MAT 552. HOMEWORK 8
 SPRING 2014
 DUE TH APR 3

- A Hausdorff topological space X is a complex or holomorphic manifold if it has an holomorphic atlas, that is $X=\bigcup U_{\alpha}$ such that open U_{α} are such that exist local homeomorphisms $\psi_{\alpha}: \mathbb{R}^{2 n} \cong \mathbb{C}^{n} \supset V_{\alpha} \rightarrow U_{\alpha}$ that have holomorphic compositions $\psi_{\alpha}^{-1} \circ \psi_{\beta}: V_{\beta} \rightarrow V_{\alpha}$ defined on the intersection $U_{\alpha} \cap U_{\alpha}$.
- A holomorphic map $f: X \rightarrow Y$ between two complex manifolds X, Y is a C^{∞}-map, which in local charts is defined by holomorphic functions $\phi_{\beta}^{-1} \circ f \circ \psi_{\alpha} .\left\{\psi_{\alpha}, U_{\alpha}\right\}$ is an atlas on $X,\left\{\phi_{\alpha}, W_{\alpha}\right\}$ is an atlas on Y.
- If X and Y are holomorphic manifolds then $X \times Y$ is a holomorphic manifold.
- A holomorphic Lie group is a Lie group, which is equipped with a holomorphic atlas such that multiplication map $\mu: G \times G \rightarrow G$ is holomorphic in this atlas. In addition the inverse map is also holomorphic.
- A C^{∞} maps $\rho: X \rightarrow X$ is an antiholomorphic involution on a complex manifold X if $\rho^{2}=\mathrm{id}$ and in local charts ρ is defined by anti-holomorphic functions.
- An antiholomorphic involution on a complex Lie group is a homomorphism $\rho: G \rightarrow$ G, such that ρ is an antiholomorphic involution of the underlying manifold.

1.

(1) Give an example of a antiholomorphic involution on the Lie group \mathbb{C}^{\times}whose fixed points is
(a) S^{1}
(b) \mathbb{R}^{\times}
(c) \emptyset
(2) Give an example of a antiholomorphic involution on the complex manifold \mathbb{C}^{\times} whose set of fixed points is empty.
(3) Give examples of antiholomorphic involutions on $\underbrace{\mathbb{C}^{\times} \times \cdots \times \mathbb{C}^{\times}}_{n}$, whose fixed points are manifolds of dimension 0 or n
2. Let X be a complex n-dimensional manifold, equipped with an antiholomorphic involution ρ. Suppose is fixed point set $X^{\rho}=Y$ of ρ is a n-dimensional submanifold of the C^{∞} $2 n$-dimensional manifold underlying complex manifold X. Show that for any $y \in Y$ complexification $T_{y}(Y) \otimes \mathbb{C}$ is canonically isomorphic to $T_{y}(X)$. By definition an isomorphism is canonical if it commutes with maps induced by complex homeomorphisms that preserve y and commute with ρ.
3.
(1) Prove that $\mathrm{SL}(2, \mathbb{C})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{C}, a d-b c=1\right\}$ is a complex analytic manifold.
(2) Show that the map $\rho: \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathrm{SL}(2, \mathbb{C}), \rho(A)=\left(\bar{A}^{t}\right)^{-1}$ is an antiholomorphic involution on $\mathrm{SL}(2, \mathbb{C})$, whose fixed point set is $\mathrm{SU}(2)$
(3) Show that $\mathbb{G}^{*}=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & a^{-1}\end{array}\right)\right\} \subset \operatorname{SL}(2, \mathbb{C})$ is invariant under ρ and the set of fixed points $\left(\mathbb{G}^{*}\right)^{\rho}$ as a group is isomorphic to S^{1}
(4) The group $\mathrm{SL}(2, \mathbb{C})$ acts on $T_{e}(\mathrm{SL}(2, \mathbb{C}))$; the group $\mathrm{SU}(2)$ acts on $T_{e}(\mathrm{SU}(2))$. In addition $\mathrm{SU}(2)$ being a subgroup of $\mathrm{SL}(2, \mathbb{C})$ acts on $T_{e}(\mathrm{SL}(2, \mathbb{C}))$. Show that there is an isomorphism of $\mathrm{SU}(2)$-representations $T_{e}(\mathrm{SU}(2)) \otimes \mathbb{C} \cong T_{e}(\mathrm{SL}(2, \mathbb{C}))$.
(5) Determine the structure of the restriction of $T_{e}(\mathrm{SL}(2, \mathbb{C}))$ from $\mathrm{SL}(2, \mathbb{C})$ to \mathbb{G}^{*}.
(6) Determine the structure of the restriction of $T_{e}(\mathrm{SU}(2))$ from $\mathrm{SU}(2)$ to S^{1}.
4. Generalize results of Problem 3 from $\mathrm{SL}(2, \mathbb{C})$ to $\mathrm{SL}(n, \mathbb{C})$. In particular find an analogue of ρ, of the maximal torus T of $\mathrm{SU}(n)$ and the complex-analytic subgroup $\mathbb{T} \subset \mathrm{SL}(n, \mathbb{C})$. Your goal should be to establish decomposition of $\mathfrak{s l}_{n}(\mathbb{C})$ under \mathbb{T} and relate it to decomposition of $\mathfrak{s u}_{n}$ under T.
Definition 1. Define $\operatorname{Sp}(2 n, \mathbb{C})$ as a subgroup of \mathbb{C}-linear transformations of $\mathbb{C}^{2 n}$ that preserve a skew-symmetric bilinear form

