1 Semifields

Definition $1 A$ semifield $\mathbb{P}=(\mathbb{P}, \oplus, \cdot)$:

1. (\mathbb{P}, \cdot) is an abelian (multiplicative) group.
2. \oplus is an auxiliary addition: commutative, associative, multiplication distributes over \oplus.

Exercise 1 Show that semi-field \mathbb{P} is torsion-free as a multiplicative group. Why doesn't your argument prove a similar result about fields?

Exercise 2 Show that if a semi-field contains a neutral element 0 for additive operation and 0 is multiplicatively absorbing

$$
0 a=a 0=0
$$

then this semi-field consists of one element

Exercise 3 Give two examples of non injective homomorphisms of semi-fields

Exercise 4 Explain why a concept of kernel is undefined for homorphisms of semi-fields.

A semi-field $\operatorname{Trop}_{\min }$ as a set coincides with \mathbb{Z}. By definition $a_{\text {Trop }}^{.} b=a+b$, $a \oplus b=\min (a, b)$. Similarly we define Trop $_{\max }$.

Exercise 5 Show that Trop $_{\min } \cong$ Trop $_{\max }$
Let $\mathbb{Z}\left[u_{1}, \ldots, u_{n}\right]_{\geq 0}$ be the set of nonzero polynomials in u_{1}, \ldots, u_{n} with nonnegative coefficients.

A free semi-field $\mathbb{P}\left(u_{1}, \ldots, u_{n}\right)$ is by definition a set of equivalence classes of expression $\frac{P}{Q}$, where $P, Q \in \mathbb{Z}\left[u_{1}, \ldots, u_{n}\right]_{\geq 0}$.

$$
\frac{P}{Q} \sim \frac{P^{\prime}}{Q^{\prime}}
$$

if there is $P^{\prime \prime}, Q^{\prime \prime}, a, a^{\prime}$ such that $P^{\prime \prime}=a P=a^{\prime} P^{\prime}, Q^{\prime \prime}=a Q=a^{\prime} Q^{\prime}$.

Exercise 6 Show that for any semi-field \mathbb{P}^{\prime} and a collection v_{1}, \ldots, v_{n} there is a homomorphism

$$
\psi: \mathbb{P}\left(u_{1}, \ldots, u_{n}\right) \rightarrow \mathbb{P}^{\prime}, \psi\left(u_{i}\right)=v_{i}
$$

Let k be a ring. Then $k[\mathbb{P}]$ is the group algebra of the multiplicative group of the semi-field \mathbb{P}.

2 Cluster algebras - foundations

Definition $2 B=\left(b_{i j}\right)$ is an $n \times n$ integer matrix is skew-symmetrizable if there exists a diagonal matrix D with positive diagonal entries such that $D B D^{-1}$ is skew-symmetric

Exercise 7 Show that B is skew-symmetrizable iff there exist positive integers d_{1}, \ldots, d_{n} such that $d_{i} b_{i j}=-d_{j} b_{j i}$ for all i and j.

Definition 3 An exchange matrix is a skew-symmetrizable $n \times n$ matrix $B=$ $\left(b_{i j}\right)$ with integer entries

Let F be purely transcendental extension (of transcendental degree n) of the field of fractions $\mathbb{Q}(\mathbb{P})$ of $\mathbb{Q}[\mathbb{P}]$.

Definition $4 A$ labeled seed is a triple (x, y, B), where

- B is an $n \times n$ exchange matrix,
- $y=\left(y_{1}, \ldots, y_{n}\right)$ is a tuple of elements of \mathbb{P} called coefficients, and
- $x=\left(x_{1}, \ldots, x_{n}\right)$ is a tuple (or cluster) of algebraically independent (over $\mathbb{Q}(\mathbb{P})$) elements of F called cluster variables

A pair (y, B) is called a Y-seed.
Definition 5 Let $B=\left(b_{i j}\right)$ be an exchange matrix. Write $[a]_{+}$for $\max (a, 0)$.
The mutation of B in direction k is the matrix

$$
b_{i j}^{\prime}=\left\{\begin{array}{l}
-b_{i j}, \quad \text { if } k \in\{i, j\} \\
b_{i j}+\operatorname{sign}\left(b_{k j}\right)\left[b_{i k} b_{k j}\right]_{+}, \text {otherwise }
\end{array}\right.
$$

Exercise 8 Show that $\mu_{k}(B)$ is an exchange matrix,e.g. it is skew-symmetrizable.

