MAT 552. HOMEWORK 11 SPRING 2014 DUE TH MAY 1

- Suppose that A is a symmetric $n \times n$ matrix with $A_{i,i} = 2$ for all i and $A_{i,j} \in \{-1, 0\}$ for $i \neq j$. To this matrix we can draw a non-oriented graph Γ by connecting i and j with an edge iff $A_{i,j} = -1$. The graph Γ completely determines A and we write A_{Γ} . The number of vertices of this graph $v(\Gamma) = n$.
- **1.** Suppose A_{Γ} is positive definite, i.e. $x^t A x > 0$ when $x \neq 0 \in \mathbb{R}^{v(\Gamma)}$.
 - (1) Show that Γ has no cycles.
 - (2) Show that Γ cannot have a vertex with ≥ 4 edges.
 - (3) Show that a connected component of Γ cannot have two distinct vertices with each ≥ 3 edges.
 - (4) Show that Γ cannot have a connected subtree with only one three-valent vertex, having all its adjacent vertices valence two.

- Γ is called a Dynkin graph if A_{Γ} is positive definite
- A-D-E graphs are

2.

- (1) Show that if Γ_1 and Γ_2 are Dynkin graphs then their disjoint union $\Gamma_1 \coprod \Gamma_2$ is also a Dynkin graph.
- (2) Compute det A_{A_n} .
- (3) Compute det A_{D_n} .
- (4) Compute det A_{E_n} .
- (5) Verify that any connected Dynkin graph belongs to A-D-E family. (Hint: use Sylvesters Criterion)
 - A finite subset R of Euclidean space \mathbb{R}^n is a root system if
 - (1) $0 \notin R$ and R spanes \mathbb{R}^n .
 - (2) $\alpha \in R \Rightarrow -\alpha \in R$, but $k \cdot \alpha$ is not in R if k is any real number other than ± 1 .
 - (3) For $\alpha \in R$, the reflection w_{α} in the hyperplane α^{\perp} maps R to itself,
 - (4) For $\alpha, \beta \in R$, the real number

$$n_{\beta\alpha} = 2\frac{(\beta,\alpha)}{(\alpha,\alpha)}$$

Is an integer.

3.

- (1) Verify that the following subsets in \mathbb{R}^2 are root systems.
- (2) Identify generators $\{w_{\alpha}\}$ of the Weyl group.

