MAT 200 Logic, Language and Proof
Homework 3
due $9 / 16$

Name \qquad
Score \qquad

1. $(6 \mathrm{pt})$

Using only $\varepsilon-\delta$ definition of limit verify if $\lim _{x \rightarrow 3}(2 x-1)=5$. Provide a graphical illustration.

Using only $\varepsilon-\delta$ definition of limit verify if $\lim _{x \rightarrow 2}(3 x+1) \neq 5$. Provide a graphical illustration.
2. (6pt)

Adjust $\varepsilon-\delta$ definition of limit of a function to the situation when x tends to infinity, that is, explain what it means that $\lim _{x \rightarrow \infty} f(x)=L$, where $L \in \mathbb{R}$. Provide a graphical illustration.
3. (6pt)

Below the definition of bounded function is given.
A function f is said to be bounded on a set A if there exists a number M such that the absolute value of $f(x)$ is less than or equal to M for each x in A.
a) Write the definition in a symbolic form.
b) Explain what it means that a function is not bounded on a set (both in words and in symbols).
c) Give an example of bounded function and an example of unbounded (that is, not bounded) function. (Do not forget to specify a set where the functions are bounded/unbounded.) Explain (using the definition above) why your functions are bounded/unbounded.
4. (6pt)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Define what it means that f is periodic. Write the definition in symbolic form. What is a period of a periodic function? How many periods may a periodic function have? Explain!

