Math 312/ AMS 351 (Fall '17)

Sample Questions for Midterm 2

1. Let $\pi, \sigma \in \Sigma_5$ be two permutations given by

$$\pi = (12)(345)$$

$$\sigma = (13)(24)$$

- a) Compute $\pi\sigma$ and $\sigma\pi$.
- b) For each of the permutations π , σ , $\pi\sigma$, $\sigma\pi$ find the order and sign.
- 2. §4.3 1, 5 (textbook)
- 3. Let G be a group and let c be a fixed element of G. Define a new operation '*' on G by

$$a * b = ac^{-1}b.$$

Prove that the set G is a group under *.

- 4. Consider the group $U(9) (= \mathbb{Z}_9^*)$ of invertible congruence classes mod 9.
 - a) Show that U(9) is cyclic of order 6.
 - b) Give an explicit isomorphism $(U(9), \cdot) \cong (\mathbb{Z}_6, +)$.
- 5. a) Prove that in any finite group, the number of elements of order 3 is even.
 - b) Prove that any group of order 12 must contain an element of even order.
 - b) Prove that any group of order 12 must contain an element of order 2.
- 6. Let G = D(6) be the group of symmetries of the regular hexagon.
 - 0) What is the order of G?
 - a) Let R be the set of all rotations in G. Show that R is a subgroup of G. What is the order of R? Is R cyclic?
 - b) Let $\sigma \in G$ be a reflection. Let $S = \langle \sigma \rangle$. What is the order of S?

- c) What are the possible orders |H| of subgroups H in G? Are all the possible orders realized?
- d) Is there a cyclic subgroup of order 4 in G?
- 7. Consider the groups $\mathbb{Z}_2 \times \mathbb{Z}_4$, D(3), $\mathbb{Z}_2 \times \mathbb{Z}_3$, \mathbb{Z}_6 , U(5), Σ_3 , \mathbb{Z}_8 , \mathbb{Z}_4 . Find the odd one out.
- 8. True or False or Complete
 - The positive integers form a group.
 - The set of square matrices of size n is a group with respect to matrix
 - In a group $(ab)^{-1} = \dots$
 - In an abelian group, $(ab)^2 = a^2b^2$.
 - (\mathbb{Z}_5, \cdot) is an abelian group.
 - Any group with 6 elements contains an element of order 6.
 - A group with 24 elements might contain a subgroup of order 10.
 - If G contains an element a of order |G|, then G is
 - The Chinese Remainder Theorem implies that $\mathbb{Z}_4 \times \mathbb{Z}_6 \cong \mathbb{Z}_{24}$.
 - The number of invertible elements in \mathbb{Z}_{24} is
 - A group of oder 4 is always abelian.