MAT 552. HOMEWORK 11
 SPRING 2014
 DUE TH MAY 1

- Suppose that A is a symmetric $n \times n$ matrix with $A_{i, i}=2$ for all i and $A_{i, j} \in\{-1,0\}$ for $i \neq j$. To this matrix we can draw a non-oriented graph Γ by connecting i and j with an edge iff $A_{i, j}=-1$. The graph Γ completely determines A and we write A_{Γ}. The number of vertices of this graph $v(\Gamma)=n$.

1. Suppose A_{Γ} is positive definite, i.e. $x^{t} A x>0$ when $x \neq 0 \in \mathbb{R}^{v(\Gamma)}$.
(1) Show that Γ has no cycles.
(2) Show that Γ cannot have a vertex with ≥ 4 edges.
(3) Show that a connected component of Γ cannot have two distinct vertices with each ≥ 3 edges.
(4) Show that Γ cannot have a connected subtree with only one three-valent vertex, having all its adjacent vertices valence two.
(5) Show that Γ cannot have

as a subgraph.
(6) Show that Γ cannot have

as a subgraph.

- Γ is called a Dynkin graph if A_{Γ} is positive definite
- A-D-E graphs are
- A_{n} : $O-0 \cdot \Theta$
- D_{n} :

- E_{6} :

- E_{7} :

- E_{8} :

2.

(1) Show that if Γ_{1} and Γ_{2} are Dynkin graphs then their disjoint union $\Gamma_{1} \amalg \Gamma_{2}$ is also a Dynkin graph.
(2) Compute $\operatorname{det} A_{A_{n}}$.
(3) Compute $\operatorname{det} A_{D_{n}}$.
(4) Compute $\operatorname{det} A_{E_{n}}$.
(5) Verify that any connected Dynkin graph belongs to A-D-E family. (Hint: use Sylvesters Criterion)

- A finite subset R of Euclidean space \mathbb{R}^{n} is a root system if
(1) $0 \notin R$ and R spanes \mathbb{R}^{n}.
(2) $\alpha \in R \Rightarrow-\alpha \in R$, but $k \cdot \alpha$ is not in R if k is any real number other than ± 1.
(3) For $\alpha \in R$, the reflection w_{α} in the hyperplane α^{\perp} maps R to itself,
(4) For $\alpha, \beta \in R$, the real number

$$
n_{\beta \alpha}=2 \frac{(\beta, \alpha)}{(\alpha, \alpha)}
$$

Is an integer.
3.
(1) Verify that the following subsets in \mathbb{R}^{2} are root systems.
(2) Identify generators $\left\{w_{\alpha}\right\}$ of the Weyl group.

