unique.** An invertible map has a unique inverse.

Proof. Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1(TS_2) = (S_1T)S_2 = \mathrm{id}_V S_2 = S_2$

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 **Inverse is unique.** An invertible map has a unique inverse.

Proof. Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 **Inverse is unique.** An invertible map has a unique inverse.

Proof. Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 **Inverse is unique.** An invertible map has a unique inverse.

Proof. Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 **Inverse is unique.** An invertible map has a unique inverse.

Proof. Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

3.55 Notation If T is invertible, then its inverse is denoted by T^{-1} .

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 **Inverse is unique.** An invertible map has a unique inverse.

Proof. Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

3.55 Notation If T is invertible, then its inverse is denoted by T^{-1} .

For a map $T: V \to W$, the inverse map T^{-1} is defined by two properties:

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 **Inverse is unique.** An invertible map has a unique inverse.

Proof. Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

3.55 Notation If T is invertible, then its inverse is denoted by T^{-1} .

For a map $T: V \to W$, the inverse map T^{-1} is defined by two properties: $TT^{-1} =$

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 **Inverse is unique.** An invertible map has a unique inverse.

Proof. Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

3.55 Notation If T is invertible, then its inverse is denoted by T^{-1} .

For a map $T: V \to W$, the inverse map T^{-1} is defined by two properties: $TT^{-1} = \mathrm{id}_W$

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 **Inverse is unique.** An invertible map has a unique inverse.

Proof. Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

3.55 Notation If T is invertible, then its inverse is denoted by T^{-1} .

For a map $T: V \to W$, the inverse map T^{-1} is defined by two properties: $TT^{-1} = id_W$ and $T^{-1}T =$

Maps $T: V \to W$ and $S: W \to V$ are said to be **inverse** to each other if $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$. A map $T: V \to W$ is called **invertible** if there exists a map inverse to T.

3.54 **Inverse is unique.** An invertible map has a unique inverse.

Proof. Let S_1 and S_2 be inverse to $T: V \to W$. Then $S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2$

3.55 Notation If T is invertible, then its inverse is denoted by T^{-1} .

For a map $T: V \to W$, the inverse map T^{-1} is defined by two properties: $TT^{-1} = id_W$ and $T^{-1}T = id_V$. **Theorem.** If V and W are vector spaces and a linear map $T: V \to W$ is invertible,

Proof. Additivity. Let $w_1, w_2 \in W$.

Proof. Additivity. Let $w_1, w_2 \in W$. Then

 $T^{-1}(w_1 + w_2)$

Proof. Additivity. Let $w_1, w_2 \in W$. Then $T^{-1}(w_1 + w_2) = T^{-1}(\operatorname{id}_W w_1 + \operatorname{id}_W w_2)$

Proof. Additivity. Let $w_1, w_2 \in W$. Then

 $T^{-1}(w_1 + w_2) = T^{-1}(\operatorname{id}_W w_1 + \operatorname{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$

Proof. Additivity. Let $w_1, w_2 \in W$. Then $T^{-1}(w_1 + w_2) = T^{-1}(\operatorname{id}_W w_1 + \operatorname{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$ $= T^{-1}T(T^{-1}w_1 + T^{-1}w_2)$

Proof. Additivity. Let $w_1, w_2 \in W$. Then $T^{-1}(w_1 + w_2) = T^{-1}(\operatorname{id}_W w_1 + \operatorname{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$ $= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \operatorname{id}_V(T^{-1}w_1 + T^{-1}w_2)$

Proof. Additivity. Let $w_1, w_2 \in W$. Then $T^{-1}(w_1 + w_2) = T^{-1}(\operatorname{id}_W w_1 + \operatorname{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$ $= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \operatorname{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$

Proof. Additivity. Let $w_1, w_2 \in W$. Then $T^{-1}(w_1 + w_2) = T^{-1}(\operatorname{id}_W w_1 + \operatorname{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$ $= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \operatorname{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$

Homogeneity.