$$
\Omega[x, y]=\sum_{i=1}^{n} x_{2 i-1} y_{2 i}-y_{2 i-1} x_{2 i}
$$

5.

(1) Show that the linear space $\mathfrak{s p}(2 n, \mathbb{C})=\left\{A \in \operatorname{Mat}_{2 n}(\mathbb{C}) \mid \Omega[A x, y]+\Omega[x, A y]=\right.$ $\left.0 \forall x, y \in \mathbb{C}^{2 n}\right\}$ is closed under commutator and is a Lie algebra.
(2) Show that the exponential map $\exp : \mathfrak{s p}(2 n, \mathbb{C}) \rightarrow \operatorname{Sp}(2, \mathbb{C})$ defines a chart around $e \in \operatorname{Sp}(2, \mathbb{C})$.
(3) Define a bilinear operation $\{f, g\}$ on $\mathbb{C}\left[x_{1} \ldots, x_{2 n}\right]$ by the formula:

$$
\{f, g\}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{2 i-1}} \frac{\partial g}{\partial x_{2 i}}-\frac{\partial g}{\partial x_{2 i-1}} \frac{\partial f}{\partial x_{2 i}}
$$

Show that $\{f, g\}$ defines a Lie algebra structure on $\mathbb{C}\left[x_{1} \ldots, x_{2 n}\right]$. This bracket is called a Poisson bracket.
(4) Show that $\operatorname{Sp}(2 n, \mathbb{C})$ acts on $\mathbb{C}\left[x_{1} \ldots, x_{2 n}\right]$ by automorphism of the Poisson bracket.
(5) Show that representation of $\operatorname{Sp}(2 n, \mathbb{C})$ in polynomials of degree two is isomorphic to adjoint representation.
(6) Let V be a complex vector space. Show that $V+V^{*}$ has a canonical symplectic form.
(7) Identify $\mathbb{C}^{2 n}$ with some $\mathbb{C}^{n}+\left(\mathbb{C}^{n}\right)^{*}$. Define an embedding $\operatorname{GL}(n, \mathbb{C}) \rightarrow \operatorname{Sp}(2 n, \mathbb{C})$. Decompose $\mathfrak{s p}_{2 n}(\mathbb{C})$ into $\mathrm{GL}(n, \mathbb{C})$-invariant components.
(8) Decompose $\mathfrak{s p}_{2 n}$ into irreducible representation of the subgroup of diagonal matrices $\mathbb{T} \subset \mathrm{GL}(n, \mathbb{C})$

