
1 Semifields

Definition 1 A semifield P = (P,⊕, ·):

1. (P, ·) is an abelian (multiplicative) group.

2. ⊕ is an auxiliary addition: commutative, associative, multiplication dis-

tributes over ⊕.

Exercise 1 Show that semi-field P is torsion-free as a multiplicative group.

Why doesn’t your argument prove a similar result about fields?

Exercise 2 Show that if a semi-field contains a neutral element 0 for additive

operation and 0 is multiplicatively absorbing

0a = a0 = 0

then this semi-field consists of one element

Exercise 3 Give two examples of non injective homomorphisms of semi-fields

Exercise 4 Explain why a concept of kernel is undefined for homorphisms of

semi-fields.

A semi-field Tropmin as a set coincides with Z. By definition a ·
Trop

b = a + b,

a⊕ b = min(a, b). Similarly we define Tropmax.

Exercise 5 Show that Tropmin
∼= Tropmax

Let Z[u1, . . . , un]≥0 be the set of nonzero polynomials in u1, . . . , un with non-

negative coefficients.

A free semi-field P(u1, . . . , un) is by definition a set of equivalence classes of

expression P
Q , where P,Q ∈ Z[u1, . . . , un]≥0.

P

Q
∼ P ′

Q′

if there is P ′′, Q′′, a, a′ such that P ′′ = aP = a′P ′, Q′′ = aQ = a′Q′.
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Exercise 6 Show that for any semi-field P′ and a collection v1, . . . , vn there is

a homomorphism

ψ : P(u1, . . . , un)→ P′, ψ(ui) = vi

Let k be a ring. Then k[P] is the group algebra of the multiplicative group

of the semi-field P.

2 Cluster algebras - foundations

Definition 2 B = (bij) is an n×n integer matrix is skew-symmetrizable if there

exists a diagonal matrix D with positive diagonal entries such that DBD−1 is

skew-symmetric

Exercise 7 Show that B is skew-symmetrizable iff there exist positive integers

d1, . . . , dn such that dibij = −djbji for all i and j.

Definition 3 An exchange matrix is a skew-symmetrizable n × n matrix B =

(bij) with integer entries

Let F be purely transcendental extension (of transcendental degree n) of the

field of fractions Q(P) of Q[P].

Definition 4 A labeled seed is a triple (x, y,B), where

• B is an n× n exchange matrix,

• y = (y1, . . . , yn) is a tuple of elements of P called coefficients, and

• x = (x1, . . . , xn) is a tuple (or cluster) of algebraically independent (over

Q(P)) elements of F called cluster variables

A pair (y,B) is called a Y -seed.

Definition 5 Let B = (bij) be an exchange matrix. Write [a]+ for max(a, 0).

The mutation of B in direction k is the matrix

b′ij =

 −bij , if k ∈ {i, j}

bij + sign(bkj)[bikbkj ]+, otherwise
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Exercise 8 Show that µk(B) is an exchange matrix,e.g. it is skew-symmetrizable.

Exercise 9 Show that matrix mutation can be equivalently defined by

b′ij =

 −bij , if k ∈ {i, j}

bij + [bik]+bkj + bik[bkj ]+, otherwise

Definition 6 Let (y,B) be a Y -seed. The mutation of (y,B) in direction k is

the Y-seed (y′, B′) = µk(y,B), where B′ = µk(B) and y′ is the tuple (y′1, . . . , y
′
n)

given by

y′j =

 y−1
k , if j = k

yjy
[bkj ]+
k (yk ⊕ 1)−bkj , if j 6= k

Definition 7 Let (x, y,B) be a labeled seed. The mutation of (x, y,B) in direc-

tion k is the labeled seed (x′, y′, B′) = µk(x, y,B), where (y′, B′) is the mutation

of (y,B) and where x′ is the cluster (x′1, . . . , x
′
n) with x′j = xj for j 6= k, and

x′k =
yk

∏
x

[bik]+
i +

∏
x

[−bik]+
i

(yk ⊕ 1)xk

Exercise 10 Show that each mutation µk is an involution on labeled seeds.

Applying several mutations µi1 · · ·µil to a labelled seed (x, y,B) we get a new

labelled seed. Let ∆n(x, y,B) be the set of all such seeds.

Definition 8 A cluster algebra A(x, y,B) is a subalgebra in Q(P)(x1, . . . , xn)

generated by all cluster variables in ∆n(x, y,B).

Definition 9 Let B̃ be (m+n)×n matrix, such that the top n×n matrix is skew-

symmetrizable and x̃ = (x1 . . . , xn, xn+1, . . . , xn+m). Then we say that (x̃, B̃)

is a labelled seed for a cluster algebra of geometric type. Collection (x1, . . . , xn)

is known as exchangeable variables; (xn+1, . . . , xn+m) as frozen variables or

”coefficients”. Notation: (u1, . . . , um) is occasionally used for frozen variables.

Let x̃′ = µk(x̃), B̃′ = µk(B̃), k = 1, . . . , n, Then µk(B̃) is defined as in n×n

case; x′j = xj , j 6= k

x′k =

∏
x

[bik]+
i +

∏
x

[−bik]+
i

xk
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Definition 10 Let ∆n(x,B) be the set of mutations of geometric seed (x,B).

By definition cluster algebra of geometric type as as a subalgebra in Q(x1, . . . , xn+m)

generated by cluster variables in ∆n(x,B).

Exercise 11 Let P a tropical semi-field on n generators y1, . . . , yn. Show that

the homomorphism of fields φ : Q(x1, . . . , xn, y1, . . . , yn)→ Q(x1, . . . , xn, xn+1, . . . , xn+m)

identical on x1, . . . , xn and on y1, . . . , yn defined by the formula:

φ(yj) =

m∏
i=1

x
bn+i,j

n+i

is compatible with mutations.

