MAT 200 Spring 2019 Midterm

Name:
ID:

There are four problems with indicated values.
Show your work. Continue writing on the back of the pages if needed.
Do not tear-off any page(s).
No calculators, no cellphones, etc.

1	26	
2	24	
3	25	
4	25	
Total	100	

Name: \qquad Problem 1: \qquad /26

Problem 1 (26 points) In each of the following statements, circle T if it is true and F if it is false. There is no need to show your work in this problem.

T F (1) The statement 'For real numbers a, if a is non-positive then $f(a) \neq 0$.' is the negation of the statement 'For real numbers a, if $f(a)=0$ then a is negative.'

T F (2) The statement 'For some non-positive real number $a, f(a)=0$. ' is the negation of the statement 'For real numbers a, if $f(a)=0$ then a is negative.'

T F (3) The statements ' $($ not $P) \Longrightarrow Q^{\prime}$ and ' $(\operatorname{not} ~ Q) \Longrightarrow P$ ' are equivalent.
T F (4) The statements ' P or Q ' and '(not $P) \Longrightarrow Q$ ' are equivalent.
T F (5) Let A, B, and C be sets. Then $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
T F (6) Let A, B, C, and D be sets. Then $(A \cap B) \cup(C \cap D)=(A \cup C) \cap(A \cup D) \cap(B \cup C) \cap(B \cup D)$.
T F (7) There is no such function $f:[0,2] \rightarrow \mathbb{Z}$ satisfying the following property: for all $\epsilon>0$ there exists $\delta>0$ such that for all $x \in(1-\delta, 1+\delta) \cap[0,2],|f(x)-f(1)|<\epsilon$.

T F (8) For all sets X and $Y, X \times Y=Y \times X$.

T F (9) There exist sets X and Y such that $X \times Y=Y \times X$.
T F (10) $\{f: \mathbb{R} \rightarrow X \mid X$ is a set and $f(x)=f(-x)$ for each $x \in(0,+\infty)\}$ is NOT a set.
T $\mathbf{F}(11)\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(x)=f(-x)$ for each $x \in(0,+\infty)\}$ is a set.
T $\mathbf{F}(12)\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(x) \neq f(x)$ for each $x \in \mathbb{R}\}$ is NOT a set.
T F (13) Given $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Then $f \circ g$ is a function whose domain is X.

Name: \qquad Problem 2: \qquad /24

Problem 2 (24 points) Prove that for all $x, y \in \mathbb{R}, x<y \Longrightarrow x^{3}<y^{3}$.

Name: \qquad Problem 3: \qquad /25

Problem 3 (25 points) Prove for all integer n, n^{2} is even $\Longrightarrow n$ is even.

Name: \qquad Problem 4: \qquad $/ 25$

Problem 4 (25 points) Prove by induction on n that

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}
$$

for all positive integers n.

