Definition. span U is the set of all linear combinations of $v_1, \ldots, v_m \in U$

Definition. span U is the set of all linear combinations of $v_1, \ldots, v_m \in U$

(with any m).

Definition. span U is the set of all linear combinations of $v_1, \ldots, v_m \in U$

(with any m).

Theorem. span U is the smallest subspace which contains U.

Definition. span U is the set of all linear combinations of $v_1, \ldots, v_m \in U$

(with any m).

Theorem. span U is the smallest subspace which contains U.

What to prove?

Definition. span U is the set of all linear combinations of $v_1, \ldots, v_m \in U$

(with any m).

Theorem. span U is the smallest subspace which contains U.

What to prove?

 $\operatorname{span} U$ is a subspace.

Definition. span U is the set of all linear combinations of $v_1, \ldots, v_m \in U$

(with any m).

Theorem. span U is the smallest subspace which contains U.

What to prove?

span U is a subspace.

span U is the smallest among subspaces.

Definition. span U is the set of all linear combinations of $v_1, \ldots, v_m \in U$

(with any m).

Theorem. span U is the smallest subspace which contains U.

What to prove?

span U is a subspace.

 $\operatorname{span} U$ is the smallest among subspaces.

Theorem. span U is the intersection of all subspaces which contain U.

Definition. span U is the set of all linear combinations of $v_1, \ldots, v_m \in U$

(with any m).

Theorem. span U is the smallest subspace which contains U.

What to prove?

span U is a subspace.

 $\operatorname{span} U$ is the smallest among subspaces.

Theorem. span U is the intersection of all subspaces which contain U.

Is the intersection of subspaces a subspace?

Definition. span $(v_1, ..., v_m) = \{a_1v_1 + \cdots + a_mv_m \mid a_1, ..., a_m \in \mathbb{F}\}$

Definition. span $(v_1, ..., v_m) = \{a_1v_1 + \cdots + a_mv_m \mid a_1, ..., a_m \in \mathbb{F}\}$

Definition. A vector $v \in V$ linearly depends of v_1, \ldots, v_m if $v \in \operatorname{span}(v_1, \ldots, v_m)$.

Definition. span $(v_1, ..., v_m) = \{a_1v_1 + \dots + a_mv_m \mid a_1, \dots, a_m \in \mathbb{F}\}$

Definition. A vector $v \in V$ linearly depends of v_1, \ldots, v_m if $v \in \operatorname{span}(v_1, \ldots, v_m)$.

 $v_1, \ldots, v_m \in V$ are called **linearly independent** if

Definition. span $(v_1, ..., v_m) = \{a_1v_1 + \dots + a_mv_m \mid a_1, \dots, a_m \in \mathbb{F}\}$

Definition. A vector $v \in V$ linearly depends of v_1, \ldots, v_m if $v \in \operatorname{span}(v_1, \ldots, v_m)$.

 $v_1, \ldots, v_m \in V$ are called **linearly independent** if none of v_1, \ldots, v_m linearly depends on the others.

Definition. span $(v_1, ..., v_m) = \{a_1v_1 + \dots + a_mv_m \mid a_1, \dots, a_m \in \mathbb{F}\}$

Definition. A vector $v \in V$ linearly depends of v_1, \ldots, v_m if $v \in \operatorname{span}(v_1, \ldots, v_m)$.

 $v_1, \ldots, v_m \in V$ are called **linearly independent** if none of v_1, \ldots, v_m linearly depends on the others.

2.17 (More symmetric) definition List $v_1, \ldots, v_m \in V$ is linearly independent if $a_1v_1 + \cdots + a_mv_m = 0 \implies a_1 = \cdots = a_m = 0$.

2.21 Linear Dependence Lemma

List $v_1,\ldots,v_m \in V$ is linearly dependent

2.21 Linear Dependence Lemma

List $v_1, \ldots, v_m \in V$ is linearly dependent $\iff \exists j \in \{1, 2, \ldots, m\}$:

 $\Rightarrow \quad \exists j \in \{1, 2, \dots, m\}: \\ v_j \in \operatorname{span}(v_1, \dots, v_{j-1}).$

List $v_1, \ldots, v_m \in V$ is linearly dependent $\iff \exists$ a proper sublist v_{k_1}, \ldots, v_{k_l} with the same span.

the length of every linearly independent list of vectors

 \leq

the length of every spanning list of vectors

the length of every linearly independent list of vectors

the length of every spanning list of vectors

 \leq

Proof Let u_1, \ldots, u_p is linearly independent in V,

the length of every linearly independent list of vectors

the length of every spanning list of vectors

Proof Let u_1, \ldots, u_p is linearly independent in V, and $V = \operatorname{span}(w_1, \ldots, w_q)$.

