MAT 552. HOMEWORK 2 SPRING 2014 DUE TU FEB 11

1. The group $Aut(\mathbb{R}^n) = \operatorname{GL}(n)$ is an open subset in Mat_n and admits a single chart. In this chart the tangent bundle $T(\operatorname{GL}(n))$ is a product $\operatorname{GL}(n) \times Mat_n$. Write an explicit formula for a left-invariant vector field.

2. Smooth maps from a manifold M to \mathbb{R} form an algebra $C^{\infty}(M)$. A derivation D: $C^{\infty}(M) \to C^{\infty}(M)$ is a linear map such that for any smooth real function $g(x_1, \ldots, x_n)$ and n-tuple $s_1, \ldots, s_n \in C^{\infty}(M)$

(1)
$$Dg(s_1,\ldots,s_n) = \sum_{i=1}^n \frac{\partial g(s_1,\ldots,s_n)}{\partial x_i} Df_i$$

Assuming if necessary that M is paracompact show that

- (1) D satisfies Leibniz rule.
- (2) Show that if f_1 and $f_2 \in C^{\infty}(M)$ coincide in some neighborhood of $m \in M$ then so do $D(f_1)$ and $D(f_2)$.
- (3) There is a one-to-one correspondence between derivations of $C^{\infty}(M)$ and sections of T(M).
- (4) A derivation at a point $m \in M$ is a linear map $D_m : C^{\infty}(M) \to \mathbb{R}$ that satisfies $D_m g(s_1, \ldots, s_n) = \sum_{i=1}^n \frac{\partial g(s_1, \ldots, s_n)}{\partial x_i}(m) D_m s_i$. Show that there is a natural identification of set of such D_m with the tangent space T_m .

Warning!: local coordinates are not global functions on M and cannot be differentiated by D!

Definition 1. (1) A Lie algebra \mathfrak{g} is a real vector space equipped with a bilinear map $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, which is skew-symmetric

$$[a,b] = -[b,a]$$

and satisfies Jacobi identity

$$[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0$$

- (2) A homomorphism of Lie algebras $\phi : \mathfrak{g} \to \mathfrak{h}$ is a linear map that satisfies $\phi[a, b] = [\phi a, \phi b]$.
- (3) An automorphism is an invertible homomorphism from Lie algebra to itself.
- (4) A linear subspace $\mathfrak{h} \subset \mathfrak{g}$ is a subalgebra if it is stable under commutator.

3.

- (1) Using results of the previous problem show that vector fields (sections of a tangent bundle) interpreted as derivations form a Lie algebra Vect(M) with a commutator $[D_1, D_2] = D_1D_2 D_2D_1$
- (2) Show that any smooth homeomorphism (diffeomorphism) of a manifold defines an automorphism of the algebra $C^{\infty}(M)$ and the Lie algebra Vect(M)
- (3) A vector field $\lambda \in Vect(M)$ is invariant with respect to diffeomorphism $f \in Diff(M)$. if $f_*\lambda = \lambda$. Let G be a subgroup of Diff(M). Show that $Vect(M)^G = \{\lambda \in Vect(M) | g_*\lambda = \lambda\}$ is a Lie subalgebra.
- (4) The space of left-invariant vector fields on a Lie group G has a structure of a Lie algebra.