 $T^{-1}(\lambda w)$

Proof. Additivity. Let $w_1, w_2 \in W$. Then $T^{-1}(w_1 + w_2) = T^{-1}(\operatorname{id}_W w_1 + \operatorname{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$ $= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \operatorname{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$

Homogeneity.

 $T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w)$

Proof. Additivity. Let $w_1, w_2 \in W$. Then $T^{-1}(w_1 + w_2) = T^{-1}(\operatorname{id}_W w_1 + \operatorname{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$ $= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \operatorname{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w) = T^{-1}(\lambda T T^{-1} w)$$

Proof. Additivity. Let $w_1, w_2 \in W$. Then $T^{-1}(w_1 + w_2) = T^{-1}(\operatorname{id}_W w_1 + \operatorname{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$ $= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \operatorname{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w) = T^{-1}(\lambda T T^{-1} w) = T^{-1}(\lambda T (T^{-1} w))$$

Proof. Additivity. Let $w_1, w_2 \in W$. Then $T^{-1}(w_1 + w_2) = T^{-1}(\operatorname{id}_W w_1 + \operatorname{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$ $= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \operatorname{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w) = T^{-1}(\lambda T T^{-1} w) = T^{-1}(\lambda T (T^{-1} w))$$

= $T^{-1}T(\lambda T^{-1} w)$

Proof. Additivity. Let $w_1, w_2 \in W$. Then $T^{-1}(w_1 + w_2) = T^{-1}(\operatorname{id}_W w_1 + \operatorname{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$ $= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \operatorname{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w) = T^{-1}(\lambda T T^{-1} w) = T^{-1}(\lambda T (T^{-1} w))$$

= $T^{-1}T(\lambda T^{-1} w) = \operatorname{id}_V(\lambda T^{-1} w)$

Proof. Additivity. Let $w_1, w_2 \in W$. Then $T^{-1}(w_1 + w_2) = T^{-1}(\operatorname{id}_W w_1 + \operatorname{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$ $= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \operatorname{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w) = T^{-1}(\lambda T T^{-1} w) = T^{-1}(\lambda T (T^{-1} w))$$

= $T^{-1}T(\lambda T^{-1} w) = \operatorname{id}_V(\lambda T^{-1} w) = \lambda T^{-1} w.$

Proof. Additivity. Let $w_1, w_2 \in W$. Then $T^{-1}(w_1 + w_2) = T^{-1}(\operatorname{id}_W w_1 + \operatorname{id}_W w_2) = T^{-1}(TT^{-1}w_1 + TT^{-1}w_2)$ $= T^{-1}T(T^{-1}w_1 + T^{-1}w_2) = \operatorname{id}_V(T^{-1}w_1 + T^{-1}w_2) = T^{-1}w_1 + T^{-1}w_2.$

$$T^{-1}(\lambda w) = T^{-1}(\lambda \operatorname{id}_W w) = T^{-1}(\lambda T T^{-1} w) = T^{-1}(\lambda T (T^{-1} w))$$

= $T^{-1}T(\lambda T^{-1} w) = \operatorname{id}_V(\lambda T^{-1} w) = \lambda T^{-1} w.$

liberté, égalité et fraternité

André Weil

René de Possel

Charles Ehresmann

Laurent Schwartz

Jean Dieudonné

Claude Chevalley

Pierre Samuel

Jean-Pierre Serre

Adrien Douady

liberté, égalité et fraternité

André Weil

René de Possel

Charles Ehresmann

Laurent Schwartz

Jean Dieudonné

Claude Chevalley

Pierre Samuel

Jean-Pierre Serre

Adrien Douady

Nicolas Bourbaki

3.20 **Definition** A map $T: V \to W$ is called **surjective** if

3.15 **Definition** A map $T: V \to W$ is called **injective** if

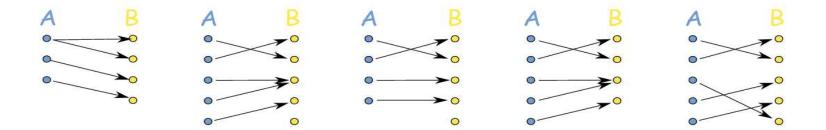
3.15 Definition A map $T: V \to W$ is called injective if $Tu = Tv \implies u = v$.

