MAT 552. HOMEWORK 9 SPRING 2014 DUE TU APR 15

1. Define Sp(n) as a group of \mathbb{H} -linear automorphisms of \mathbb{H}^n , which preserve an \mathbb{H} -hermitian form $\langle \cdot, \cdot \rangle$ on \mathbb{H}^n . The form is defined by the formula $\langle x, y \rangle = \sum_{i=1}^n x_i \bar{y}_i$.

- (1) Use this data to show that $\operatorname{Sp}(n) \cong \operatorname{Sp}(2n, \mathbb{C}) \cap \operatorname{U}(2n)$
- (2) Show that $\operatorname{Sp}(n) \cong \operatorname{GL}(n, \mathbb{H}) \cap \operatorname{U}(2n)$
- (3) Explain why $\rho(A) = jAj^{-1}$ is an anti-holomorphic involution on $\operatorname{Sp}(2n, \mathbb{C})$.
- (4) Show that the image of $\operatorname{GL}(n, \mathbb{C}) \to \operatorname{Sp}(2n, \mathbb{C})$ defined in HW8 is invariant under ρ . Deduce from this that $\operatorname{U}(n)$ is a subgroup of $\operatorname{Sp}(n)$.
- (5) Show that diagonal matrices in $U(n) \subset Sp(n)$ is a maximal torus in Sp(n). Find the roots of Sp(n).

We define SO (n, \mathbb{C}) as a space of complex invertible matrices $\{A \in \operatorname{GL}(n, \mathbb{C}) | (Av, Au) = (v, u)\}$ where $(v, u) = \sum_{i=1}^{n} x_i y_i, x_i, y_i \in \mathbb{C}$.

2.

- (1) Show that there is a real involution ρ on $SO(n, \mathbb{C})$ whose fixed points coincide with $SO(n, \mathbb{R})$.
- (2) Follow the analogy with $\operatorname{Sp}(2n, \mathbb{C})$ to define an embedding of $\operatorname{GL}(n, \mathbb{C})$ into $\operatorname{SO}(2n, \mathbb{C})$. (Hint use a complex basis in which inner product has a form $\sum_{i=1}^{n} x_i y_{n+i} + y_i x_{n+i}$)
- (3) Show that $GL(n, \mathbb{C})$ is invariant under ρ and the fixed points coincide with U(n).
- (4) Find a decomposition of $T_e(\mathrm{SO}(2n,\mathbb{C}))$ into irreducible representation under the action of diagonal subgroup $\mathbb{T}^{\mathbb{C}} \subset \mathrm{GL}(n,\mathbb{C})$.
- (5) Show that the maximal torus $\mathbb{T} \subset U(n)$ is a maximal torus in $SO(2n, \mathbb{R})$. Find the roots.

3. Repeat the same for SO(2n + 1).(Hint:use a complex basis in which the inner product on \mathbb{C}^{2n+1} has a form $x_{2n+1}y_{2n+1} + \sum_{i=1}^{n} x_i y_{n+i} + y_i x_{n+i}$)