Exercise 12 Consider the cluster algebra of geometric type defned by the initial

labeled seed given by x = (x1, x2, u1, u2, u3) and

B =



0 2

−1 0

−1 0

1 0

1 2


Compute all cluster variables generating this cluster algebra.
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3 Root systems

Definition 11 Given a nonzero vector α in Euclidean space V , the reflection

in the hyperplane orthogonal to α is σα, given by

σα(x) = x− 2〈 α√
〈α, α〉

, x〉 · α√
〈α, α〉

= x− 2
〈α, x〉
〈α, α〉

(1)

Define α∨ = 2 α
〈α,α〉 . Then σα(x) = 〈α∨, x〉α

Definition 12 A root system is a collection Φ of nonzero vectors (called roots)

in a real vector space V such that:

1. Φ is finite,

2. 0 /∈ Φ and Φ spans V ,

3. For each root β, the reflection σβ permutes Φ,

4. Given a line L through the origin, either L∩Φ is empty or L∩Φ = {±β}

for some β (reduced system condition),

5. 〈α∨, β〉 ∈ Z, for each α, β ∈ Φ. (crystallographic condition).

Definition 13 Two root systems Φ ⊂ V and Φ′ ⊂ V ′ are isomoprhic if there

is an isometry f : V → V with f(Φ) = Φ′.

Exercise 13 Describe all not necessarily reduced finite one-dimensional crys-

tallographic root systems up to an isomorphism.

Exercise 14 Let θ be an angle between vectors α, β. Show that 〈α∨, β〉〈β∨, α〉 =

4 cos2 θ and find possible values of θ, 〈α∨, β〉, 〈β∨, α〉 and 4 cos2 θ for vectors in

a finite crystallographic root system.

Exercise 15 Let α, β be two non proportional vectors in a finite crystallographic

root system Φ. Show that if 〈α, β〉 < 0 then α + β ∈ Φ. If 〈α, β〉 > 0 then

α− β ∈ Φ.
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Definition 14 Let α, β be a pair of linearly independent roots. A subset {γ ∈

Φ|γ = β+kα(k ∈ Z)} of a root system Φ is called an α-series of roots, containing

β. In particular if β − α /∈ Φ then β + α ∈ Φ iff 〈β, α〉 < 0.

Exercise 16 An α-series of roots, containing β has a form {β+ kα| − p ≤ k ≤

q}, where p, q ≥ 0 and p− q = 〈α∨, β〉.

Definition 15 Exercise 17 We define a collection Φ∨ = {α∨|α ∈ Φ} ⊂ V .

Prove that Φ∨ is a root system.

(Direct sums). Let Φ and Φ′ be root systems in V and V ′, respectively. Then

Φ∪Φ′ is a root system in the vector space V ⊕ V ′. A root system is reducible if

it can be written as such an (orthogonal) direct sum, and irreducible otherwise.

Definition 16 Let Φ be a root system. Then the Weyl group of Φ is the group

generated by σα for all α ∈ Φ.

Exercise 18 Is the Weyl group well-defined (i.e., do isomorphic root systems

give isomorphic Weyl groups?).

Exercise 19 Is the Weyl group of a finite root system finite?

Exercise 20 What are the Weyl groups of the four crystallographic root systems

in R2?

Exercise 21 Find a root system having the symmetric group on four letters,

S4, as its Weyl group.

Definition 17 Let Φ ⊂ V be a root system, and choose v ∈ V . Define Φ+(v) =

{α ∈ Φ|〈α, v〉 > 0}. We say that v is regular if Φ = ±Φ+(v), and singular

otherwise. If v is regular, we call Φ+(v) a positive system for Φ.

Exercise 22 Why does a regular v exist?

Let v be regular we set Φ+ = Φ+(v). In general Φ+ depends on the choice of v.

Definition 18 The set Π(Φ+) ⊂ Φ+ is formed by elements α that can not be

presented as a sum α = βγ, βγ ∈ Φ+.
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Exercise 23 Show that any α ∈ Φ+ can be written in the form α =
∑
β∈Π(Φ+) cββ,

where cβ are nonnegative integers.

Exercise 24 If α, β ∈ Π(Φ+) and α 6= β, then α− β 6= Φ and 〈α, β〉 ≤ 0.

Exercise 25 Let α1, . . . , αk be a set of vectors in V such that 〈αi, αj〉 ≤ 0, i 6= j.

Suppose we have a nontrivial linear combination with positive ci, c
′
j:

k∑
r=1

crαir −
l∑

r′=1

c′r′αjr′ = 0

with all i1, . . . , ik, j1, . . . , jl distinct. Then

1.
∑k
r=1 crαir =

∑l
r=1 c

′
rαjr = 0.

2. 〈αir , αjr′ 〉 = 0, r = 1, . . . , k, r′ = 1, . . . , l

Exercise 26 Let α1, . . . , αk ∈ V be a set of linearly independent vectors. Show

that theres is β ∈ V such that 〈αiβ〉 > 0, i = 1, . . . , k

Definition 19 The n-th Catalan number Cn is the number of full binary planar

trees with n+ 1 leaves.

Exercise 27 Prove the formula

Cn =
(2n)!

n!(n+ 1)!

Exercise 28 Prove the Ptolemy’s theorem:let ∆ABCD be a quadrilateral whose

vertices lie on a common circle. Then

|AC||BD| = |AB||CD|+ |BC||AD|
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