Exercise 9 Show that matrix mutation can be equivalently defined by

$$
b_{i j}^{\prime}=\left\{\begin{array}{l}
-b_{i j}, \quad \text { if } k \in\{i, j\} \\
b_{i j}+\left[b_{i k}\right]_{+} b_{k j}+b_{i k}\left[b_{k j}\right]_{+}, \text {otherwise }
\end{array}\right.
$$

Definition 6 Let (y, B) be a Y-seed. The mutation of (y, B) in direction k is the Y-seed $\left(y^{\prime}, B^{\prime}\right)=\mu_{k}(y, B)$, where $B^{\prime}=\mu_{k}(B)$ and y^{\prime} is the tuple $\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$ given by

$$
y_{j}^{\prime}=\left\{\begin{array}{l}
y_{k}^{-1}, \quad \text { if } j=k \\
y_{j} y_{k}^{\left[b_{k j}\right]_{+}}\left(y_{k} \oplus 1\right)^{-b_{k j}}, \text { if } j \neq k
\end{array}\right.
$$

Definition 7 Let (x, y, B) be a labeled seed. The mutation of (x, y, B) in direction k is the labeled seed $\left(x^{\prime}, y^{\prime}, B^{\prime}\right)=\mu_{k}(x, y, B)$, where $\left(y^{\prime}, B^{\prime}\right)$ is the mutation of (y, B) and where x^{\prime} is the cluster $\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ with $x_{j}^{\prime}=x_{j}$ for $j \neq k$, and

$$
x_{k}^{\prime}=\frac{y_{k} \prod x_{i}^{\left[b_{i k}\right]_{+}}+\prod x_{i}^{\left[-b_{i k}\right]_{+}}}{\left(y_{k} \oplus 1\right) x_{k}}
$$

Exercise 10 Show that each mutation μ_{k} is an involution on labeled seeds.

Applying several mutations $\mu_{i_{1}} \cdots \mu_{i_{l}}$ to a labelled seed (x, y, B) we get a new labelled seed. Let $\Delta_{n}(x, y, B)$ be the set of all such seeds.

Definition 8 cluster algebra $A(x, y, B)$ is a subalgebra in $\mathbb{Q}(\mathbb{P})\left(x_{1}, \ldots, x_{n}\right)$ generated by all cluster variables in $\Delta_{n}(x, y, B)$.

Definition 9 Let \widetilde{B} be $(m+n) \times n$ matrix, such that the top $n \times n$ matrix is skewsymmetrizable and $\widetilde{x}=\left(x_{1} \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right)$. Then we say that $(\widetilde{x}, \widetilde{B})$ is a labelled seed for a cluster algebra of geometric type. Collection $\left(x_{1}, \ldots, x_{n}\right)$ is known as exchangeable variables; $\left(x_{n+1}, \ldots, x_{n+m}\right)$ as frozen variables or "coefficients". Notation: $\left(u_{1}, \ldots, u_{m}\right)$ is occasionally used for frozen variables.

Let $\widetilde{x}^{\prime}=\mu_{k}(\widetilde{x}), \widetilde{B}^{\prime}=\mu_{k}(\widetilde{B}), k=1, \ldots, n$, Then $\mu_{k}(\widetilde{B})$ is defined as in $n \times n$ case; $x_{j}^{\prime}=x_{j}, j \neq k$

$$
x_{k}^{\prime}=\frac{\prod x_{i}^{\left[b_{i k}\right]_{+}}+\prod x_{i}^{\left[-b_{i k}\right]_{+}}}{x_{k}}
$$

Definition 10 Let $\Delta_{n}(x, B)$ be the set of mutations of geometric seed (x, B).
By definition cluster algebra of geometric type as as a subalgebra in $\mathbb{Q}\left(x_{1}, \ldots, x_{n+m}\right)$ generated by cluster variables in $\Delta_{n}(x, B)$.

