1 Semifields

Definition 1 A semifield $\mathbb{P} = (\mathbb{P}, \oplus, \cdot)$:

- 1. (\mathbb{P}, \cdot) is an abelian (multiplicative) group.
- 2. \oplus is an auxiliary addition: commutative, associative, multiplication distributes over \oplus .

Exercise 1 Show that semi-field \mathbb{P} is torsion-free as a multiplicative group. Why doesn't your argument prove a similar result about fields?

Exercise 2 Show that if a semi-field contains a neutral element 0 for additive operation and 0 is multiplicatively absorbing

0a = a0 = 0

then this semi-field consists of one element

Exercise 3 Give two examples of non injective homomorphisms of semi-fields

Exercise 4 Explain why a concept of kernel is undefined for homorphisms of semi-fields.

A semi-field $Trop_{\min}$ as a set coincides with \mathbb{Z} . By definition $a \underset{Trop}{\cdot} b = a + b$, $a \oplus b = \min(a, b)$. Similarly we define $Trop_{\max}$.

Exercise 5 Show that $Trop_{\min} \cong Trop_{\max}$

Let $\mathbb{Z}[u_1, \ldots, u_n]_{\geq 0}$ be the set of nonzero polynomials in u_1, \ldots, u_n with non-negative coefficients.

A free semi-field $\mathbb{P}(u_1, \ldots, u_n)$ is by definition a set of equivalence classes of expression $\frac{P}{Q}$, where $P, Q \in \mathbb{Z}[u_1, \ldots, u_n]_{\geq 0}$.

$$\frac{P}{Q} \sim \frac{P'}{Q'}$$

if there is P'', Q'', a, a' such that P'' = aP = a'P', Q'' = aQ = a'Q'.

Exercise 6 Show that for any semi-field \mathbb{P}' and a collection v_1, \ldots, v_n there is a homomorphism

$$\psi : \mathbb{P}(u_1, \ldots, u_n) \to \mathbb{P}', \psi(u_i) = v_i$$

Let k be a ring. Then $k[\mathbb{P}]$ is the group algebra of the multiplicative group of the semi-field \mathbb{P} .

2 Cluster algebras - foundations

Definition 2 $B = (b_{ij})$ is an $n \times n$ integer matrix is skew-symmetrizable if there exists a diagonal matrix D with positive diagonal entries such that DBD^{-1} is skew-symmetric

Exercise 7 Show that B is skew-symmetrizable iff there exist positive integers d_1, \ldots, d_n such that $d_i b_{ij} = -d_j b_{ji}$ for all i and j.

Definition 3 An exchange matrix is a skew-symmetrizable $n \times n$ matrix $B = (b_{ij})$ with integer entries

Let F be purely transcendental extension (of transcendental degree n) of the field of fractions $\mathbb{Q}(\mathbb{P})$ of $\mathbb{Q}[\mathbb{P}]$.

Definition 4 A labeled seed is a triple (x, y, B), where

- B is an $n \times n$ exchange matrix,
- $y = (y_1, \ldots, y_n)$ is a tuple of elements of \mathbb{P} called coefficients, and
- $x = (x_1, ..., x_n)$ is a tuple (or cluster) of algebraically independent (over $\mathbb{Q}(\mathbb{P})$) elements of F called cluster variables

A pair (y, B) is called a Y-seed.

Definition 5 Let $B = (b_{ij})$ be an exchange matrix. Write $[a]_+$ for $\max(a, 0)$. The mutation of B in direction k is the matrix

$$b'_{ij} = \begin{cases} -b_{ij}, & \text{if } k \in \{i, j\} \\ \\ b_{ij} + \operatorname{sign}(b_{kj})[b_{ik}b_{kj}]_+, & \text{otherwise} \end{cases}$$

Exercise 8 Show that $\mu_k(B)$ is an exchange matrix, e.g. it is skew-symmetrizable.

Exercise 9 Show that matrix mutation can be equivalently defined by

$$b'_{ij} = \begin{cases} -b_{ij}, & \text{if } k \in \{i, j\} \\ \\ b_{ij} + [b_{ik}]_+ b_{kj} + b_{ik} [b_{kj}]_+, & \text{otherwise} \end{cases}$$

Definition 6 Let (y, B) be a Y-seed. The mutation of (y, B) in direction k is the Y-seed $(y', B') = \mu_k(y, B)$, where $B' = \mu_k(B)$ and y' is the tuple (y'_1, \ldots, y'_n) given by

$$y'_{j} = \begin{cases} y_{k}^{-1}, & \text{if } j = k \\ y_{j}y_{k}^{[b_{kj}]_{+}}(y_{k} \oplus 1)^{-b_{kj}}, \text{if } j \neq k \end{cases}$$

Definition 7 Let (x, y, B) be a labeled seed. The mutation of (x, y, B) in direction k is the labeled seed $(x', y', B') = \mu_k(x, y, B)$, where (y', B') is the mutation of (y, B) and where x' is the cluster (x'_1, \ldots, x'_n) with $x'_j = x_j$ for $j \neq k$, and

$$x'_{k} = \frac{y_{k} \prod x_{i}^{[b_{ik}]_{+}} + \prod x_{i}^{[-b_{ik}]}}{(y_{k} \oplus 1)x_{k}}$$

Exercise 10 Show that each mutation μ_k is an involution on labeled seeds.