the length of every linearly independent list of vectors

the length of every spanning list of vectors

Proof Let u_1, \ldots, u_p is linearly independent in V, and $V = \operatorname{span}(w_1, \ldots, w_q)$. Prove: $p \leq q$.

the length of every linearly independent list of vectors

the length of every spanning list of vectors

Proof Let u_1, \ldots, u_p is linearly independent in V, and $V = \operatorname{span}(w_1, \ldots, w_q)$. Prove: $p \leq q$. Plan:

the length of every linearly independent list of vectors

the length of every spanning list of vectors

Proof Let u_1, \ldots, u_p is linearly independent in V, and $V = \operatorname{span}(w_1, \ldots, w_q)$. Prove: $p \leq q$. Plan: build up a list of length q

the length of every linearly independent list of vectors

the length of every spanning list of vectors

Proof Let u_1, \ldots, u_p is linearly independent in V, and $V = \operatorname{span}(w_1, \ldots, w_q)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_i for u_j .

the length of every linearly independent list of vectors

the length of every spanning list of vectors

Proof Let u_1, \ldots, u_p is linearly independent in V, and $V = \operatorname{span}(w_1, \ldots, w_q)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_i for u_j .

 \leq

 w_1,\ldots,w_q

the length of every linearly independent list of vectors

the length of every spanning list of vectors

Proof Let u_1, \ldots, u_p is linearly independent in V, and $V = \operatorname{span}(w_1, \ldots, w_q)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_i for u_j .

 \leq

 $w_1, \ldots, w_q \quad \leadsto$

the length of every linearly independent list of vectors

the length of every spanning list of vectors

Proof Let u_1, \ldots, u_p is linearly independent in V, and $V = \operatorname{span}(w_1, \ldots, w_q)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_i for u_j .

 \leq

 $w_1,\ldots,w_q \iff u_1,w_1,\ldots,w_q$

the length of every linearly independent list of vectors the length of every spanning list of vectors

Proof Let u_1, \ldots, u_p is linearly independent in V, and $V = \operatorname{span}(w_1, \ldots, w_q)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_i for u_j .

 \leq

 $w_1,\ldots,w_q \iff u_1,w_1,\ldots,w_q$

 u_1, w_1, \ldots, w_q is linear dependent as $u_1 \in V = \operatorname{span}(w_1, \ldots, w_q)$

Proof Let u_1, \ldots, u_p is linearly independent in V, and $V = \operatorname{span}(w_1, \ldots, w_q)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_i for u_j .

```
w_1, \dots, w_q \iff u_1, w_1, \dots, w_q
u_1, w_1, \dots, w_q is linear dependent as u_1 \in V = \operatorname{span}(w_1, \dots, w_q)
\exists j : w_j \in \operatorname{span}(u_1, w_1, \dots, w_{j-1}) by 2.21
```

Proof Let u_1, \ldots, u_p is linearly independent in V, and $V = \operatorname{span}(w_1, \ldots, w_q)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_i for u_j .

```
w_1, \ldots, w_q \iff u_1, w_1, \ldots, w_q
u_1, w_1, \ldots, w_q is linear dependent as u_1 \in V = \operatorname{span}(w_1, \ldots, w_q)
\exists j : w_j \in \operatorname{span}(u_1, w_1, \ldots, w_{j-1}) by 2.21
Through w_j away from the list u_1, w_1, \ldots, w_q.
```

Proof Let u_1, \ldots, u_p is linearly independent in V, and $V = \operatorname{span}(w_1, \ldots, w_q)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_i for u_j .

$$\begin{split} w_1, \dots, w_q &\rightsquigarrow u_1, w_1, \dots, w_q \\ u_1, w_1, \dots, w_q \text{ is linear dependent as } u_1 \in V = \operatorname{span}(w_1, \dots, w_q) \\ \exists j : w_j \in \operatorname{span}(u_1, w_1, \dots, w_{j-1}) \quad \text{by 2.21} \\ \text{Through } w_j \text{ away from the list } u_1, w_1, \dots, w_q. \end{split}$$

Linear Algebra Lecture 5

2.26 A subspace of a finite-dimensional space is finite-dimensional.

Proof Let $U \subset V = \operatorname{span}(v_1, \ldots, v_p)$.

Linear Algebra Lecture 5

2.26 A subspace of a finite-dimensional space is finite-dimensional.

Proof Let $U \subset V = \operatorname{span}(v_1, \ldots, v_p)$.

Let us build a linear independent list $\subset U$.

Proof Let $U \subset V = \operatorname{span}(v_1, \ldots, v_p)$.

Let us build a linear independent list $\subset U$.

