MAT 200 Logic, Language and Proof Homework 2

Name \qquad
Score \qquad

1. (8pt)

Let \mathbb{N} be the set of positive integers. Determine the truth value of the following statements. Justify your answers.
(1) $\forall p \in \mathbb{N} \forall q \in \mathbb{N} p \leq q$
(2) $\exists p \exists q \in \mathbb{N} p \leq q$
(3) $\forall p \in \mathbb{N} \exists q \in \mathbb{N} p \leq q$
(4) $\exists p \in \mathbb{N} \forall q \in \mathbb{N} p \leq q$
(5) $\exists p \in \mathbb{N} \forall q \in \mathbb{N} p<q$
(6) $\forall q \in \mathbb{N} \exists p \in \mathbb{N} p \leq q$
(7) $\forall q \in \mathbb{N} \exists p \in \mathbb{N} p<q$
(8) $\exists q \in \mathbb{N} \forall p \in \mathbb{N} p \leq q$
2. (6pt)

Construct all possible quantified sentences using the predicate $y<1-|x|$ (the universe is \mathbb{R}). For each of the sentences, give the truth value.
3. $(4 \mathrm{pt})$

Show on the coordinate line all the values of variable x for which the implication $(x \in[0,3]) \Longrightarrow(x \in[2,7])$ holds true.
4. (3pt)

State in affirmative terms (without \neg) and give the truth value.
(1) $\neg\left(\exists x x^{2}<0\right)$
(2) $\neg\left(\forall x \exists y x^{2}+y^{2} \leq 1\right)$
(3) $\neg\left(\exists y \forall x x^{2}+y^{2}>3\right)$
5. (4pt)

Give definition of even function defined on \mathbb{R}.

Give definition of odd function defined on \mathbb{R}.

Using these definitions explain which functions are neither even, nor odd.

On the basis of your definitions explain which of the following functions is even, odd or neither: $f(x)=3 x^{2}+1, g(x)=x^{3}+3 x, \quad h(x)=x^{2}-x$.

