MAT 322 Analysis in Several Dimensions Midterm II Spring 2015

Name:_____

I.D.:

No calculators, computers, tablets or smartphones can be used on this test. Answer each question in the space provided and on the reverse side of the sheets. Write carefully and show your work: no credit will be given for unjustified answers.

1	2	3	4	5	EC	SUM
$20 \mathrm{~pts}$	20 pts	$20 \mathrm{~pts}$	$20 \mathrm{~pts}$	20 pts	$20 \mathrm{~pts}$	120 pts

1. (a) (5 points) Find the area of the region in \mathbb{R}^2 bounded by the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

(b) (15 points) Let A be the portion of the first quadrant in \mathbb{R}^2 lying between the hyperbolas xy = 1 and xy = 2 and the two straight lines y = x and y = 4x. Evaluate

$$\int_{A} x^2 y^3 dx dy.$$

Hint: Set x = u/v and y = uv.

2. (a) (7 points) Let $\mathcal{P} = \mathcal{P}(\mathbf{a}, \mathbf{b})$ be a parallelogram in \mathbb{R}^n spanned by the vectors

 $\mathbf{a} = a_1 \mathbf{e}_1 + \dots + a_n \mathbf{e}_n$ and $\mathbf{b} = b_1 \mathbf{e}_1 + \dots + b_n \mathbf{e}_n$,

where $\mathbf{e}_1, \ldots, \mathbf{e}_n$ is the standard basis in \mathbb{R}^n . Find $V(\mathcal{P})$. (b) (13 points) Let A be open in \mathbb{R}^2 and $f \in C^1(A, \mathbb{R})$. Let Y be the graph of f in \mathbb{R}^3 — a parameterized manifold in \mathbb{R}^3 with $\alpha(x,y) = (x,y,f(x,y))$ for $(x,y) \in A$. Express v(Y)as an integral.

 $\mathbf{2}$

- **3.** (a) (6 points) Let $\alpha : \mathbb{R} \to \mathbb{R}^2$ be the map $\alpha(x) = (x, x^3)$. Show that $M = \alpha(\mathbb{R})$ is a 1-manifold in \mathbb{R}^2 covered by a single coordinate patch α .
 - (b) (7 points) Let $\alpha : \mathbb{R}^2 \to \mathbb{R}^3$ be the map

 $\alpha(x,y) = (x(x^2 + y^2), y(x^2 + y^2), x^2 + y^2).$

Is $M = \alpha(\mathbb{R}^2)$ a 2-manifold in \mathbb{R}^3 with a coordinate patch α ?

(c) (7 points) Repeat part (b) for the map

$$\alpha(x,y) = (x,y,x^2 + y^2).$$

- 4. (a) (5 points) Let \mathcal{O} be open in \mathbb{R}^n and let $f \in C^r(\mathcal{O}, \mathbb{R})$. Denote by M the set of points in \mathbb{R}^n for which $f(\mathbf{x}) = 0$ and by N — the set of points for which $f(\mathbf{x}) \ge 0$. Assuming that M is non-empty, state a condition on f which guarantees that N is an n-manifold in \mathbb{R}^n and $M = \partial N$.
 - (b) (10 points) Let $B^n(a) = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\| \le a\}$ be the closed ball of radius a in \mathbb{R}^n and $S^{n-1}(a) = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\| = a\}$ — the (n-1)-sphere in \mathbb{R}^n . Prove that the ball $B^n(a)$ is an n-manifold in \mathbb{R}^n and $\partial B^n(a) = S^{n-1}(a)$. *Hint:* Use part (a).
 - (c) (5 points) Show that $S^{n-1}_+(a) = S^{n-1}(a) \cap \mathbb{H}^n$ is an (n-1)-manifold in \mathbb{R}^n and find its boundary.

4

5. (a) (5 points) Determine which of the following are 2-tensors on \mathbb{R}^3 and express those who are in terms of elementary 2-tensors $\phi_{i,j} = \phi_i \otimes \phi_j$ corresponding to the standard basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ on \mathbb{R}^3 :

$$f(\mathbf{x}, \mathbf{y}) = x_1 x_2 + x_2 y_1 + x_3 y_2,$$

$$g(\mathbf{x}, \mathbf{y}) = x_1 y_1 + x_2 y_2 + 1$$

$$g(\mathbf{x}, \mathbf{y}) = x_1 y_1 + x_2 y_2 + 1,$$

- $h(\mathbf{x}, \mathbf{y}) = x_1 y_1 + x_1 y_3 + 10 x_2 y_3 2 x_3 y_1 + x_3 y_3.$
- (b) (5 points) Let f and g be the following tensors on \mathbb{R}^3 : $f(\mathbf{x}, \mathbf{y}, \mathbf{z}) = x_1 y_2 z_3$ and $g = \phi_{1,1} - \phi_{1,3} + \phi_{2,3}$. Express $f \otimes g$ as a linear combination of elementary tensors and as a multilinear function $(f \otimes g)(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{v})$.
- (c) (5 points) Determine which of the following are alternating 2-tensors on \mathbb{R}^3 and express those who are in terms of elementary alternating tensors :

$$f(\mathbf{x}, \mathbf{y}) = x_1 y_3 - x_1 y_2 + x_2 y_1,$$

$$g(\mathbf{x}, \mathbf{y}) = x_1 y_3 - x_3 y_1,$$

$$h(\mathbf{x}, \mathbf{y}) = x_1^2 y_2^2 - x_2^2 y_1^2.$$

(d) (5 points) Let

 $f = \phi_1 + \phi_2 + \phi_3$ and $g = \phi_1 \wedge \phi_2 + \phi_1 \wedge \phi_3 + \phi_2 \wedge \phi_3$

be alternating tensors on \mathbb{R}^3 . Find $f \wedge g$ as a linear combination of elementary alternating tensors and as a multilinear function $(f \wedge g)(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

- **Extra Credit** (a) (5 points) A k-tensor T on a vector space V is called symmetric, if $T^{\sigma} = T$ for all permutations $\sigma \in S_k$. Prove that a 2-tensor T is symmetric if and only if Alt T = 0.
 - (b) (5 points) Prove that any 2-tensor F on V can be uniquely written as

F = S + A,

where S is a symmetric 2-tensor, and A is an alternating 2-tensor.

(c) (10 points) Let A be open in \mathbb{R}^n and $f \in C^1(A, \mathbb{R})$. Let Y be the graph of f in \mathbb{R}^{n+1} — a parameterized manifold in \mathbb{R}^{n+1} with $\alpha(\mathbf{x}) = (\mathbf{x}, f(\mathbf{x})), \mathbf{x} \in A$. Express v(Y) as an integral. (This is extension of Problem 2 (b) to general n).

6