Span

Let V be a vector space, $U \subset V$ a subset.

Span

Let V be a vector space, $U \subset V$ a subset.
Definition. span U is the set of all linear combinations of $v_{1}, \ldots, v_{m} \in U$

Span

Let V be a vector space, $U \subset V$ a subset.
Definition. span U is the set of all linear combinations of $v_{1}, \ldots, v_{m} \in U$
(with any m).

Let V be a vector space, $U \subset V$ a subset.
Definition. span U is the set of all linear combinations of $v_{1}, \ldots, v_{m} \in U$ (with any m).

Theorem. span U is the smallest subspace which contains U.

Let V be a vector space, $U \subset V$ a subset.
Definition. span U is the set of all linear combinations of $v_{1}, \ldots, v_{m} \in U$ (with any m).

Theorem. span U is the smallest subspace which contains U.

What to prove?

Let V be a vector space, $U \subset V$ a subset.
Definition. span U is the set of all linear combinations of $v_{1}, \ldots, v_{m} \in U$ (with any m).

Theorem. span U is the smallest subspace which contains U.

What to prove?
span U is a subspace.

Let V be a vector space, $U \subset V$ a subset.
Definition. span U is the set of all linear combinations of $v_{1}, \ldots, v_{m} \in U$ (with any m).

Theorem. span U is the smallest subspace which contains U.

What to prove?
span U is a subspace.
span U is the smallest among subspaces.

Let V be a vector space, $U \subset V$ a subset.
Definition. span U is the set of all linear combinations of $v_{1}, \ldots, v_{m} \in U$

Theorem. span U is the smallest subspace which contains U.

What to prove?
span U is a subspace.
span U is the smallest among subspaces.

Theorem. span U is the intersection of all subspaces which contain U.

Let V be a vector space, $U \subset V$ a subset.
Definition. span U is the set of all linear combinations of $v_{1}, \ldots, v_{m} \in U$

Theorem. span U is the smallest subspace which contains U.

What to prove?
span U is a subspace.
span U is the smallest among subspaces.

Theorem. span U is the intersection of all subspaces which contain U.
Is the intersection of subspaces a subspace?

Linear dependence/independence

Let V be a vector space, $v_{1}, \ldots, v_{m} \in V$ be a list of vectors.

Linear dependence/independence

Let V be a vector space, $v_{1}, \ldots, v_{m} \in V$ be a list of vectors.
Definition. $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)=\left\{a_{1} v_{1}+\cdots+a_{m} v_{m} \mid a_{1}, \ldots, a_{m} \in \mathbb{F}\right\}$

Linear dependence/independence

Let V be a vector space, $v_{1}, \ldots, v_{m} \in V$ be a list of vectors.
Definition. $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)=\left\{a_{1} v_{1}+\cdots+a_{m} v_{m} \mid a_{1}, \ldots, a_{m} \in \mathbb{F}\right\}$

Definition. A vector $v \in V$ linearly depends of v_{1}, \ldots, v_{m}

$$
\text { if } v \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right) \text {. }
$$

Let V be a vector space, $v_{1}, \ldots, v_{m} \in V$ be a list of vectors.
Definition. $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)=\left\{a_{1} v_{1}+\cdots+a_{m} v_{m} \mid a_{1}, \ldots, a_{m} \in \mathbb{F}\right\}$

Definition. A vector $v \in V$ linearly depends of v_{1}, \ldots, v_{m}

$$
\text { if } v \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)
$$

$v_{1}, \ldots, v_{m} \in V$ are called linearly independent if

Let V be a vector space, $v_{1}, \ldots, v_{m} \in V$ be a list of vectors.
Definition. $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)=\left\{a_{1} v_{1}+\cdots+a_{m} v_{m} \mid a_{1}, \ldots, a_{m} \in \mathbb{F}\right\}$

Definition. A vector $v \in V$ linearly depends of v_{1}, \ldots, v_{m}

$$
\text { if } v \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)
$$

$v_{1}, \ldots, v_{m} \in V$ are called linearly independent if
none of v_{1}, \ldots, v_{m} linearly depends on the others.