Lemma. If a list $w_1, \ldots, w_n \subset U$ is linear independent, but $U \neq \operatorname{span}(w_1, \ldots, w_n)$,

Proof Let $U \subset V = \operatorname{span}(v_1, \ldots, v_p)$.

Let us build a linear independent list $\subset U$.

Lemma. If a list $w_1, \ldots, w_n \subset U$ is linear independent, but $U \neq \operatorname{span}(w_1, \ldots, w_n)$, then $\exists w \in U$ such that w_1, \ldots, w_n, w is linear independent.

Proof Let $U \subset V = \operatorname{span}(v_1, \ldots, v_p)$.

Let us build a linear independent list $\subset U$.

Lemma. If a list $w_1, \ldots, w_n \subset U$ is linear independent, but $U \neq \operatorname{span}(w_1, \ldots, w_n)$, then $\exists w \in U$ such that w_1, \ldots, w_n, w is linear independent.

Reformulation. A linear independent list can be increased, unless it spans.

Proof Let $U \subset V = \operatorname{span}(v_1, \ldots, v_p)$.

Let us build a linear independent list $\subset U$.

Lemma. If a list $w_1, \ldots, w_n \subset U$ is linear independent, but $U \neq \operatorname{span}(w_1, \ldots, w_n)$, then $\exists w \in U$ such that w_1, \ldots, w_n, w is linear independent.

Proof Let $U \subset V = \operatorname{span}(v_1, \ldots, v_p)$.

Let us build a linear independent list $\subset U$.

Lemma. If a list $w_1, \ldots, w_n \subset U$ is linear independent, but $U \neq \operatorname{span}(w_1, \ldots, w_n)$, then $\exists w \in U$ such that w_1, \ldots, w_n, w is linear independent.

Proof Let $U \subset V = \operatorname{span}(v_1, \ldots, v_p)$.

Let us build a linear independent list $\, \subset U$.

Lemma. If a list $w_1, \ldots, w_n \subset U$ is linear independent, but $U \neq \operatorname{span}(w_1, \ldots, w_n)$, then $\exists w \in U$ such that w_1, \ldots, w_n, w is linear independent.

Reformulation. A linear independent list can be increased, unless it spans.

Dual statement. A span of a vector space can be decreased, unless it is linearly independent.

2.27 **Definition** A **basis** of V is a list of vectors in V

2.28 Examples

• Standard base in \mathbb{F}^n : (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 0, 1)

2.28 Examples

- Standard base in \mathbb{F}^n : (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 0, 1)
- $1, z, \ldots, z^m$ is a basis in $\mathcal{P}_m(\mathbb{F})$.

2.28 Examples

- Standard base in \mathbb{F}^n : (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 0, 1)
- $1, z, \ldots, z^m$ is a basis in $\mathcal{P}_m(\mathbb{F})$.

2.29 Criterion for basis

2.28 Examples

- Standard base in \mathbb{F}^n : (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 0, 1)
- $1, z, \ldots, z^m$ is a basis in $\mathcal{P}_m(\mathbb{F})$.

2.29 Criterion for basis v_1, \ldots, v_n is a basis of $V \iff$

2.28 Examples

- Standard base in \mathbb{F}^n : (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 0, 1)
- $1, z, \ldots, z^m$ is a basis in $\mathcal{P}_m(\mathbb{F})$.

2.29 **Criterion for basis** v_1, \ldots, v_n is a basis of $V \iff \forall v \in V$

2.28 Examples

- Standard base in \mathbb{F}^n : (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 0, 1)
- $1, z, \ldots, z^m$ is a basis in $\mathcal{P}_m(\mathbb{F})$.

2.29 Criterion for basis v_1, \ldots, v_n is a basis of $V \iff \forall v \in V \exists \text{ unique } a_1, \ldots, a_n \in \mathbb{F}$

2.28 Examples

- Standard base in \mathbb{F}^n : (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 0, 1)
- $1, z, \ldots, z^m$ is a basis in $\mathcal{P}_m(\mathbb{F})$.

2.29 Criterion for basis v_1, \ldots, v_n is a basis of $V \iff \forall v \in V \exists$ unique $a_1, \ldots, a_n \in \mathbb{F}$ $v = a_1v_1 + \cdots + a_nv_n$ 2.31

Every spanning list in a vector space

can be reduced to a basis of the vector space.

2.31

Every spanning list in a vector space can be reduced to a basis of the vector space.

2.32 Every finite-dimensional vector space has a basis.

2.33

Every linearly independent list of vectors in a finite-dimensional vector space can be extended to a basis of the vector space.

Linear Algebra Lecture 5

2.33

Every linearly independent list of vectors in a finite-dimensional vector space can be extended to a basis of the vector space.

2.34 Every subspace of V is part of a direct sum equal to V.