MAT 552. HOMEWORK 8 SPRING 2014 DUE TH APR 3

- A Hausdorff topological space X is a complex or holomorphic manifold if it has an holomorphic atlas, that is $X = \bigcup U_{\alpha}$ such that open U_{α} are such that exist local homeomorphisms $\psi_{\alpha} : \mathbb{R}^{2n} \cong \mathbb{C}^n \supset V_{\alpha} \to U_{\alpha}$ that have holomorphic compositions $\psi_{\alpha}^{-1} \circ \psi_{\beta} : V_{\beta} \to V_{\alpha}$ defined on the intersection $U_{\alpha} \cap U_{\alpha}$.
- A holomorphic map $f: X \to Y$ between two complex manifolds X, Y is a C^{∞} -map, which in local charts is defined by holomorphic functions $\phi_{\beta}^{-1} \circ f \circ \psi_{\alpha}$. $\{\psi_{\alpha}, U_{\alpha}\}$ is an atlas on $X, \{\phi_{\alpha}, W_{\alpha}\}$ is an atlas on Y.
- If X and Y are holomorphic manifolds then $X \times Y$ is a holomorphic manifold.
- A holomorphic Lie group is a Lie group, which is equipped with a holomorphic atlas such that multiplication map $\mu: G \times G \to G$ is holomorphic in this atlas. In addition the inverse map is also holomorphic.
- A C[∞] maps ρ : X → X is an antiholomorphic involution on a complex manifold X if ρ² = id and in local charts ρ is defined by anti-holomorphic functions.
- An antiholomorphic involution on a complex Lie group is a homomorphism $\rho: G \to G$, such that ρ is an antiholomorphic involution of the underlying manifold.

1.

- (1) Give an example of a antiholomorphic involution on the Lie group \mathbb{C}^{\times} whose fixed points is
 - (a) S^1
 - $(b) \mathbb{R}^{\times}$
 - $(c) \emptyset$
- (2) Give an example of a antiholomorphic involution on the complex manifold \mathbb{C}^{\times} whose set of fixed points is empty.
- (3) Give examples of antiholomorphic involutions on $\underbrace{\mathbb{C}^{\times} \times \cdots \times \mathbb{C}^{\times}}_{n}$, whose fixed points

are manifolds of dimension 0 or n

2. Let X be a complex n-dimensional manifold, equipped with an antiholomorphic involution ρ . Suppose is fixed point set $X^{\rho} = Y$ of ρ is a n-dimensional submanifold of the C^{∞} 2n-dimensional manifold underlying complex manifold X. Show that for any $y \in Y$ complexification $T_y(Y) \otimes \mathbb{C}$ is canonically isomorphic to $T_y(X)$. By definition an isomorphism is canonical if it commutes with maps induced by complex homeomorphisms that preserve y and commute with ρ .

3.

- (1) Prove that $SL(2, \mathbb{C}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{C}, ad bc = 1 \}$ is a complex analytic manifold.
- (2) Show that the map $\rho : \mathrm{SL}(2,\mathbb{C}) \to \mathrm{SL}(2,\mathbb{C}), \ \rho(A) = (\overline{A}^t)^{-1}$ is an antiholomorphic involution on $\mathrm{SL}(2,\mathbb{C})$, whose fixed point set is $\mathrm{SU}(2)$
- (3) Show that $\mathbb{G}^* = \{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \} \subset \mathrm{SL}(2, \mathbb{C})$ is invariant under ρ and the set of fixed points $(\mathbb{G}^*)^{\rho}$ as a group is isomorphic to S^1
- (4) The group $SL(2, \mathbb{C})$ acts on $T_e(SL(2, \mathbb{C}))$; the group SU(2) acts on $T_e(SU(2))$. In addition SU(2) being a subgroup of $SL(2, \mathbb{C})$ acts on $T_e(SL(2, \mathbb{C}))$. Show that there is an isomorphism of SU(2)-representations $T_e(SU(2)) \otimes \mathbb{C} \cong T_e(SL(2, \mathbb{C}))$.
- (5) Determine the structure of the restriction of $T_e(\mathrm{SL}(2,\mathbb{C}))$ from $\mathrm{SL}(2,\mathbb{C})$ to \mathbb{G}^* .
- (6) Determine the structure of the restriction of $T_e(SU(2))$ from SU(2) to S^1 .

4. Generalize results of Problem 3 from $\mathrm{SL}(2, \mathbb{C})$ to $\mathrm{SL}(n, \mathbb{C})$. In particular find an analogue of ρ , of the maximal torus T of $\mathrm{SU}(n)$ and the complex-analytic subgroup $\mathbb{T} \subset \mathrm{SL}(n, \mathbb{C})$. Your goal should be to establish decomposition of $\mathfrak{sl}_n(\mathbb{C})$ under \mathbb{T} and relate it to decomposition of \mathfrak{su}_n under T.

Definition 1. Define $\operatorname{Sp}(2n, \mathbb{C})$ as a subgroup of \mathbb{C} -linear transformations of \mathbb{C}^{2n} that preserve a skew-symmetric bilinear form

$$\Omega[x,y] = \sum_{i=1}^{n} x_{2i-1}y_{2i} - y_{2i-1}x_{2i}$$

5.

- (1) Show that the linear space $\mathfrak{sp}(2n,\mathbb{C}) = \{A \in Mat_{2n}(\mathbb{C}) | \Omega[Ax,y] + \Omega[x,Ay] = 0 \forall x, y \in \mathbb{C}^{2n} \}$ is closed under commutator and is a Lie algebra.
- (2) Show that the exponential map $exp : \mathfrak{sp}(2n, \mathbb{C}) \to \operatorname{Sp}(2, \mathbb{C})$ defines a chart around $e \in \operatorname{Sp}(2, \mathbb{C})$.
- (3) Define a bilinear operation $\{f, g\}$ on $\mathbb{C}[x_1 \dots, x_{2n}]$ by the formula:

$$\{f,g\} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_{2i-1}} \frac{\partial g}{\partial x_{2i}} - \frac{\partial g}{\partial x_{2i-1}} \frac{\partial f}{\partial x_{2i}}$$

Show that $\{f, g\}$ defines a Lie algebra structure on $\mathbb{C}[x_1 \dots, x_{2n}]$. This bracket is called a Poisson bracket.

- (4) Show that $\operatorname{Sp}(2n, \mathbb{C})$ acts on $\mathbb{C}[x_1 \dots, x_{2n}]$ by automorphism of the Poisson bracket.
- (5) Show that representation of $\operatorname{Sp}(2n, \mathbb{C})$ in polynomials of degree two is isomorphic to adjoint representation.
- (6) Let V be a complex vector space. Show that $V + V^*$ has a canonical symplectic form.
- (7) Identify \mathbb{C}^{2n} with some $\mathbb{C}^n + (\mathbb{C}^n)^*$. Define an embedding $\operatorname{GL}(n, \mathbb{C}) \to \operatorname{Sp}(2n, \mathbb{C})$. Decompose $\mathfrak{sp}_{2n}(\mathbb{C})$ into $\operatorname{GL}(n, \mathbb{C})$ -invariant components.
- (8) Decompose \mathfrak{sp}_{2n} into irreducible representation of the subgroup of diagonal matrices $\mathbb{T} \subset \mathrm{GL}(n, \mathbb{C}).$