Exercise 11 Let \mathbb{P} a tropical semi-field on n generators y_{1}, \ldots, y_{n}. Show that the homomorphism of fields $\phi: \mathbb{Q}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \rightarrow \mathbb{Q}\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right)$ identical on x_{1}, \ldots, x_{n} and on y_{1}, \ldots, y_{n} defined by the formula:

$$
\phi\left(y_{j}\right)=\prod_{i=1}^{m} x_{n+i}^{b_{n+i, j}}
$$

is compatible with mutations.

Exercise 12 Consider the cluster algebra of geometric type defned by the initial labeled seed given by $x=\left(x_{1}, x_{2}, u_{1}, u_{2}, u_{3}\right)$ and

$$
B=\left(\begin{array}{cc}
0 & 2 \\
-1 & 0 \\
-1 & 0 \\
1 & 0 \\
1 & 2
\end{array}\right)
$$

Compute all cluster variables generating this cluster algebra.

3 Root systems

Definition 11 Given a nonzero vector α in Euclidean space V, the reflection in the hyperplane orthogonal to α is σ_{α}, given by

$$
\begin{equation*}
\sigma_{\alpha}(x)=x-2\left\langle\frac{\alpha}{\sqrt{\langle\alpha, \alpha\rangle}}, x\right\rangle \cdot \frac{\alpha}{\sqrt{\langle\alpha, \alpha\rangle}}=x-2 \frac{\langle\alpha, x\rangle}{\langle\alpha, \alpha\rangle} \tag{1}
\end{equation*}
$$

Define $\alpha^{\vee}=2 \frac{\alpha}{\langle\alpha, \alpha\rangle}$. Then $\sigma_{\alpha}(x)=\left\langle\alpha^{\vee}, x\right\rangle \alpha$
Definition 12 A root system is a collection Φ of nonzero vectors (called roots) in a real vector space V such that:

1. Φ is finite,
2. $0 \notin \Phi$ and Φ spans V,
3. For each root β, the reflection σ_{β} permutes Φ,
4. Given a line L through the origin, either $L \cap \Phi$ is empty or $L \cap \Phi=\{ \pm \beta\}$ for some β (reduced system condition),
5. $\left\langle\alpha^{\vee}, \beta\right\rangle \in \mathbb{Z}$, for each $\alpha, \beta \in \Phi$. (crystallographic condition).

Definition 13 Two root systems $\Phi \subset V$ and $\Phi^{\prime} \subset V^{\prime}$ are isomoprhic if there is an isometry $f: V \rightarrow V$ with $f(\Phi)=\Phi^{\prime}$.

Exercise 13 Describe all not necessarily reduced finite one-dimensional crystallographic root systems up to an isomorphism.

Exercise 14 Let θ be an angle between vectors α, β. Show that $\left\langle\alpha^{\vee}, \beta\right\rangle\left\langle\beta^{\vee}, \alpha\right\rangle=$ $4 \cos ^{2} \theta$ and find possible values of $\theta,\left\langle\alpha^{\vee}, \beta\right\rangle,\left\langle\beta^{\vee}, \alpha\right\rangle$ and $4 \cos ^{2} \theta$ for vectors in a finite crystallographic root system.

Exercise 15 Let α, β be two non proportional vectors in a finite crystallographic root system Φ. Show that if $\langle\alpha, \beta\rangle<0$ then $\alpha+\beta \in \Phi$. If $\langle\alpha, \beta\rangle>0$ then $\alpha-\beta \in \Phi$.

Definition 14 Let α, β be a pair of linearly independent roots. A subset $\{\gamma \in$ $\Phi \mid \gamma=\beta+k \alpha(k \in \mathbb{Z})\}$ of a root system Φ is called an α-series of roots, containing β. In particular if $\beta-\alpha \notin \Phi$ then $\beta+\alpha \in \Phi$ iff $\langle\beta, \alpha\rangle<0$.

Exercise 16 An α-series of roots, containing β has a form $\{\beta+k \alpha \mid-p \leq k \leq$ $q\}$, where $p, q \geq 0$ and $p-q=\left\langle\alpha^{\vee}, \beta\right\rangle$.

