MAT 552. HOMEWORK 10
 SPRING 2014
 DUE TU APR 29

- Denote by $[A, B]$ the commutator of two operators.
- Let $C^{\infty}(M)$ be a linear space of smooth functions on a manifold M. Multiplication on a smooth function f defines an operator $f: C^{\infty}(M) \rightarrow C^{\infty}(M)$. A linear map $L: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is a differential operator if there is $k>0$ such that $\left[f_{k}, \ldots,\left[f_{1}, L\right] \ldots\right]=0$ for any k-tuple of smooth functions $\left(f_{1}, \ldots, f_{k}\right)$.
- The order (or degree) $\operatorname{ord}(L)$ of a differential operator L is number $k-1$ from the previous definition.
- Denote the set of differential operators of degree n by $\operatorname{Diff}_{n}(M)$.

1.

(1) Show that if $f \in C^{\infty}(M)$ and $L \in \operatorname{Diff}_{k}(M)$ then $[f, L] \in \operatorname{Diff}_{k-1}(M)$.
(2) Show that $\operatorname{Diff}_{i}(M) \operatorname{Diff}_{j}(M) \subset \operatorname{Diff}_{i+j}(M)$.
(3) Show that $A \in \operatorname{Diff}_{i}(M), B \in \operatorname{Diff}_{j}(M) \Rightarrow[A, B] \in \operatorname{Diff}_{i+j-1}(M)$.
(4) Identify $\mathrm{Diff}_{0}(M)$.
(5) Identify $\operatorname{Diff}_{1}(M)$.

- Let $T(M)$ be the tangent bundle. $\operatorname{Sym}^{k} T(M)$ is k-th symmetric power of the tangent bundle. If M is modeled on \mathbb{R}^{n}, then the gluing maps of the tangent bundle are $\psi_{\alpha \beta}^{\prime}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. The gluing maps of $\operatorname{Sym}^{k} T(M)$ are $\psi_{\alpha \beta}^{\prime} \otimes k: \operatorname{Sym}^{k} \mathbb{R}^{n} \rightarrow \operatorname{Sym}^{k} \mathbb{R}^{n}$.

2.

(1) Let $L \in \operatorname{Diff}_{k}(M)$ and $J \subset C^{\infty}(M)$ is an ideal of function vanishing at $m \in M$. Show that $L\left(J^{k+1}\right) \subset J$.
(2) Generalized this result on powers of an arbitrary ideal.
(3) Show that differential operators are localizable, which means that restriction on an open chart $U \subset M$ is well defined. Moreover a differential operators preserve functions that vanish outside some open set U such that $V=M \backslash U$ satisfies $V=\stackrel{\bar{\circ}}{V}$.
(4) Let $L \in \operatorname{Diff}_{k}(M)$ and x_{i}, \ldots, x_{n} be local coordinates in a neighborhood $U \subset M$. Then operator $\left.L\right|_{U}$ can be presented in the form

$$
\left.L\right|_{U}=\sum_{|\sigma|=0}^{k} \alpha_{\sigma}(x) \frac{\partial^{\sigma}}{\partial x^{\sigma}}, \quad \alpha_{\sigma}(x) \in C^{\infty}(U)
$$

where $\sigma=\left(i_{1}, \ldots, i_{n}\right)$ is a multiindex,$|\sigma|=\sum_{s=1}^{n} i_{s}$
(5) Show that $\operatorname{Diff}_{k}(M) / \operatorname{Diff}_{k-1}(M)$ is isomorphic to the space of sections of $\operatorname{Sym}^{k} T(M)$

- Define $U(\mathfrak{g})$ the universal enveloping algebra of a Lie algebra of a Lie group G as a subalgebra $\operatorname{Diff}(G)^{G}$ of algebra of differential operators $\operatorname{Diff}(G)=\bigcup_{k \geq 0} \operatorname{Diff} k(G)$ that commute with right translations : $L_{g}(f(g h))=L_{g}(f)(g h)$.
- Filtration $\operatorname{Diff}_{k}(G)$ induces filtration in $\operatorname{Diff}(G)^{G}=U(\mathfrak{g})$, which we denote by $F_{k} U(\mathfrak{g})$

3.

(1) Show that there is a an isomorphism $F_{k} U(\mathfrak{g}) / F_{k-1} U(\mathfrak{g}) \cong \operatorname{Sym}^{k} \mathfrak{g}$ (Poincaré-BirkhoffWitt theorem).
(2) Show that $F_{1} U(\mathfrak{g}) \cong \mathbb{R}+\mathfrak{g}$.
(3) Show that $F_{1} U(\mathfrak{g})$ generates $U(\mathfrak{g})$
(4) Pick a basis $\left\{l_{i} \mid i=1 \operatorname{dim} \mathfrak{g}\right\}$, show that

$$
\begin{equation*}
l_{i} l_{j}-l_{j} l_{i}=\left[l_{i}, l_{j}\right] \tag{1}
\end{equation*}
$$

in $U(\mathfrak{g})$
(5) Show that (1) are defining relations in $U(\mathfrak{g})$.