Applying several mutations $\mu_{i_1} \cdots \mu_{i_l}$ to a labelled seed (x, y, B) we get a new labelled seed. Let $\Delta_n(x, y, B)$ be the set of all such seeds.

Definition 8 A cluster algebra A(x, y, B) is a subalgebra in $\mathbb{Q}(\mathbb{P})(x_1, \ldots, x_n)$ generated by all cluster variables in $\Delta_n(x, y, B)$.

Definition 9 Let \widetilde{B} be $(m+n) \times n$ matrix, such that the top $n \times n$ matrix is skewsymmetrizable and $\widetilde{x} = (x_1 \dots, x_n, x_{n+1}, \dots, x_{n+m})$. Then we say that $(\widetilde{x}, \widetilde{B})$ is a labelled seed for a cluster algebra of geometric type. Collection (x_1, \dots, x_n) is known as exchangeable variables; $(x_{n+1}, \dots, x_{n+m})$ as frozen variables or "coefficients". Notation: (u_1, \dots, u_m) is occasionally used for frozen variables.

Let $\widetilde{x}' = \mu_k(\widetilde{x}), \ \widetilde{B}' = \mu_k(\widetilde{B}), \ k = 1, \dots, n$, Then $\mu_k(\widetilde{B})$ is defined as in $n \times n$ case; $x'_j = x_j, j \neq k$

$$x'_{k} = \frac{\prod x_{i}^{[b_{ik}]_{+}} + \prod x_{i}^{[-b_{ik}]_{+}}}{x_{k}}$$

Definition 10 Let $\Delta_n(x, B)$ be the set of mutations of geometric seed (x, B). By definition cluster algebra of geometric type as as a subalgebra in $\mathbb{Q}(x_1, \ldots, x_{n+m})$ generated by cluster variables in $\Delta_n(x, B)$.

Exercise 11 Let \mathbb{P} a tropical semi-field on n generators y_1, \ldots, y_n . Show that the homomorphism of fields $\phi : \mathbb{Q}(x_1, \ldots, x_n, y_1, \ldots, y_n) \to \mathbb{Q}(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})$ identical on x_1, \ldots, x_n and on y_1, \ldots, y_n defined by the formula:

$$\phi(y_j) = \prod_{i=1}^m x_{n+i}^{b_{n+i,j}}$$

 $is \ compatible \ with \ mutations.$

Exercise 12 Consider the cluster algebra of geometric type defined by the initial labeled seed given by $x = (x_1, x_2, u_1, u_2, u_3)$ and

$$B = \begin{pmatrix} 0 & 2 \\ -1 & 0 \\ -1 & 0 \\ 1 & 0 \\ 1 & 2 \end{pmatrix}$$

Compute all cluster variables generating this cluster algebra.

3 Root systems

Definition 11 Given a nonzero vector α in Euclidean space V, the reflection in the hyperplane orthogonal to α is σ_{α} , given by

$$\sigma_{\alpha}(x) = x - 2\langle \frac{\alpha}{\sqrt{\langle \alpha, \alpha \rangle}}, x \rangle \cdot \frac{\alpha}{\sqrt{\langle \alpha, \alpha \rangle}} = x - 2\frac{\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} \tag{1}$$

Define $\alpha^{\vee} = 2 \frac{\alpha}{\langle \alpha, \alpha \rangle}$. Then $\sigma_{\alpha}(x) = \langle \alpha^{\vee}, x \rangle \alpha$

Definition 12 A root system is a collection Φ of nonzero vectors (called roots) in a real vector space V such that:

- 1. Φ is finite,
- 2. $0 \notin \Phi$ and Φ spans V,
- 3. For each root β , the reflection σ_{β} permutes Φ ,
- Given a line L through the origin, either L ∩ Φ is empty or L ∩ Φ = {±β} for some β (reduced system condition),
- 5. $\langle \alpha^{\vee}, \beta \rangle \in \mathbb{Z}$, for each $\alpha, \beta \in \Phi$. (crystallographic condition).

Definition 13 Two root systems $\Phi \subset V$ and $\Phi' \subset V'$ are isomorphic if there is an isometry $f: V \to V$ with $f(\Phi) = \Phi'$.

Exercise 13 Describe all not necessarily reduced finite one-dimensional crystallographic root systems up to an isomorphism.