Definition 15 Exercise 17 We define a collection $\Phi^{\vee}=\left\{\alpha^{\vee} \mid \alpha \in \Phi\right\} \subset V$. Prove that Φ^{\vee} is a root system.
(Direct sums). Let Φ and Φ^{\prime} be root systems in V and V^{\prime}, respectively. Then $\Phi \cup \Phi^{\prime}$ is a root system in the vector space $V \oplus V^{\prime}$. A root system is reducible if it can be written as such an (orthogonal) direct sum, and irreducible otherwise.

Definition 16 Let Φ be a root system. Then the Weyl group of Φ is the group generated by σ_{α} for all $\alpha \in \Phi$.

Exercise 18 Is the Weyl group well-defined (i.e., do isomorphic root systems give isomorphic Weyl groups?).

Exercise 19 Is the Weyl group of a finite root system finite?
Exercise 20 What are the Weyl groups of the four crystallographic root systems in \mathbb{R}^{2} ?

Exercise 21 Find a root system having the symmetric group on four letters, S_{4}, as its Weyl group.

Definition 17 Let $\Phi \subset V$ be a root system, and choose $v \in V$. Define $\Phi^{+}(v)=$ $\{\alpha \in \Phi \mid\langle\alpha, v\rangle>0\}$. We say that v is regular if $\Phi= \pm \Phi^{+}(v)$, and singular otherwise. If v is regular, we call $\Phi^{+}(v)$ a positive system for Φ.

Exercise 22 Why does a regular v exist?

Let v be regular we set $\Phi^{+}=\Phi^{+}(v)$. In general Φ^{+}depends on the choice of v.
Definition 18 The set $\Pi\left(\Phi^{+}\right) \subset \Phi^{+}$is formed by elements α that can not be presented as a sum $\alpha=\beta \gamma, \beta \gamma \in \Phi^{+}$.

Exercise 23 Show that any $\alpha \in \Phi^{+}$can be written in the form $\alpha=\sum_{\beta \in \Pi\left(\Phi^{+}\right)} c_{\beta} \beta$, where c_{β} are nonnegative integers.

Exercise 24 If $\alpha, \beta \in \Pi\left(\Phi^{+}\right)$and $\alpha \neq \beta$, then $\alpha-\beta \neq \Phi$ and $\langle\alpha, \beta\rangle \leq 0$.

Exercise 25 Let $\alpha_{1}, \ldots, \alpha_{k}$ be a set of vectors in V such that $\left\langle\alpha_{i}, \alpha_{j}\right\rangle \leq 0, i \neq j$.
Suppose we have a nontrivial linear combination with positive c_{i}, c_{j}^{\prime} :

$$
\sum_{r=1}^{k} c_{r} \alpha_{i_{r}}-\sum_{r^{\prime}=1}^{l} c_{r^{\prime}}^{\prime} \alpha_{j_{r^{\prime}}}=0
$$

with all $i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{l}$ distinct. Then

1. $\sum_{r=1}^{k} c_{r} \alpha_{i_{r}}=\sum_{r=1}^{l} c_{r}^{\prime} \alpha_{j_{r}}=0$.
2. $\left\langle\alpha_{i_{r}}, \alpha_{j_{r^{\prime}}}\right\rangle=0, r=1, \ldots, k, r^{\prime}=1, \ldots, l$

Exercise 26 Let $\alpha_{1}, \ldots, \alpha_{k} \in V$ be a set of linearly independent vectors. Show that theres is $\beta \in V$ such that $\left\langle\alpha_{i} \beta\right\rangle>0, i=1, \ldots, k$

Definition 19 The n-th Catalan number C_{n} is the number of full binary planar trees with $n+1$ leaves.

Exercise 27 Prove the formula

$$
C_{n}=\frac{(2 n)!}{n!(n+1)!}
$$

Exercise 28 Prove the Ptolemy's theorem:let $\Delta_{A B C D}$ be a quadrilateral whose vertices lie on a common circle. Then

$$
|A C||B D|=|A B \| C D|+|B C||A D|
$$

