1 Semifields
Definition 1 A semifield P = (P, @, ):
1. (P,-) is an abelian (multiplicative) group.

2. @ is an auziliary addition: commutative, associative, multiplication dis-

tributes over @.

Exercise 1 Show that semi-field P is torsion-free as a multiplicative group.

Why doesn’t your arqument prove a similar result about fields?

Exercise 2 Show that if a semi-field contains a neutral element 0 for additive

operation and 0 is multiplicatively absorbing
0a=a0=0
then this semi-field consists of one element
Exercise 3 Give two examples of non injective homomorphisms of semi-fields

Exercise 4 FExplain why a concept of kernel is undefined for homorphisms of

semi-fields.

A semi-field Tropmi, as a set coincides with Z. By definition a . b=a+0b,
rop

a ® b =min(a,b). Similarly we define Tropmax.
Exercise 5 Show that Tropmin = Tropmax

Let Zlu1,...,up]>0 be the set of nonzero polynomials in uq,...,u, with non-

negative coeflicients.

A free semi-field P(uq,...,uy) is by definition a set of equivalence classes of
expression g, where P,Q € Z[ug, ..., up]>0-
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if there is P”,Q",a,a’ such that P =aP =ad'P',Q" = aQ = a'Q’.



Exercise 6 Show that for any semi-field P’ and a collection vy, ..., v, there is

a homomorphism
Y P(ur, . un) = PLap(u) = v

Let k be a ring. Then k[P] is the group algebra of the multiplicative group
of the semi-field P.

2 Cluster algebras - foundations

Definition 2 B = (b;;) is an nxn integer matriz is skew-symmetrizable if there
exists a diagonal matriz D with positive diagonal entries such that DBD™! is

skew-symmetric

Exercise 7 Show that B is skew-symmetrizable iff there exist positive integers

dy,...,dy such that d;b;; = —d;bj; for all i and j.

Definition 3 An exchange matriz is a skew-symmetrizable n X n matrix B =

(bij) with integer entries

Let F be purely transcendental extension (of transcendental degree n) of the

field of fractions Q(P) of Q[P].
Definition 4 A labeled seed is a triple (x,y, B), where
e B is an n x n exchange matriz,
o y=(y1,...,Yn) is a tuple of elements of P called coefficients, and

o &= (x1,...,2,) is a tuple (or cluster) of algebraically independent (over

Q(P)) elements of F called cluster variables
A pair (y, B) is called a Y -seed.

Definition 5 Let B = (b;j) be an exchange matriz. Write [a]4 for max(a,0).
The mutation of B in direction k is the matriz
ij

bij + sign(bg;)[birbrj]+, otherwise



Exercise 8 Show that p;(B) is an exchange matriz,e.g. it is skew-symmetrizable.
Exercise 9 Show that matriz mutation can be equivalently defined by
—biyy, if ke {i,j}

bij + [bik]+-brj + bik[br;]+, otherwise
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Definition 6 Let (y, B) be a Y-seed. The mutation of (y, B) in direction k is
the Y-seed (y', B') = px(y, B), where B' = pi(B) and y' is the tuple (y1,...,y),)
given by
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Definition 7 Let (z,y, B) be a labeled seed. The mutation of (x,y, B) in direc-
tion k is the labeled seed (a',y', B') = px(x,y, B), where (y', B') is the mutation
of (y, B) and where ' is the cluster (¥}, ..., ;) with v, = z; for j #k, and
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Exercise 10 Show that each mutation py is an involution on labeled seeds.

Applying several mutations f;, - - - f4;, to a labelled seed (z,y, B) we get a new
labelled seed. Let A,,(z,y, B) be the set of all such seeds.

Definition 8 A cluster algebra A(x,y, B) is a subalgebra in Q(P)(x1,...,zy)

generated by all cluster variables in A, (x,y, B).

Definition 9 Let B be (m+n)xn matriz, such that the top nxn matriz is skew-
symmetrizable and T = (X1 ..., Tp, Tntl,s -, Tntm). Then we say that (T, E)
is a labelled seed for a cluster algebra of geometric type. Collection (x1,...,x,)
is known as exchangeable variables; (Tp41,-..,Tntm) as frozen variables or
"coefficients”. Notation: (ui,...,um) is occasionally used for frozen variables.
Let 7' = p(), B = uk(g), k=1,...,n, Then uk(é) is defined as inmn xn
case; v = x5, j # k
ngbik]i» +11 xg_b““]*
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Definition 10 Let A, (x, B) be the set of mutations of geometric seed (z, B).
By definition cluster algebra of geometric type as as a subalgebra in Q(x1, ..., Tpim)

generated by cluster variables in A, (xz, B).