Exercise 14 Let θ be an angle between vectors α, β . Show that $\langle \alpha^{\vee}, \beta \rangle \langle \beta^{\vee}, \alpha \rangle = 4 \cos^2 \theta$ and find possible values of θ , $\langle \alpha^{\vee}, \beta \rangle$, $\langle \beta^{\vee}, \alpha \rangle$ and $4 \cos^2 \theta$ for vectors in a finite crystallographic root system.

Exercise 15 Let α, β be two non proportional vectors in a finite crystallographic root system Φ . Show that if $\langle \alpha, \beta \rangle < 0$ then $\alpha + \beta \in \Phi$. If $\langle \alpha, \beta \rangle > 0$ then $\alpha - \beta \in \Phi$.

Definition 14 Let α , β be a pair of linearly independent roots. A subset $\{\gamma \in \Phi | \gamma = \beta + k\alpha (k \in \mathbb{Z})\}$ of a root system Φ is called an α -series of roots, containing β . In particular if $\beta - \alpha \notin \Phi$ then $\beta + \alpha \in \Phi$ iff $\langle \beta, \alpha \rangle < 0$.

Exercise 16 An α -series of roots, containing β has a form $\{\beta + k\alpha | -p \leq k \leq q\}$, where $p, q \geq 0$ and $p - q = \langle \alpha^{\vee}, \beta \rangle$.

Definition 15 *Exercise* 17 *We define a collection* $\Phi^{\vee} = \{\alpha^{\vee} | \alpha \in \Phi\} \subset V$ *. Prove that* Φ^{\vee} *is a root system.*

(Direct sums). Let Φ and Φ' be root systems in V and V', respectively. Then $\Phi \cup \Phi'$ is a root system in the vector space $V \oplus V'$. A root system is reducible if it can be written as such an (orthogonal) direct sum, and irreducible otherwise.

Definition 16 Let Φ be a root system. Then the Weyl group of Φ is the group generated by σ_{α} for all $\alpha \in \Phi$.

Exercise 18 Is the Weyl group well-defined (i.e., do isomorphic root systems give isomorphic Weyl groups?).

Exercise 19 Is the Weyl group of a finite root system finite?

Exercise 20 What are the Weyl groups of the four crystallographic root systems in \mathbb{R}^2 ?

Exercise 21 Find a root system having the symmetric group on four letters, S_4 , as its Weyl group.

Definition 17 Let $\Phi \subset V$ be a root system, and choose $v \in V$. Define $\Phi^+(v) = \{\alpha \in \Phi | \langle \alpha, v \rangle > 0\}$. We say that v is regular if $\Phi = \pm \Phi^+(v)$, and singular otherwise. If v is regular, we call $\Phi^+(v)$ a positive system for Φ .

Exercise 22 Why does a regular v exist?

Let v be regular we set $\Phi^+ = \Phi^+(v)$. In general Φ^+ depends on the choice of v.

Definition 18 The set $\Pi(\Phi^+) \subset \Phi^+$ is formed by elements α that can not be presented as a sum $\alpha = \beta \gamma, \beta \gamma \in \Phi^+$.

Exercise 23 Show that any $\alpha \in \Phi^+$ can be written in the form $\alpha = \sum_{\beta \in \Pi(\Phi^+)} c_{\beta}\beta$, where c_{β} are nonnegative integers.

Exercise 24 If $\alpha, \beta \in \Pi(\Phi^+)$ and $\alpha \neq \beta$, then $\alpha - \beta \neq \Phi$ and $\langle \alpha, \beta \rangle \leq 0$.

Exercise 25 Let $\alpha_1, \ldots, \alpha_k$ be a set of vectors in V such that $\langle \alpha_i, \alpha_j \rangle \leq 0, i \neq j$. Suppose we have a nontrivial linear combination with positive c_i, c'_j :

$$\sum_{r=1}^{k} c_r \alpha_{i_r} - \sum_{r'=1}^{l} c'_{r'} \alpha_{j_{r'}} = 0$$

with all $i_1, \ldots, i_k, j_1, \ldots, j_l$ distinct. Then

- 1. $\sum_{r=1}^{k} c_r \alpha_{i_r} = \sum_{r=1}^{l} c'_r \alpha_{j_r} = 0.$
- 2. $\langle \alpha_{i_r}, \alpha_{j_{r'}} \rangle = 0, r = 1, \dots, k, r' = 1, \dots, l$

Exercise 26 Let $\alpha_1, \ldots, \alpha_k \in V$ be a set of linearly independent vectors. Show that there is $\beta \in V$ such that $\langle \alpha_i \beta \rangle > 0, i = 1, \ldots, k$

Definition 19 The n-th Catalan number C_n is the number of full binary planar trees with n + 1 leaves.

Exercise 27 Prove the formula

$$C_n = \frac{(2n)!}{n!(n+1)!}$$

Exercise 28 Prove the Ptolemy's theorem: let Δ_{ABCD} be a quadrilateral whose vertices lie on a common circle. Then

$$|AC||BD| = |AB||CD| + |BC||AD|$$