Midterm 3 Key

1. (a) \mathbb{Z}, \mathbb{Q} and $\mathbb{Z} \times \mathbb{Z}$ are countable; \mathbb{R} is not
(b) $17 / 99($ since $17=. \overline{17} \cdot 100-. \overline{17}=. \overline{17} \cdot 99)$
(c) $q=-2$ and $r=4(-10=(-2) \cdot 7+4)$
(d) $132=54 \cdot 2+24 ; 54=2 \cdot 24+6 ; 6$ divides 24 . So $\operatorname{gcd}(132,54)=6$.
(e) Saturday $(365 \equiv 1 \bmod 7)$
(f) $x=5$. Note that $8 \equiv 35 \bmod 9$. Since $\operatorname{gcd}(7,9)=1$, we can then divide by 7 to get $x \equiv 5 \bmod 9$.
(g) $[1]_{12},[5]_{12},[7]_{12},[11]_{12}$, since these numbers are relatively prime to 12.
2. See p. 178-179 in the textbook.
3. $x \equiv 14 \bmod 41$. First, apply the Euclidean algorithm:

$$
\begin{aligned}
& 164=1 \cdot 164+0 \cdot 60 \\
& (-2) \quad 60=0 \cdot 164+1 \cdot 60 \\
& (-1) \quad 44=1 \cdot 164+(-2) \cdot 60 \\
& (-2) \quad 16=(-1) \cdot 164+3 \cdot 60 \\
& (-1) \quad 12=3 \cdot 164+(-8) \cdot 60 \\
& (-3) \quad 4=(-4) \cdot 164+11 \cdot 60
\end{aligned}
$$

This shows that $\operatorname{gcd}(164,60)=4$, and (multiplying both sides by 5) gives the individual solution $x=55$. Observe that $164 / 4=41$, and that $55 \equiv 14 \bmod 41$. So the general solution is $x \equiv 14 \bmod 41$, or $x=14+41 q, q \in \mathbb{Z}$.
4. See p. 237 in the textbook.

