MAT 322 Analysis in Several Dimensions Midterm II Spring 2015

Name: \qquad
I.D.:

No calculators, computers, tablets or smartphones can be used on this test. Answer each question in the space provided and on the reverse side of the sheets. Write carefully and show your work: no credit will be given for unjustified answers.

1	2	3	4	5	EC	SUM
20 pts	120 pts					

1. (a) (5 points) Find the area of the region in \mathbb{R}^{2} bounded by the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .
$$

(b) (15 points) Let A be the portion of the first quadrant in \mathbb{R}^{2} lying between the hyperbolas $x y=1$ and $x y=2$ and the two straight lines $y=x$ and $y=4 x$. Evaluate

$$
\int_{A} x^{2} y^{3} d x d y
$$

Hint: Set $x=u / v$ and $y=u v$.
2. (a) (7 points) Let $\mathcal{P}=\mathcal{P}(\mathbf{a}, \mathbf{b})$ be a parallelogram in \mathbb{R}^{n} spanned by the vectors
$\mathbf{a}=a_{1} \mathbf{e}_{1}+\cdots+a_{n} \mathbf{e}_{n} \quad$ and $\quad \mathbf{b}=b_{1} \mathbf{e}_{1}+\cdots+b_{n} \mathbf{e}_{n}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ is the standard basis in \mathbb{R}^{n}. Find $V(\mathcal{P})$.
(b) (13 points) Let A be open in \mathbb{R}^{2} and $f \in C^{1}(A, \mathbb{R})$. Let Y be the graph of f in \mathbb{R}^{3} - a parameterized manifold in \mathbb{R}^{3} with $\alpha(x, y)=(x, y, f(x, y))$ for $(x, y) \in A$. Express $v(Y)$ as an integral.
3. (a) (6 points) Let $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be the map $\alpha(x)=\left(x, x^{3}\right)$. Show that $M=\alpha(\mathbb{R})$ is a 1 -manifold in \mathbb{R}^{2} covered by a single coordinate patch α.
(b) (7 points) Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the map

$$
\alpha(x, y)=\left(x\left(x^{2}+y^{2}\right), y\left(x^{2}+y^{2}\right), x^{2}+y^{2}\right) .
$$

Is $M=\alpha\left(\mathbb{R}^{2}\right)$ a 2 -manifold in \mathbb{R}^{3} with a coordinate patch α ?
(c) (7 points) Repeat part (b) for the map

$$
\alpha(x, y)=\left(x, y, x^{2}+y^{2}\right) .
$$

4. (a) (5 points) Let \mathcal{O} be open in \mathbb{R}^{n} and let $f \in C^{r}(\mathcal{O}, \mathbb{R})$. Denote by M the set of points in \mathbb{R}^{n} for which $f(\mathbf{x})=0$ and by N - the set of points for which $f(\mathbf{x}) \geq 0$. Assuming that M is non-empty, state a condition on f which guarantees that N is an n-manifold in \mathbb{R}^{n} and $M=\partial N$.
(b) (10 points) Let $B^{n}(a)=\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\| \leq a\right\}$ be the closed ball of radius a in \mathbb{R}^{n} and $S^{n-1}(a)=\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\|=a\right\}$ - the $(n-1)$-sphere in \mathbb{R}^{n}. Prove that the ball $B^{n}(a)$ is an n-manifold in \mathbb{R}^{n} and $\partial B^{n}(a)=S^{n-1}(a)$.
Hint: Use part (a).
(c) (5 points) Show that $S_{+}^{n-1}(a)=S^{n-1}(a) \cap \mathbb{H}^{n}$ is an $(n-1)$ manifold in \mathbb{R}^{n} and find its boundary.
5. (a) (5 points) Determine which of the following are 2-tensors on \mathbb{R}^{3} and express those who are in terms of elementary 2-tensors $\phi_{i, j}=\phi_{i} \otimes \phi_{j}$ corresponding to the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ on \mathbb{R}^{3} :
$f(\mathbf{x}, \mathbf{y})=x_{1} x_{2}+x_{2} y_{1}+x_{3} y_{2}$,
$g(\mathbf{x}, \mathbf{y})=x_{1} y_{1}+x_{2} y_{2}+1$,
$h(\mathbf{x}, \mathbf{y})=x_{1} y_{1}+x_{1} y_{3}+10 x_{2} y_{3}-2 x_{3} y_{1}+x_{3} y_{3}$.
(b) (5 points) Let f and g be the following tensors on \mathbb{R}^{3} : $f(\mathbf{x}, \mathbf{y}, \mathbf{z})=x_{1} y_{2} z_{3}$ and $g=\phi_{1,1}-\phi_{1,3}+\phi_{2,3}$. Express $f \otimes g$ as a linear combination of elementary tensors and as a multilinear function $(f \otimes g)(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{v})$.
(c) (5 points) Determine which of the following are alternating 2-tensors on \mathbb{R}^{3} and express those who are in terms of elementary alternating tensors :

$$
\begin{aligned}
& f(\mathbf{x}, \mathbf{y})=x_{1} y_{3}-x_{1} y_{2}+x_{2} y_{1}, \\
& g(\mathbf{x}, \mathbf{y})=x_{1} y_{3}-x_{3} y_{1} \\
& h(\mathbf{x}, \mathbf{y})=x_{1}^{2} y_{2}^{2}-x_{2}^{2} y_{1}^{2}
\end{aligned}
$$

(d) (5 points) Let
$f=\phi_{1}+\phi_{2}+\phi_{3} \quad$ and $\quad g=\phi_{1} \wedge \phi_{2}+\phi_{1} \wedge \phi_{3}+\phi_{2} \wedge \phi_{3}$
be alternating tensors on \mathbb{R}^{3}. Find $f \wedge g$ as a linear combination of elementary alternating tensors and as a multilinear function $(f \wedge g)(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

Extra Credit (a) (5 points) A k-tensor T on a vector space V is called symmetric, if $T^{\sigma}=T$ for all permutations $\sigma \in S_{k}$. Prove that a 2-tensor T is symmetric if and only if $\operatorname{Alt} T=0$.
(b) (5 points) Prove that any 2-tensor F on V can be uniquely written as

$$
F=S+A
$$

where S is a symmetric 2 -tensor, and A is an alternating 2-tensor.
(c) (10 points) Let A be open in \mathbb{R}^{n} and $f \in C^{1}(A, \mathbb{R})$. Let Y be the graph of f in \mathbb{R}^{n+1} - a parameterized manifold in \mathbb{R}^{n+1} with $\alpha(\mathbf{x})=(\mathbf{x}, f(\mathbf{x})), \mathbf{x} \in A$. Express $v(Y)$ as an integral. (This is extension of Problem 2 (b) to general n).