Let V be a vector space, $v_{1}, \ldots, v_{m} \in V$ be a list of vectors.
Definition. $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)=\left\{a_{1} v_{1}+\cdots+a_{m} v_{m} \mid a_{1}, \ldots, a_{m} \in \mathbb{F}\right\}$

Definition. A vector $v \in V$ linearly depends of v_{1}, \ldots, v_{m}

$$
\text { if } v \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)
$$

$v_{1}, \ldots, v_{m} \in V$ are called linearly independent if
none of v_{1}, \ldots, v_{m} linearly depends on the others.
2.17 (More symmetric) definition List $v_{1}, \ldots, v_{m} \in V$ is linearly independent if

$$
a_{1} v_{1}+\cdots+a_{m} v_{m}=0 \quad \Longrightarrow \quad a_{1}=\cdots=a_{m}=0
$$

Linear Dependence Lemma

Linear Dependence Lemma

2.21 Linear Dependence Lemma
 List $v_{1}, \ldots, v_{m} \in V$ is linearly dependent

Linear Dependence Lemma

2.21 Linear Dependence Lemma
 List $v_{1}, \ldots, v_{m} \in V$ is linearly dependent
 $$
\Longleftrightarrow \quad \begin{array}{r} \exists j \in\{1,2, \ldots, m\}: \\ v_{j} \in \operatorname{span}\left(v_{1}, \ldots, v_{j-1}\right) . \end{array}
$$

Linear Dependence Lemma

2.21 Linear Dependence Lemma
 List $v_{1}, \ldots, v_{m} \in V$ is linearly dependent $\Longleftrightarrow \exists j \in\{1,2, \ldots, m\}$:
 $v_{j} \in \operatorname{span}\left(v_{1}, \ldots, v_{j-1}\right)$.

List $v_{1}, \ldots, v_{m} \in V$ is linearly dependent $\Longleftrightarrow \exists$ a proper sublist $v_{k_{1}}, \ldots, v_{k_{l}}$ with the same span.

Independent \leq spanning

In a finite-dimensional space,

Independent \leq spanning

In a finite-dimensional space,
the length of every linearly independent list of vectors
the length of every spanning list of vectors

Independent \leq spanning

In a finite-dimensional space,
the length of every linearly independent list of vectors
the length of every spanning list of vectors

Proof Let u_{1}, \ldots, u_{p} is linearly independent in V,

Independent \leq spanning

In a finite-dimensional space,
the length of every linearly independent list of vectors
the length of every
spanning list of vectors

Proof Let u_{1}, \ldots, u_{p} is linearly independent in V, and $V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$.

Independent \leq spanning

In a finite-dimensional space,
the length of every linearly independent list of vectors
the length of every
spanning list of vectors

Proof Let u_{1}, \ldots, u_{p} is linearly independent in V, and $V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$.
Prove: $p \leq q$.

Independent \leq spanning

In a finite-dimensional space,
the length of every linearly independent list of vectors
the length of every
spanning list of vectors

Proof Let u_{1}, \ldots, u_{p} is linearly independent in V, and $V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$. Prove: $p \leq q$. Plan:

Independent \leq spanning

In a finite-dimensional space,
the length of every linearly independent list of vectors
the length of every
spanning list of vectors

Proof Let u_{1}, \ldots, u_{p} is linearly independent in V, and $V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$.
Prove: $p \leq q$. Plan: build up a list of length q

Independent \leq spanning

In a finite-dimensional space,

$$
\begin{aligned}
& \text { the length of every linearly } \quad \leq \quad \begin{array}{l}
\text { the length of every } \\
\text { independent list of vectors }
\end{array} \quad \begin{array}{l}
\text { spanning list of vectors }
\end{array}
\end{aligned}
$$

Proof Let u_{1}, \ldots, u_{p} is linearly independent in V, and $V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_{i} for u_{j}.