Exercise 11 Let P a tropical semi-field on n generators yi, ..., Yn. Show that
the homomorphism of fields ¢ : Q(x1, ..., Tn, Y1, Yn) = Q(T1, ..o Tpy Tig 1y - oy Tt
identical on x1,...,x, and on yi,...,Yy, defined by the formula:

m
bn 1,7
d(y;) = [ [
i=1
18 compatible with mutations.

Exercise 12 Consider the cluster algebra of geometric type defned by the initial

labeled seed given by x = (x1, T2, u1, us,u3) and

0 2
-1 0
B=| -1 0
1 0
1 2

Compute all cluster variables generating this cluster algebra.



3 Root systems

Definition 11 Given a nonzero vector « in FEuclidean space V , the reflection

in the hyperplane orthogonal to « is o, given by

ou(T) =2 — a . (@, z)
a() 2< <O[,Oé>, > <OZ,O(> 2<C¥,O[>

(1)

Define ¥ =2 taay- Then oo(z) = (¥, 7)a

Definition 12 A root system is a collection ® of nonzero vectors (called roots)

in a real vector space V' such that:
1. ® is finite,
2.0¢ ® and @ spans V,
3. For each root 3, the reflection og permutes @,

4. Given a line L through the origin, either LN ® is empty or LN® = {+}

for some B (reduced system condition),
5. (aVv,B) € Z, for each o, B € ®. (crystallographic condition,).

Definition 13 Two root systems ® C V and ® C V' are isomoprhic if there
is an isometry f:V — V with f(®) = D'

Exercise 13 Describe all not necessarily reduced finite one-dimensional crys-

tallographic root systems up to an isomorphism.

Exercise 14 Let 0 be an angle between vectors o, 8. Show that (", 8){(BY,a) =
4cos? 6 and find possible values of 8, (o, 8), (BY,a) and 4cos® 0 for vectors in

a finite crystallographic root system.

Exercise 15 Let «, 8 be two non proportional vectors in a finite crystallographic
root system ®. Show that if (o, B) < 0 then a+ 8 € ®. If (o, ) > 0 then
a—ped.



Definition 14 Let «, 8 be a pair of linearly independent roots. A subset {v €
Dy = B+ka(k € Z)} of a root system ® is called an a-series of roots, containing
B. In particular if § —a & ® then B+ a € O iff (B,a) <O0.

Exercise 16 An a-series of roots, containing 3 has a form {f+ka|—p <k <

q}, where p,q >0 and p —q = (", B).

Definition 15 Ezercise 17 We define a collection ® = {aV]a € &} C V.
Prove that ®V is a root system.

(Direct sums). Let ® and @' be root systems in'V and V', respectively. Then
® U D’ is a root system in the vector space VO V'. A root system is reducible if

it can be written as such an (orthogonal) direct sum, and irreducible otherwise.

Definition 16 Let ® be a root system. Then the Weyl group of ® is the group

generated by o, for all o € P.

Exercise 18 Is the Weyl group well-defined (i.e., do isomorphic root systems

give isomorphic Weyl groups?).
Exercise 19 Is the Weyl group of a finite root system finite?

Exercise 20 What are the Weyl groups of the four crystallographic root systems

in R2?

Exercise 21 Find a root system having the symmetric group on four letters,

Sy, as its Weyl group.

Definition 17 Let ® C V be a root system, and choosev € V . Define ®*(v) =
{a € ®[{a,v) > 0}. We say that v is regular if ® = £®T(v), and singular

otherwise. If v is regular, we call ®* (v) a positive system for ®.
Exercise 22 Why does a regular v exist?

Let v be regular we set ®* = ®*(v). In general ®* depends on the choice of v.

Definition 18 The set II(®) C ®T is formed by elements « that can not be

presented as a sum o = (3, 3y € OT.



Exercise 23 Show that any o € ®T can be written in the form a = Zﬁen(<1>+) cgf,

where cg are nonnegative integers.

Exercise 24 If a, 3 € TI(®T1) and o # B, then a — 3 # ® and (o, 8) < 0.

Exercise 25 Let oy, ..., a be a set of vectors in V' such that (a;, a5) < 0,0 # j.
Suppose we have a nontrivial linear combination with positive c;, cg :
k l
Zcrair — Z cuaj, =0
r=1 r’'=1
with all i1, ...,1k, 1, .., 51 distinct. Then
k l /
1. Z’I':l Crair = Zr:l C?"ajT = 0'
2. (i, ,) =0,r=1,... ko' =1,...,1
Exercise 26 Let ay,...,a € V be a set of linearly independent vectors. Show

that theres is § € V such that (o;8) > 0,i=1,...,k

Definition 19 The n-th Catalan number C, is the number of full binary planar

trees with n + 1 leaves.

Exercise 27 Prove the formula

(2n)!
nl(n +1)!

n =

Exercise 28 Prove the Ptolemy’s theorem:let Aapcp be a quadrilateral whose

vertices lie on a common circle. Then

|AC||BD| = |AB||CD| + |BC||AD|