3.15 Definition A map $T: V \to W$ is called injective if $Tu = Tv \implies u = v$.

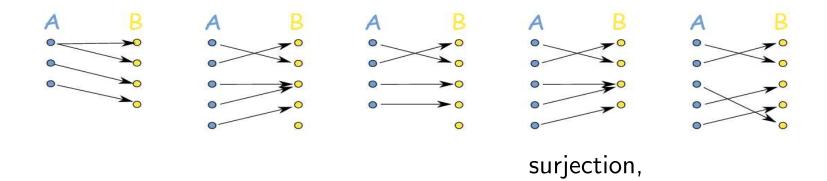
Definition A map $T: V \to W$ is called **bijective** if

3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

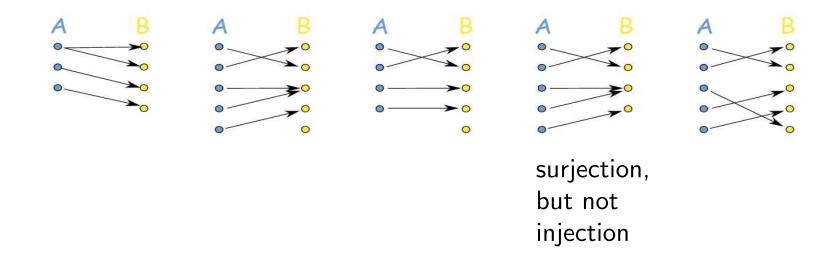
3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.



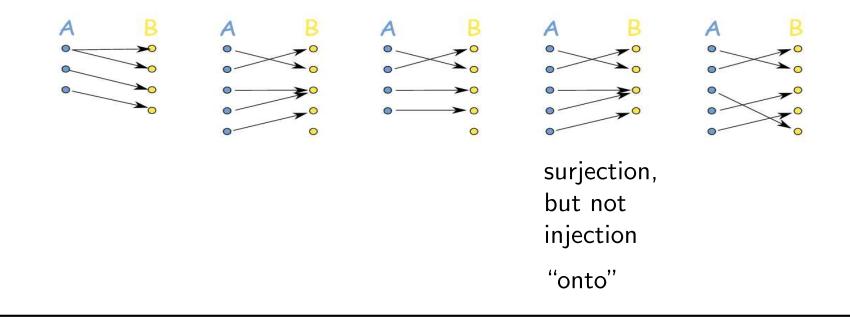
3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.



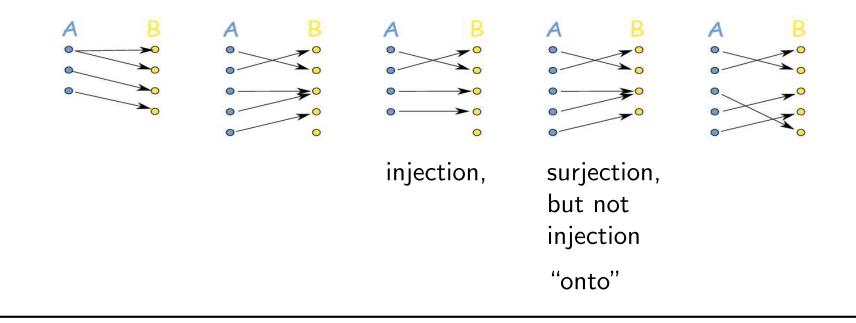
3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.



