MAT 552. HOMEWORK 7
 SPRING 2014
 DUE TH MAR 6

1. Let G be a closed subgroup of the unitary group $\mathrm{U}(n)$. Use Stone-Weierstrass theorem to show that any continuous function $f \in C(G)$ can be uniformly approximated by linear combinations of matrix coefficients of G-representations.

Definition 1. the Grothendieck group $K(M)$ of a commutative monoid M is a quotient of the set $M \times M$ by the equivalence relation

$$
\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right) \text { if } \exists k \in M \text { such that } m_{1}+n_{2}+k=m_{2}+n_{1}+k
$$

Addition is defined coordinatewise:

$$
\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)=\left(m_{1}+m_{2}, n_{1}+n_{2}\right)
$$

It is customary to denote element $\left(m_{1}, n_{1}\right)$ by $\left[m_{1}\right]-\left[n_{1}\right]$.
2.
(1) Prove that equivalence relation is compatible with the multiplicative structure.
(2) Show that $K(M)$ is a group.
(3) Show that the map $m \rightarrow[m]-[e]$ defines a homomorphism of monoids
(4) Compute $K(M)$ for $M=\mathbb{Z}_{\geq 0}$
(5) Let X be a finite set and $M=P(X)$ be a monoid of subsets with union \cup being the operation. Compute $K(P(X))$.
Definition 2. A strict monoidal category $\langle B, \bigcirc, e\rangle$ is a category B with a bifunctor $\bigcirc: B \times B \rightarrow B$ which is associative,

$$
\begin{equation*}
\bigcirc(\bigcirc \times \mathrm{id})=\bigcirc(\mathrm{id} \times \bigcirc): B \times B \times B \rightarrow B \tag{1}
\end{equation*}
$$

and with an object e which is a left and right unit for \bigcirc

$$
\begin{equation*}
\bigcirc(e \times \mathrm{id})=\operatorname{id}_{B}=\bigcirc(\mathrm{id} \times e) \tag{2}
\end{equation*}
$$

In writing the associative law (1), we have identified ($B \times B$) $\times B$ with $B \times(B \times B)$; in writing the unit law (2), we mean $e \times$ id to be the functor $c \rightarrow\langle e, c>: B \rightarrow B \times B$. The bifunctor \bigcirc assigns to each pair of objects $a, b \in B$ an object $a \bigcirc b$ of B and to each pair of arrows $f: a \rightarrow a^{\prime}, g: b \rightarrow b^{\prime}$ an arrow $f \bigcirc g: a \bigcirc b \rightarrow a^{\prime} \bigcirc b^{\prime}$. Thus \bigcirc a bifunctor means that the interchange law

$$
\operatorname{id}_{a} \bigcirc \operatorname{id}_{b}=\operatorname{id}_{a \bigcirc b},\left(f^{\prime} \bigcirc g^{\prime}\right)(f \bigcirc g)=\left(f^{\prime} f\right) \bigcirc\left(g^{\prime} g\right),
$$

holds whenever the composites $f^{\prime} f$ and $g^{\prime} g$ are defined. The associative law (1) states that the binary operation \bigcirc is associative both for objects and for arrows; similarly, the unit
law (2) means that $e \bigcirc c=c=c \bigcirc e$ for objects c and that $\operatorname{id}_{e} \bigcirc f=f=f \bigcirc \mathrm{id}_{e}$ for arrows f.

A monoidal category B is said to be symmetric when it is equipped with isomorphisms

$$
\gamma_{a, b}: a \bigcirc b \cong b \bigcirc a
$$

natural in $a, b \in B$, such that the diagrams $\gamma_{a, b} \gamma_{b, a}=\mathrm{id}, \mathrm{id}_{b}=\gamma_{b, e}: b \bigcirc e \cong b$

all commute.
Definition 3. Let $\langle B, \bigcirc, e\rangle$ be a strict symmetric monoidal category. Set of isomorphism classes of objects $M(B)$ is an abelian monoid. The group $K(B)=K(M)$ is the K-group of the category B. Elements of $K(B)$ are called "virtual objects" of B.
3. Let $\operatorname{Rep}_{k}(G)$ be a category of finite-dimensional representations of a compact (Hausdorff) group G over a field k. It is a strict symmetric monoidal category with $\bigcirc=\oplus$.
(1) Show that there is an isomorphism $K_{k}(G) \cong K\left(\operatorname{Rep}_{k}(G)\right)$.
(2) A short exact sequence of representations

$$
0 \rightarrow V \rightarrow W \rightarrow V^{\prime} \rightarrow 0
$$

is an exact sequence vector spaces, whose maps commute with G-action. We define $K_{k}^{\prime}\left(\operatorname{Rep}_{k}(G)\right)$ as a quotient $K\left(\operatorname{Rep}_{k}(G)\right)$ by relations $[W]=[V]+\left[V^{\prime}\right]$. Show that the groups $K_{k}\left(\operatorname{Rep}_{k}(G)\right)$ and $K_{k}^{\prime}\left(\operatorname{Rep}_{k}(G)\right)$ coincide.
4. A complex

$$
0 \rightarrow V_{1} \xrightarrow{d_{1}} V_{2} \xrightarrow{d_{2}} \ldots \xrightarrow{d_{n-1}} V_{n} \rightarrow 0
$$

of finite-dimensional representations of a compact group G has cohomology groups H_{1}, \ldots, H_{n} which are automatically G-representations. Show that a virtual representation $\sum_{i=1}^{n}(-1)^{i}\left[V_{i}\right]$ is equal to $\sum_{i=1}^{n}(-1)^{i}\left[H_{i}\right]$

