
Practice Exam 3 Key

Multiple choice:
1. F 2. F 3. T 4. T 5. T 6. T 7. F 8. F 9. T 10. T 11. T 12. F 13. F
Comments:

1. For this problem, it helps to write it out symbolically. The first statement is written as:
∀a ∈ R, a ≤ 0 =⇒ f(a) 6= 0. We can logically manipulate the negation of the first statement
in this way:

− (∀a ∈ R, a ≤ 0 =⇒ f(a) 6= 0)

⇐⇒ ∃a ∈ R,−(a ≤ 0 =⇒ f(a) 6= 0)

⇐⇒ ∃a ∈ R, a ≤ 0 and f(a) = 0

Notice how we handled the negation of the conditional (=⇒) in the second line. At this point,
it should be apparent that the final line is different than the second statement in the problem.
Specifically, you can consider a function f satisfying f(0) = 0.

2. Again, it helps to write it out symbolically. The first statement can be written as: ∃a ∈ R,
a ≤ 0 and f(a) = 0. We can logically manipulate the negation of the first statement in this
way:

− (∃a ∈ R, a ≤ 0 and f(a) = 0)

⇐⇒ ∀a ∈ R,−(a ≤ 0 and f(a) = 0)

⇐⇒ ∀a ∈ R, a > 0 or f(a) 6= 0

⇐⇒ ∀a ∈ R, f(a) = 0 =⇒ a > 0

This is similar to the second statement but not the same. If “negative” was replaced by
“positive” in the second statement, the answer to this one would be “True”.

3. These are contrapositives.

4. Make a truth table to check this.

5. See Theorem 6.3.4.

6. Compare this to Proposition 6.3.5.

7. We can take the constant function f(x) = 0.

8. The idea is that order matters in the definition of an ordered pair.

9. We can take X = Y .

10. [Advanced] This collection is too “big” to be a set, since there is no “set of all sets”. Ob-
serve that it doesn’t follow our methods for defining sets (the conditional definition and the
constructive definition)

11. [Advanced] This problem is somewhat ambiguous. I consider it “True”. The reason is that
a function f : X → Y can be understood as an element of P(X × Y ) (the power set of the
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Cartestian product X × Y ) satisfying a certain condition, namely that each x ∈ X appears
in exactly one ordered pair (x, y) ∈ f . So our collection can be written as

{f ∈ P(R,R) : f is a function, and f(x) = f(−x) for all x ∈ (0,∞)},

which does fit the conditional definition of a set.

12. [Advanced] I interpret the collection as

{f ∈ P(R,R) : f is a function, and f(x) 6= f(x) for all x ∈ (0,∞)},

which is a set containing no elements, hence the empty set ∅.

13. The order of the composition is backwards.

Proofs:
2. We give a proof by cases. There are five cases to consider:

Case 1. Suppose that x < y < 0. Then the multiplication law gives 0 < xy < x2 and 0 < y2 < xy.
Applying the multiplication law a second time gives x3 < x2y, and xy2 < y3. Moreover, since
0 < xy, the multiplication law also gives x2y < xy2. Combining these gives x3 < y3.

Case 2. Suppose that x < y = 0. Then 0 < x2 and x3 < 0 by the multiplication law. But y3 = 0, so
x3 < y3.

Case 3. Suppose that x < 0 < y. Then the multiplication law gives x3 < 0 and 0 < y3, so x3 < y3.

Case 4. Suppose that x = 0 < y. Then 0 < y2 and 0 < y3 by the multiplication law. But x3 = 0, so
x3 < y3.

Case 5. Suppose that 0 < x < y. Then the multiplication law gives 0 < x2 < xy and 0 < xy < y2.
Applying the multiplication law a second time gives 0 < x3 < x2y and 0 < xy2 < y3. Since
0 < xy, the multiplication law also gives x2y < xy2. Combining these gives x3 < y3.

In all cases, we have shown that x3 < y3.

[Note: The idea here is that the multiplication law in the textbook has two cases depending on
whether x (or y) is positive or negative. This suggests a proof using cases. The main difficulty is
to make sure each case is covered. It’s not necessary to write the phrase “multiplication law” as
long as you apply it correctly. It’s quite likely you can find a more efficient proof than the one here.]

3. [Note: I believe this is a technically flawed problem. As far as I can tell, solving this problem
requires the fact that a number n ∈ Z is odd if and only if it can be written in the form n = 2q + 1
for some q ∈ Z (or at least the “only if” part of this statement). This is actually Proposition
11.3.4 on p. 142 of the book, which suggests that it should not be considered available right now.
Basically, the only way to really solve the problem directly is to prove Proposition 11.3.4 along
the way, which I think is more involved than our current level. (On the other hand, note that a
statement like “if n2 is odd, then n is odd” is perfectly provable with the current material.)]

We prove this by contrapositive. Assume that n is odd. By Proposition 11.3.4, n can be written
in the form n = 2q + 1 for some q ∈ Z. Then n2 = (2q + 1)2 = 4q2 + 4q + 1 = 2(2q2 + 2q) + 1.
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Assuming Proposition 11.3.4, this implies that n2 is odd. Alternatively, we can reason as in Propo-
sition 2.2.4 in our book. Namely, if r is an integer, then either r ≤ 2q2 + 2q or r ≥ 2q2 + 2q + 1. In
the first case, 2r ≤ 2(2q2 + 2q) < n2. In the second case, 2r ≥ 2(2q2 + 2q) + 2 < n2. Thus 2r 6= n2

for all integers r. We conclude that n2 is odd.

4. First, we check the case where n = 1. The equation reduces to 1/2 = 1/2, which is true.
Next, we do the inductive step. Assume that the equation is true for n = k. Then

k+1∑
i=1

1

i(i + 1)
=

k

k + 1
+

1

(k + 1)(k + 2)
=

k(k + 2) + 1

(k + 1)(k + 2)

=
k2 + 2k + 1

(k + 1)(k + 2)
=

(k + 1)2

(k + 1)(k + 2)
=

k + 1

k + 2
.

This completes the inductive step.
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