Math 312/ AMS 351 (Fall '17) Sample Questions for Midterm 1

1. Find the gcd of $6,14,21$ and express it in the form $6 r+14 s+21 t$ for some integers r, s, and t.
2. Find a such that for all positive integers n, it holds

$$
1+4+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{a}
$$

(Note: the question consists of two parts: find the correct value of a, and secondly you need to prove that the formula holds for all a)
3. i) Show that, for every positive integer $n, n^{5}-n$ is divisible by 5 .
ii) Show that, for every positive integer $n, 3^{2 n}-1$ is divisible by 8 .
4. Show that there exist infinitely many primes of the form $4 k+3$.
5. Show that the equation $7 x^{3}-6 x^{2}+2 x-1=0$ has no integer solutions.
6. Prove that a number n is divisible by 11 iff the alternating sum of its digits is divisible by 11 (e.g. $n=1234$ has the alternating sum of digits equal to $1-2+3-4=-2$ and thus it is not divisible by 11 , while 132 is divisible by 11).
7. Solve the following equations:
i) $15 x=5 \bmod 18$
ii) $15 x=5 \bmod 17$
iii) $3 x=1 \bmod 5$ and $2 x=6 \bmod 8$
8. Show that no integer of the form $8 n+7$ can be written as the sum of 3 squares.
9. Show that, for every integer $n, n^{13}-n$ is divisible by $2,3,5,7$.
10. Find the last 2 digits of 2^{123}.