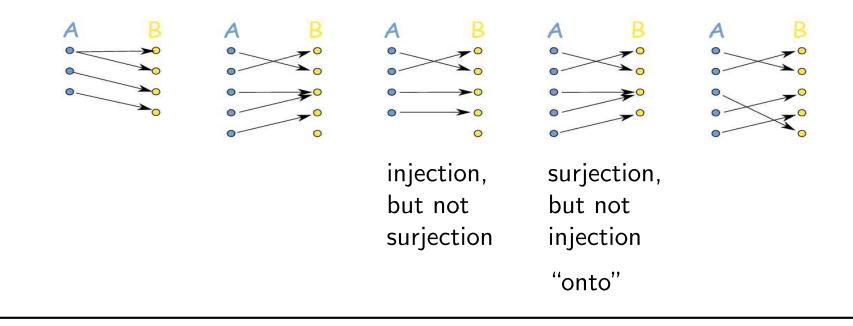
3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.



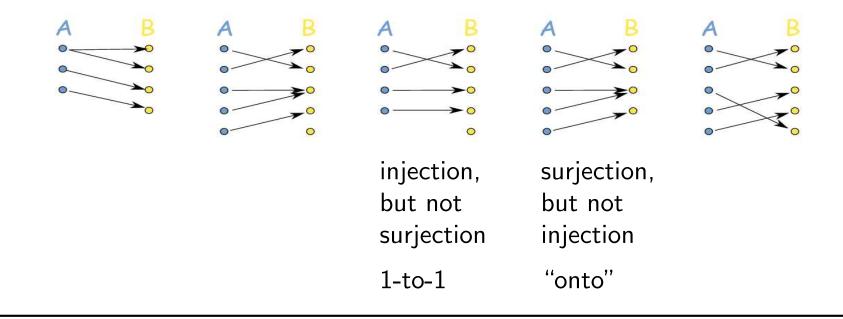
3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.



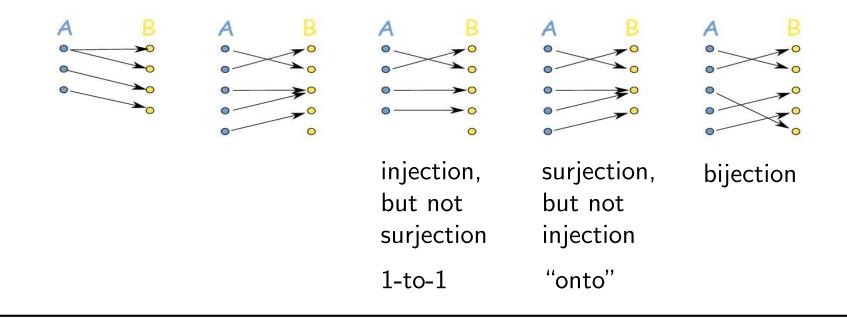
3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.



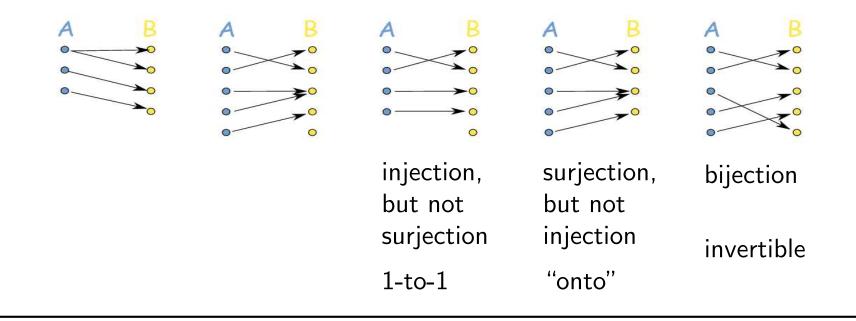
3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.