Independent \leq spanning

In a finite-dimensional space,

$$
\begin{aligned}
& \text { the length of every linearly } \quad \leq \quad \begin{array}{l}
\text { the length of every } \\
\text { independent list of vectors }
\end{array} \quad \begin{array}{l}
\text { spanning list of vectors }
\end{array}
\end{aligned}
$$

Proof Let u_{1}, \ldots, u_{p} is linearly independent in V, and $V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_{i} for u_{j}.
w_{1}, \ldots, w_{q}

Independent \leq spanning

In a finite-dimensional space,
the length of every linearly independent list of vectors
the length of every
spanning list of vectors

Proof Let u_{1}, \ldots, u_{p} is linearly independent in V, and $V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_{i} for u_{j}.
$w_{1}, \ldots, w_{q} \rightsquigarrow$

Independent \leq spanning

In a finite-dimensional space,

$$
\begin{aligned}
& \text { the length of every linearly } \quad \leq \quad \begin{array}{l}
\text { the length of every } \\
\text { independent list of vectors }
\end{array} \quad \begin{array}{l}
\text { spanning list of vectors }
\end{array}
\end{aligned}
$$

Proof Let u_{1}, \ldots, u_{p} is linearly independent in V, and $V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_{i} for u_{j}.
$w_{1}, \ldots, w_{q} \rightsquigarrow u_{1}, w_{1}, \ldots, w_{q}$

Independent \leq spanning

In a finite-dimensional space,

$$
\begin{aligned}
& \text { the length of every linearly } \quad \leq \quad \begin{array}{l}
\text { the length of every } \\
\text { independent list of vectors }
\end{array} \quad \begin{array}{l}
\text { spanning list of vectors }
\end{array}
\end{aligned}
$$

Proof Let u_{1}, \ldots, u_{p} is linearly independent in V, and $V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_{i} for u_{j}.
$w_{1}, \ldots, w_{q} \rightsquigarrow u_{1}, w_{1}, \ldots, w_{q}$
$u_{1}, w_{1}, \ldots, w_{q}$ is linear dependent as $u_{1} \in V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$

Independent \leq spanning

In a finite-dimensional space,

$$
\begin{aligned}
& \text { the length of every linearly } \quad \leq \quad \begin{array}{l}
\text { the length of every } \\
\text { independent list of vectors }
\end{array} \quad \begin{array}{l}
\text { spanning list of vectors }
\end{array}
\end{aligned}
$$

Proof Let u_{1}, \ldots, u_{p} is linearly independent in V, and $V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_{i} for u_{j}.
$w_{1}, \ldots, w_{q} \rightsquigarrow u_{1}, w_{1}, \ldots, w_{q}$
$u_{1}, w_{1}, \ldots, w_{q}$ is linear dependent as $u_{1} \in V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$
$\exists j: w_{j} \in \operatorname{span}\left(u_{1}, w_{1}, \ldots, w_{j-1}\right) \quad$ by 2.21

Independent \leq spanning

In a finite-dimensional space,

$$
\begin{aligned}
& \text { the length of every linearly } \quad \leq \quad \begin{array}{l}
\text { the length of every } \\
\text { independent list of vectors }
\end{array} \quad \begin{array}{l}
\text { spanning list of vectors }
\end{array}
\end{aligned}
$$

Proof Let u_{1}, \ldots, u_{p} is linearly independent in V, and $V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_{i} for u_{j}.
$w_{1}, \ldots, w_{q} \rightsquigarrow u_{1}, w_{1}, \ldots, w_{q}$
$u_{1}, w_{1}, \ldots, w_{q}$ is linear dependent as $u_{1} \in V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$
$\exists j: w_{j} \in \operatorname{span}\left(u_{1}, w_{1}, \ldots, w_{j-1}\right) \quad$ by 2.21
Through w_{j} away from the list $u_{1}, w_{1}, \ldots, w_{q}$.

Independent \leq spanning

In a finite-dimensional space,

$$
\begin{aligned}
& \text { the length of every linearly } \\
& \text { independent list of vectors }
\end{aligned}
$$

Proof Let u_{1}, \ldots, u_{p} is linearly independent in V, and $V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$. Prove: $p \leq q$. Plan: build up a list of length q by gradual substituting w_{i} for u_{j}.
$w_{1}, \ldots, w_{q} \rightsquigarrow u_{1}, w_{1}, \ldots, w_{q}$
$u_{1}, w_{1}, \ldots, w_{q}$ is linear dependent as $u_{1} \in V=\operatorname{span}\left(w_{1}, \ldots, w_{q}\right)$
$\exists j: w_{j} \in \operatorname{span}\left(u_{1}, w_{1}, \ldots, w_{j-1}\right) \quad$ by 2.21
Through w_{j} away from the list $u_{1}, w_{1}, \ldots, w_{q}$.

