MAT 552. HOMEWORK 9
 SPRING 2014
 DUE TU APR 15

1. Define $\operatorname{Sp}(n)$ as a group of \mathbb{H}-linear automorphisms of \mathbb{H}^{n}, which preserve an \mathbb{H} hermitian form $\langle\cdot, \cdot\rangle$ on \mathbb{H}^{n}. The form is defined by the formula $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} \bar{y}_{i}$.
(1) Use this data to show that $\operatorname{Sp}(n) \cong \operatorname{Sp}(2 n, \mathbb{C}) \cap \mathrm{U}(2 n)$
(2) Show that $\mathrm{Sp}(n) \cong \mathrm{GL}(n, \mathbb{H}) \cap \mathrm{U}(2 n)$
(3) Explain why $\rho(A)=j A j^{-1}$ is an anti-holomorphic involution on $\operatorname{Sp}(2 n, \mathbb{C})$.
(4) Show that the image of $\mathrm{GL}(n, \mathbb{C}) \rightarrow \operatorname{Sp}(2 n, \mathbb{C})$ defined in HW8 is invariant under ρ. Deduce from this that $\mathrm{U}(n)$ is a subgroup of $\mathrm{Sp}(n)$.
(5) Show that diagonal matrices in $\mathrm{U}(n) \subset \operatorname{Sp}(n)$ is a maximal torus in $\operatorname{Sp}(n)$. Find the roots of $\mathrm{Sp}(n)$.
We define $\mathrm{SO}(n, \mathbb{C})$ as a space of complex invertible matrices $\{A \in \mathrm{GL}(n, \mathbb{C}) \mid(A v, A u)=$ $(v, u)\}$ where $(v, u)=\sum_{i=1}^{n} x_{i} y_{i}, x_{i}, y_{i} \in \mathbb{C}$.
2.

(1) Show that there is a real involution ρ on $\operatorname{SO}(n, \mathbb{C})$ whose fixed points coincide with $\mathrm{SO}(n, \mathbb{R})$.
(2) Follow the analogy with $\operatorname{Sp}(2 n, \mathbb{C})$ to define an embedding of $\mathrm{GL}(n, \mathbb{C})$ into $\operatorname{SO}(2 n, \mathbb{C})$. (Hint use a complex basis in which inner product has a form $\sum_{i=1}^{n} x_{i} y_{n+i}+y_{i} x_{n+i}$)
(3) Show that GL (n, \mathbb{C}) is invariant under ρ and the fixed points coincide with $\mathrm{U}(n)$.
(4) Find a decomposition of $T_{e}(\mathrm{SO}(2 n, \mathbb{C}))$ into irreducible representation under the action of diagonal subgroup $\mathbb{T}^{\mathbb{C}} \subset \mathrm{GL}(n, \mathbb{C})$.
(5) Show that the maximal torus $\mathbb{T} \subset \mathrm{U}(n)$ is a maximal torus in $\mathrm{SO}(2 n, \mathbb{R})$. Find the roots.
3. Repeat the same for $\mathrm{SO}(2 n+1)$.(Hint:use a complex basis in which the inner product on $\mathbb{C}^{2 n+1}$ has a form $\left.x_{2 n+1} y_{2 n+1}+\sum_{i=1}^{n} x_{i} y_{n+i}+y_{i} x_{n+i}\right)$