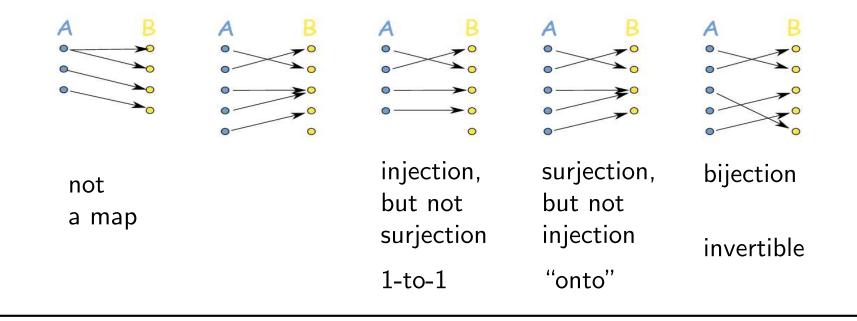
3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.



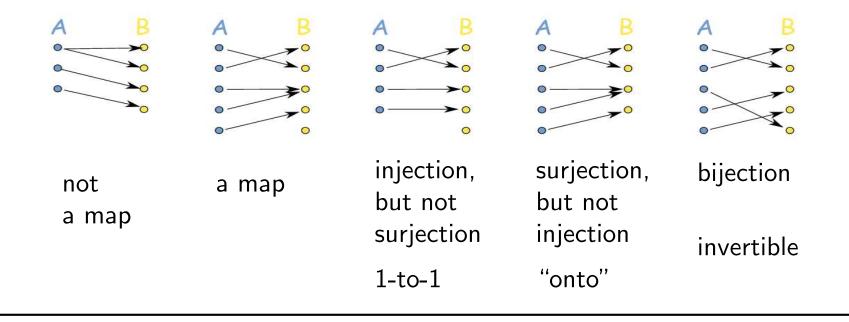
3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.



3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.



3.15 **Definition** A map $T: V \to W$ is called **injective** if $Tu = Tv \implies u = v$.



3.56 **Theorem. Invertibility is equivalent to bijectivity.**

3.56 **Theorem. Invertibility is equivalent to bijectivity.**

You should know this.

3.56 **Theorem. Invertibility is equivalent to bijectivity.**

You should know this. If not, see the textbook, page 81.

3.58 **Definition** An ivertible linear map is called an **isomorphism**.

Properties of isomorphisms

Properties of isomorphisms

• The identity map of a vector space is an isomorphism.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

It is reflexive,

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

It is reflexive, symmetric

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

It is reflexive, symmetric and transitive.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

It is reflexive, symmetric and transitive.

An isomorphism maps a linear independent list to a linear independent list

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

It is reflexive, symmetric and transitive.

An isomorphism maps a linear independent list to a linear independent list a spanning list to a spanning list,

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

It is reflexive, symmetric and transitive.

An isomorphism maps a linear independent list to a linear independent list a spanning list to a spanning list, a basis to a basis.

Properties of isomorphisms

- The identity map of a vector space is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

It is reflexive, symmetric and transitive.

An isomorphism maps a linear independent list to a linear independent list a spanning list to a spanning list, a basis to a basis.

Isomorphic finite-dimensional vector spaces have the same dimension.

Let V be a vector space

Linear Algebra Lecture 7

Let V be a vector space and let $u = (u_1, \ldots, u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Let V be a vector space and let $u = (u_1, \ldots, u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Proof

Additivity: Let $x = (x_1, \ldots, x_n) \in \mathbb{F}^n$ and $y = (y_1, \ldots, y_n) \in \mathbb{F}^n$

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Proof

Additivity: Let $x = (x_1, \ldots, x_n) \in \mathbb{F}^n$ and $y = (y_1, \ldots, y_n) \in \mathbb{F}^n$ $T_u(x+y) = (x_1+y_1)u_1 + \cdots + (x_n+y_n)u_n$