Subspaces of a finite-dimensional space

2.26 A subspace of a finite-dimensional space is finite-dimensional.

Subspaces of a finite-dimensional space

2.26 A subspace of a finite-dimensional space is finite-dimensional.

$$
\text { Proof Let } U \subset V=\operatorname{span}\left(v_{1}, \ldots, v_{p}\right) \text {. }
$$

Subspaces of a finite-dimensional space

2.26 A subspace of a finite-dimensional space is finite-dimensional.

Proof Let $U \subset V=\operatorname{span}\left(v_{1}, \ldots, v_{p}\right)$.
Let us build a linear independent list $\subset U$.

Subspaces of a finite-dimensional space

2.26 A subspace of a finite-dimensional space is finite-dimensional.

Proof Let $U \subset V=\operatorname{span}\left(v_{1}, \ldots, v_{p}\right)$.
Let us build a linear independent list $\subset U$.
Lemma. If a list $w_{1}, \ldots, w_{n} \subset U$ is linear independent, but $U \neq \operatorname{span}\left(w_{1}, \ldots, w_{n}\right)$,

Subspaces of a finite-dimensional space

2.26 A subspace of a finite-dimensional space is finite-dimensional.

Proof Let $U \subset V=\operatorname{span}\left(v_{1}, \ldots, v_{p}\right)$.
Let us build a linear independent list $\subset U$.
Lemma. If a list $w_{1}, \ldots, w_{n} \subset U$ is linear independent, but $U \neq \operatorname{span}\left(w_{1}, \ldots, w_{n}\right)$, then $\exists w \in U$ such that w_{1}, \ldots, w_{n}, w is linear independent.

Subspaces of a finite-dimensional space

2.26 A subspace of a finite-dimensional space is finite-dimensional.

Proof Let $U \subset V=\operatorname{span}\left(v_{1}, \ldots, v_{p}\right)$.
Let us build a linear independent list $\subset U$.
Lemma. If a list $w_{1}, \ldots, w_{n} \subset U$ is linear independent, but $U \neq \operatorname{span}\left(w_{1}, \ldots, w_{n}\right)$, then $\exists w \in U$ such that w_{1}, \ldots, w_{n}, w is linear independent.

Reformulation. A linear independent list can be increased, unless it spans.

Subspaces of a finite-dimensional space

2.26 A subspace of a finite-dimensional space is finite-dimensional.

Proof Let $U \subset V=\operatorname{span}\left(v_{1}, \ldots, v_{p}\right)$.
Let us build a linear independent list $\subset U$.
Lemma. If a list $w_{1}, \ldots, w_{n} \subset U$ is linear independent, but $U \neq \operatorname{span}\left(w_{1}, \ldots, w_{n}\right)$, then $\exists w \in U$ such that w_{1}, \ldots, w_{n}, w is linear independent.

Subspaces of a finite-dimensional space

2.26 A subspace of a finite-dimensional space is finite-dimensional.

Proof Let $U \subset V=\operatorname{span}\left(v_{1}, \ldots, v_{p}\right)$.
Let us build a linear independent list $\subset U$.
Lemma. If a list $w_{1}, \ldots, w_{n} \subset U$ is linear independent, but $U \neq \operatorname{span}\left(w_{1}, \ldots, w_{n}\right)$, then $\exists w \in U$ such that w_{1}, \ldots, w_{n}, w is linear independent.

Subspaces of a finite-dimensional space

2.26 A subspace of a finite-dimensional space is finite-dimensional.

Proof Let $U \subset V=\operatorname{span}\left(v_{1}, \ldots, v_{p}\right)$.
Let us build a linear independent list $\subset U$.
Lemma. If a list $w_{1}, \ldots, w_{n} \subset U$ is linear independent, but $U \neq \operatorname{span}\left(w_{1}, \ldots, w_{n}\right)$, then $\exists w \in U$ such that w_{1}, \ldots, w_{n}, w is linear independent.

Reformulation. A linear independent list can be increased, unless it spans.

