MAT 200 MIDTERM 3 SAMPLE QUESTIONS

1. We say that n is a perfect square if $n=k^{2}$ for some $k \in \mathbb{Z}$. Prove that if n is a perfect square then $n=4 q$ or $n=4 q+1$ for some $q \in \mathbb{Z}$.
[You may use the fact that m is an odd number if and only if $m=2 l+1$ for some $l \in \mathbb{Z}$.
2. Let $m \geq 1$ be an integer. Prove that if $a \equiv b \bmod m$, then for all $c \in \mathbb{Z}$ we have $a+c \equiv b+c \bmod m$.
3.

(a) Use the Euclidean algorithm to find the gcd of 23 and 107.
(b) Can you find integers m, n such that $23 m+107 n=1$? If not, why not?
(c) Can you find integers m, n such that $23 m+107 n=3$? If not, why not?
(d) Find all x such that $23 x \equiv 3 \bmod 107$
4.
(a) State the division theorem and prove its uniqueness part.
(b) Use the Euclidean algorithm to find the greatest common divisor of 136 and 232.
(c) Find integers m, n such that $16=136 m+232 n$.
5. What is the last digit of 2^{1000} ? Explain your answer.
[You may use properties of the congruence modulo some non-zero integer number.]
6. Prove that $7^{19}+6^{19}$ is divisible by 13 .

