Sample Final Exam Answers (Summer 2018)

1. We prove the proposition by induction on n. In the base case $n=1$, the given equation becomes $2^{1}=2^{2}-2$, which is true. For the inductive step, we assume that the proposition holds for $n=k$ for some $k \in \mathbb{N}$. We prove the case where $n=k+1$. Applying the inductive hypothesis, we have

$$
2^{1}+2^{2}+\cdots+2^{k}+2^{k+1}=\left(2^{k+1}-2\right)+2^{k+1}=2 \cdot 2^{k+1}-2=2^{k+2}-2 .
$$

This verifies the equation for $n=k+1$ and completes the inductive step.
2. (a) f is not injective since $f(0,1)=f(0,2)=0$.
(b) f is surjective since, for all $t \in \mathbb{R},(t, 1) \in \mathbb{R} \times \mathbb{R}_{>0} f(t, 1)=t$.
3. There are $6 \cdot 3 \cdot 5=90$ possible meals.
4. (a) False: take $r=0$ (or any $r<1$)
(b) False: let $r=0$. Then $r x=0 \in \mathbb{Q}$ for all $x \in \mathbb{R}$
(c) True: let $y=-x$
5. We start with the base case $n=1$. Then we have $F_{2}^{2}+F_{1} F_{3}=1-1 \cdot 2=(-1)^{1}$. This verifies the base case.

Next, assume the proposition is true for $n=k$ for some $k \in \mathbb{N}$. Then

$$
\begin{aligned}
F_{k+2}^{2}-F_{k+1} F_{k+3} & =F_{k+2}^{2}-F_{k+1}\left(F_{k+1}+F_{k+2}\right) \\
& =F_{k+2}^{2}-F_{k+1}^{2}+F_{k+1} F_{k+2} \\
& =F_{k+2}^{2}-(-1)^{k}-F_{k} F_{k+2}+F_{k+1} F_{k+2}(\text { by the inductive hypothesis }) \\
& =F_{k+2}^{2}-(-1)^{k}-\left(F_{k+2}-F_{k+1}\right) F_{k+2}-F_{k+1} F_{k+2} \\
& =F_{k+2}^{2}-(-1)^{k}-F_{k+2}^{2}+F_{k+1} F_{k+2}-F_{k+1} F_{k+2} \\
& =-(-1)^{k}=(-1)^{k+1} .
\end{aligned}
$$

This completes the inductive step. [Note: This is a more difficult problem. The key is to play around with the rule for the Fibonacci sequence $F_{n+1}=F_{n}+F_{n-1}$ until you can manipulate the left-hand side into $(-1)^{k+1}$. There are probably several ways to do this.]
6. There are 9 students taking all three classes. Let a be the number of students taking analysis and algebra, b the number of students taking algebra and topology, c the number of students taking topology and analysis, and d the number of students taking all three. Then we have $a+c+d=40-12=28$, $a+b+d=40-13=27, b+c+d=40-14=26$, and $a+b+c+d=75-12-13-14=36$ (it might help to make a Venn diagram). Subtracting each of the first three equations from the last gives, respectively, $b=8, c=9 . a=10$. From this, the last equation gives $d=9$.
7. Let X be a subset of $Y=\{1,2, \ldots, 10\}$ having cardinality 6 . Pair the elements in Y as $Y_{1}=\{1,10\}$, $Y_{2}=\{2,9\}, Y_{3}=\{3,8\}, Y_{4}=\{4,7\}, Y_{5}=\{5,6\}$. Since we are chosing six elements from the set $\{1,2, \ldots, 10\}$, and there are five pairs Y_{1}, \ldots, Y_{5}, the Pigeonhole Principle implies that two elements must come from the same pair Y_{j}. Then the two numbers in Y_{j} are in our set and sum to 11.
8. See p. 142 in the textbook.
9. Let $(a, b),(c, d),(e, f) \in \mathbb{R}^{2}$. First, since $a^{2}+b^{2}=a^{2}+b^{2}$, we have $(a, b) \sim(a, b)$. Thus \sim is reflexive. Next, if $a^{2}+b^{2}=c^{2}+d^{2}$, then $c^{2}+d^{2}=a^{2}+b^{2}$. Thus $(a, b) \sim(c, d)$ implies $(c, d) \sim(a, b)$, so \sim is symmetric. Finally, if $a^{2}+b^{2}=c^{2}+d^{2}$ and $c^{2}+d^{2}=e^{2}+f^{2}$, then $a^{2}+b^{2}=e^{2}+f^{2}$. Thus, $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$ imply that $(a, b) \sim(e, f)$. This shows that \sim is transitive.

The only element of \mathbb{R}^{2} equivalent to $(0,0)$ is $(0,0)$ itself, since $a^{2}+b^{2}=0$ implies $a=b=0$.
10. Observe that $12 \equiv 50 \bmod 19$. Thus the given equation is equivalent to $5 x \equiv 50 \bmod 19$. Since $\operatorname{gcd}(5,19)=1$, this equation is equivalent to $x \equiv 10 \bmod 19$. So $x=10+19 q$ for some $q \in \mathbb{Z}$.