Dual statement. A span of a vector space can be decreased, unless it is linearly independent.
2.27 Definition A basis of V is a list of vectors in V

Bases

2.27 Definition A basis of V is a list of vectors in V that is linearly independent and spans V.

2.27 Definition A basis of V is a list of vectors in V that is linearly independent and spans V.

2.28 Examples

- Standard base in $\mathbb{F}^{n}:(1,0, \ldots, 0),(0,1,0 \ldots, 0), \ldots,(0,0, \ldots, 0,1)$
2.27 Definition A basis of V is a list of vectors in V that is linearly independent and spans V.

2.28 Examples

- Standard base in $\mathbb{F}^{n}:(1,0, \ldots, 0),(0,1,0 \ldots, 0), \ldots,(0,0, \ldots, 0,1)$
- $1, z, \ldots, z^{m}$ is a basis in $\mathcal{P}_{m}(\mathbb{F})$.
2.27 Definition A basis of V is a list of vectors in V that is linearly independent and spans V.

2.28 Examples

- Standard base in $\mathbb{F}^{n}:(1,0, \ldots, 0),(0,1,0 \ldots, 0), \ldots,(0,0, \ldots, 0,1)$
- $1, z, \ldots, z^{m}$ is a basis in $\mathcal{P}_{m}(\mathbb{F})$.
2.29 Criterion for basis
2.27 Definition A basis of V is a list of vectors in V that is linearly independent and spans V.

2.28 Examples

- Standard base in $\mathbb{F}^{n}:(1,0, \ldots, 0),(0,1,0 \ldots, 0), \ldots,(0,0, \ldots, 0,1)$
- $1, z, \ldots, z^{m}$ is a basis in $\mathcal{P}_{m}(\mathbb{F})$.
2.29 Criterion for basis
v_{1}, \ldots, v_{n} is a basis of V
2.27 Definition A basis of V is a list of vectors in V that is linearly independent and spans V.

2.28 Examples

- Standard base in $\mathbb{F}^{n}:(1,0, \ldots, 0),(0,1,0 \ldots, 0), \ldots,(0,0, \ldots, 0,1)$
- $1, z, \ldots, z^{m}$ is a basis in $\mathcal{P}_{m}(\mathbb{F})$.
2.29 Criterion for basis
v_{1}, \ldots, v_{n} is a basis of $V \Longleftrightarrow \forall v \in V$
2.27 Definition A basis of V is a list of vectors in V that is linearly independent and spans V.

2.28 Examples

- Standard base in $\mathbb{F}^{n}:(1,0, \ldots, 0),(0,1,0 \ldots, 0), \ldots,(0,0, \ldots, 0,1)$
- $1, z, \ldots, z^{m}$ is a basis in $\mathcal{P}_{m}(\mathbb{F})$.
2.29 Criterion for basis
v_{1}, \ldots, v_{n} is a basis of $V \Longleftrightarrow \forall v \in V \exists$ unique $a_{1}, \ldots, a_{n} \in \mathbb{F}$
2.27 Definition A basis of V is a list of vectors in V that is linearly independent and spans V.

2.28 Examples

- Standard base in $\mathbb{F}^{n}:(1,0, \ldots, 0),(0,1,0 \ldots, 0), \ldots,(0,0, \ldots, 0,1)$
- $1, z, \ldots, z^{m}$ is a basis in $\mathcal{P}_{m}(\mathbb{F})$.
2.29 Criterion for basis
v_{1}, \ldots, v_{n} is a basis of $V \Longleftrightarrow \forall v \in V \exists$ unique $a_{1}, \ldots, a_{n} \in \mathbb{F}$

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

Spanning list contains a basis

Spanning list contains a basis

2.31

Every spanning list in a vector space
can be reduced to a basis of the vector space.

Spanning list contains a basis

2.31

Every spanning list in a vector space
can be reduced to a basis of the vector space.
2.32 Every finite-dimensional vector space has a basis.

Linearly independent list extends to a basis

Linearly independent list extends to a basis

2.33

Every linearly independent list of vectors in a finite-dimensional vector space can be extended to a basis of the vector space.

Linearly independent list extends to a basis
2.33

Every linearly independent list of vectors in a finite-dimensional vector space can be extended to a basis of the vector space.
2.34 Every subspace of V is part of a direct sum equal to V.

