Final Exam Logic, language and proof, MAT 200 Lec 01 Fall 2018 Dec 12 Wed 8:30-11:00 pm, Engineering 145 Two pages, 7 problems.

- 1. (a) Make the **truth table** of the formula $(P \leftrightarrow Q) \land (Q \rightarrow R)$. (4 points)
 - (b) **Assign True and False** values to the variables P, Q, R such that the value of the formula $(P \land (Q \lor R)) \leftrightarrow ((P \land Q) \lor R)$ is **false**. (4 points)
 - (c) **Negate** the formula $(P \leftrightarrow Q) \lor (R \to S)$. You are allowed to use the '¬' sign in front of letters P, Q, R, S only.

 (4 points)
- 2. (a) **Negate** the following statement. Do not use words "no", "not" in your final answer. (Recall that for real numbers a, b the negation of a > b is $a \le b$.)

There exists a real number x such that there exists a real number K such that for every real number R there exists a real number y such that R < y and f(x,y) > K.

(4 points)

(b) Consider the set (interval) $I = \left(\frac{1}{2}, \frac{5}{2}\right] = \{r \in \mathbb{R} : \frac{1}{2} < r \leq \frac{5}{2}\}$. In each of the following cases, decide whether the statement is true or false. **Give a short justification** for your answer. Recall that \mathbb{Z} is the set of all integers and \mathbb{R} is the set of all real numbers.

(6 points)

(a) $\forall y \in I : \exists x \in I : x < y$	(c) $\exists y \in I : \forall x \in I : x < y$	(e) $\exists k \in \mathbb{Z} : \forall u \in I : u \leq k$
(b) $\forall x \in I : \exists y \in I : x < y$	(d) $\exists y \in I : \forall x \in I : x \leq y$	(f) $\exists r \in \mathbb{R} : \forall u \in I : r < u$

- (c) Prove that for every positive real number $\varepsilon > 0$ there exists a positive real number t such that for every positive real number x such that 0 < x < t we have $\sqrt{x} < \varepsilon$. (6 points)
- 3. (a) Let x be a real number different from 1. Assume $0 < \frac{x^2}{x-1}$. Prove that $4 \le \frac{x^2}{x-1}$. (Hint: first prove that 1 < x.)

 (8 points)
 - (b) Let m be an integer. Prove that 8m + 4 is not a third power of any integer, that is, there is no $n \in \mathbb{Z}$ such that $n^3 = 8m + 4$.

 (8 points)

	1	2	3	4	5	6	7	Total
Max	12 p	16 p	16 p	12 p	16 p	14 p	14 p	100 p

4. Let A, B, C, D be four sets and consider

$$X = (A \setminus C) \times (B \cup D),$$

$$Y = ((A \cup C) \times (B \cup D)) \setminus ((A \cap C) \times (B \cap D)).$$

- (a) Prove that $X \subseteq Y$. (8 points)
- (b) Let $A = \{1, 2\}, B = \{5, 6\}, C = \{2, 3\}, D = \{6, 7\}$. Enumerate all the elements of the set X and all the elements of the set Y (as defined above). (4 points)
- 5. (a) Prove that for every positive integer n the number $2^{n+2} + 3^{2n+1}$ is divisible by 7. (8 points)
 - (b) Let us define a sequence of real numbers recursively as $a_0 = \frac{2}{5}$ and for every positive integer j let $a_j = \frac{1}{2} \left(a_{j-1}^2 + a_{j-1} + \frac{1}{4} \right)$. Prove that for every non-negative integer n, we have

$$0 < a_n < \frac{1}{2}.$$

(8 points)

- 6. (a) Consider the interval $I = [1, 4] = \{r \in \mathbb{R} : 1 \le r \le 4\}$. In each case, decide whether the relation R on I is **reflexive**, **symmetric and transitive** (three answers in each case). Justify your answers.
 - i. xR_1y iff x y < 2;
 - ii. xR_2y iff -2 < x y < 2;
 - iii. xR_3y iff $\exists k \in \mathbb{Z} : x y = \frac{k}{2}$.

(10 points)

- (b) Which one of the above relations is an equivalence relation? Enumerate all the elements from I = [1, 4] equivalent to $\frac{5}{2}$ with respect to that equivalence relation. (4 points)
- 7. (a) Let $f: X \to Y$ be a function, and $U_1 \subseteq X$, $U_2 \subseteq X$ two subsets of the domain.
 - i. Prove that $f(U_1) \setminus f(U_2) \subseteq f(U_1 \setminus U_2)$.
 - ii. Give an example of two sets X, Y, a function $f: X \to Y$ and two subsets $U_1 \subseteq X, U_2 \subseteq X$ such that $f(U_1) \setminus f(U_2) \neq f(U_1 \setminus U_2)$.

(8 points)

- (b) i. Let X,Y,Z be three sets and $f:X\to Y$ and $g:Y\to Z$ two functions. Prove that if the composition $g\circ f:X\to Z$ is injective then the first function f also has to be injective.
 - ii. Give an example of three sets X,Y,Z and two functions $f:X\to Y$ and $g:Y\to Z$ such that the composition $g\circ f:X\to Z$ is injective but the second function g is not injective.

(6 points)