MAT 552. HOMEWORK 1 SPRING 2014 DUE TH FEB 6

1.

- (1) Prove that M is Hausdorff space \Leftrightarrow the diagonal $\Delta \subset M \times M$ is closed.
- (2) Show that a topological group G is Hausdorff \Leftrightarrow one point set $\{e\} \subset G$ where e is the unit is closed.
- (3) Recall that Lie group is a topological group, which is Hausdorff and which admits an atlas of neighborhoods homeomorphic to \mathbb{R}^n together with smoothness condition. Show that the Hausdorff property is automatically satisfied.

2. Let S^3 be a round sphere

$$S^3 = \{x \in \mathbb{R}^4 | x \cdot x = 1\}$$

Identify the space of pairs

$$X = \{(x, v) \in \mathbb{R}^4 \times \mathbb{R}^4 | x \cdot x = 1, x \cdot v = 0\}$$

with the tangent bundle to S^3 as it was defined in class.

Definition 1. Cayley transform is a map $Mat_n \xrightarrow{\#} Mat_n$

$$A^{\#} = (\mathrm{id} - A)(\mathrm{id} + A)^{-1}$$

defined for all matrices such that $\det(\operatorname{id} + A) \neq 0$. We denote the set of such matrices by R_n

3.

- (1) Prove that $\#\# = \text{id and } \#(R_n) \subset R_n$.
- (2) Fix a standard inner product on \mathbb{R}^n . Let $O(n) = \{A \in Mat_n | AA^t = id\}$. Show that $\#(O(n) \cap R_n) = \Lambda^2 \mathbb{R}^n \cap R_n$, where $\Lambda^2 \mathbb{R}^n$ is a linear space of skew-symmetric matrices.
- (3) Prove that O(n) is a Lie group.