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Additivity: Let
$$x = (x_1, ..., x_n) \in \mathbb{F}^n$$
 and $y = (y_1, ..., y_n) \in \mathbb{F}^n$
 $T_u(x + y) = (x_1 + y_1)u_1 + \dots + (x_n + y_n)u_n$
 $= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$

Let V be a vector space and let $u = (u_1, \ldots, u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Additivity: Let
$$x = (x_1, ..., x_n) \in \mathbb{F}^n$$
 and $y = (y_1, ..., y_n) \in \mathbb{F}^n$
 $T_u(x+y) = (x_1+y_1)u_1 + \dots + (x_n+y_n)u_n$
 $= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$
 $= x_1u_1 + \dots + x_nu_n + y_1u_1 + \dots + y_nu_n$

Let V be a vector space and let $u = (u_1, \ldots, u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Additivity: Let
$$x = (x_1, ..., x_n) \in \mathbb{F}^n$$
 and $y = (y_1, ..., y_n) \in \mathbb{F}^n$
 $T_u(x+y) = (x_1+y_1)u_1 + \dots + (x_n+y_n)u_n$
 $= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$
 $= x_1u_1 + \dots + x_nu_n + y_1u_1 + \dots + y_nu_n = T_u(x) + T_u(y)$

Let V be a vector space and let $u = (u_1, \ldots, u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Additivity: Let
$$x = (x_1, ..., x_n) \in \mathbb{F}^n$$
 and $y = (y_1, ..., y_n) \in \mathbb{F}^n$
 $T_u(x + y) = (x_1 + y_1)u_1 + \dots + (x_n + y_n)u_n$
 $= x_1u_1 + y_1u_1 + \dots + x_nu_n + y_nu_n$
 $= x_1u_1 + \dots + x_nu_n + y_1u_1 + \dots + y_nu_n = T_u(x) + T_u(y)$
Homogeneity: $T_u(\lambda x) = \lambda x_1u_1 + \dots + \lambda x_nu_n = \lambda (x_1u_1 + \dots + x_nu_n) = \lambda T_u(x)$.

Let V be a vector space and let $u = (u_1, \ldots, u_n)$ be a list of vectors of V.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Additivity: Let
$$x = (x_1, \ldots, x_n) \in \mathbb{F}^n$$
 and $y = (y_1, \ldots, y_n) \in \mathbb{F}^n$
 $T_u(x+y) = (x_1+y_1)u_1 + \cdots + (x_n+y_n)u_n$
 $= x_1u_1 + y_1u_1 + \ldots x_nu_n + y_nu_n$
 $= x_1u_1 + \cdots + x_nu_n + y_1u_1 + \cdots + y_nu_n = T_u(x) + T_u(y)$
Homogeneity: $T_u(\lambda x) = \lambda x_1u_1 + \cdots + \lambda x_nu_n = \lambda (x_1u_1 + \cdots + x_nu_n) = \lambda T_u(x)$.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Proof

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Theorem. The map $T_u: \mathbb{F}^n \to V: (x_1, \ldots, x_n) \mapsto x_1u_1 + \cdots + x_nu_n$ is linear.

Linear Algebra Lecture 7

 $T_u(\mathbb{F}^n) = V \iff V = \operatorname{span}(u)$

$$T_u(\mathbb{F}^n) = V \iff V = \operatorname{span}(u)$$

 T_u is injective $\iff u$ is a linear independent list

$$T_u(\mathbb{F}^n) = V \iff V = \operatorname{span}(u)$$

 T_u is injective $\iff u$ is a linear independent list

 T_u is an isomorphism $\iff u$ is a basis of V

$$T_u(\mathbb{F}^n) = V \iff V = \operatorname{span}(u)$$

 T_u is injective $\iff u$ is a linear independent list

 T_u is an isomorphism $\iff u$ is a basis of V

Theorem. Each finite-dimensional vector space V is isomorphic to $\mathbb{F}^{\dim V}$.