MAT 552. HOMEWORK 10 SPRING 2014 DUE TU APR 29

- Denote by [A, B] the commutator of two operators.
- Let $C^{\infty}(M)$ be a linear space of smooth functions on a manifold M. Multiplication on a smooth function f defines an operator $f : C^{\infty}(M) \to C^{\infty}(M)$. A linear map $L : C^{\infty}(M) \to C^{\infty}(M)$ is a differential operator if there is k > 0 such that $[f_k, \ldots, [f_1, L] \ldots] = 0$ for any k-tuple of smooth functions (f_1, \ldots, f_k) .
- The order (or degree) ord(L) of a differential operator L is number k-1 from the previous definition.
- Denote the set of differential operators of degree n by $\text{Diff}_n(M)$.

1.

- (1) Show that if $f \in C^{\infty}(M)$ and $L \in \text{Diff}_k(M)$ then $[f, L] \in \text{Diff}_{k-1}(M)$.
- (2) Show that $\operatorname{Diff}_i(M) \operatorname{Diff}_j(M) \subset \operatorname{Diff}_{i+j}(M)$.
- (3) Show that $A \in \text{Diff}_i(M), B \in \text{Diff}_j(M) \Rightarrow [A, B] \in \text{Diff}_{i+j-1}(M).$
- (4) Identify $\text{Diff}_0(M)$.
- (5) Identify $\text{Diff}_1(M)$.
 - Let T(M) be the tangent bundle. Sym^kT(M) is k-th symmetric power of the tangent bundle. If M is modeled on \mathbb{R}^n , then the gluing maps of the tangent bundle are $\psi'_{\alpha\beta} : \mathbb{R}^n \to \mathbb{R}^n$. The gluing maps of Sym^kT(M) are $\psi'^{\otimes k}_{\alpha\beta} : \text{Sym}^k \mathbb{R}^n \to \text{Sym}^k \mathbb{R}^n$.

2.

- (1) Let $L \in \text{Diff}_k(M)$ and $J \subset C^{\infty}(M)$ is an ideal of function vanishing at $m \in M$. Show that $L(J^{k+1}) \subset J$.
- (2) Generalized this result on powers of an arbitrary ideal.
- (3) Show that differential operators are localizable, which means that restriction on an open chart $U \subset M$ is well defined. Moreover a differential operators preserve $\overline{\circ}$

functions that vanish outside some open set U such that $V = M \setminus U$ satisfies $V = \overline{V}$.

(4) Let $L \in \text{Diff}_k(M)$ and x_i, \ldots, x_n be local coordinates in a neighborhood $U \subset M$. Then operator $L|_U$ can be presented in the form

$$L|_{U} = \sum_{|\sigma|=0}^{k} \alpha_{\sigma}(x) \frac{\partial^{\sigma}}{\partial x^{\sigma}}, \quad \alpha_{\sigma}(x) \in C^{\infty}(U)$$

where $\sigma = (i_1, \ldots, i_n)$ is a multiindex, $|\sigma| = \sum_{s=1}^n i_s$

(5) Show that $\operatorname{Diff}_k(M)/\operatorname{Diff}_{k-1}(M)$ is isomorphic to the space of sections of $\operatorname{Sym}^k T(M)$

- Define $U(\mathfrak{g})$ the universal enveloping algebra of a Lie algebra of a Lie group G as a subalgebra $\operatorname{Diff}(G)^G$ of algebra of differential operators $\operatorname{Diff}(G) = \bigcup_{k \ge 0} \operatorname{Diff}_k(G)$ that commute with right translations : $L_g(f(gh)) = L_g(f)(gh)$. • Filtration Diff_k(G) induces filtration in Diff(G)^G = U(g), which we denote by
- $F_k U(\mathfrak{g})$

- (1) Show that there is a an isomorphism $F_k U(\mathfrak{g})/F_{k-1}U(\mathfrak{g}) \cong \operatorname{Sym}^k \mathfrak{g}$ (Poincaré-Birkhoff-Witt theorem).
- (2) Show that $F_1U(\mathfrak{g}) \cong \mathbb{R} + \mathfrak{g}$.
- (3) Show that $F_1U(\mathfrak{g})$ generates $U(\mathfrak{g})$
- (4) Pick a basis $\{l_i | i = 1 \dim \mathfrak{g}\}$, show that

$$l_i l_j - l_j l_i = [l_i, l_j]$$

in $U(\mathfrak{g})$

(5) Show that (1) are defining relations in $U(\mathfrak{g})$.

 $\mathbf{2}$