Math 312/ AMS 351 (Fall '17) Sample Questions for Final

1. Solve the system of equations

2x	\equiv	1	$\mod 3$
x	\equiv	2	$\mod 7$
x	\equiv	7	$\mod 8$

First note that the inverse of 2 is 2 mod 3. Thus, the first equation becomes (multiply both sides be $2^{-1} = 2$)

 $x \equiv 2 \mod 3$

We also have $x \equiv 2 \mod 7$. Thus, obviously $x \equiv 2 \mod 21$ is a solution for the first two equations. We are now reduced to

$$\begin{array}{rrrr} x &\equiv& 2 \mod 21 \\ x &\equiv& 7 \mod 8 \end{array}$$

We need to write 1 = gcd(21, 8) as linear combination of 21 and 8. Apply the Euclid algorithm and get

$$21 = 2 \cdot 8 + 5$$

$$8 = 5 + 3$$

$$5 = 3 + 2$$

$$3 = 2 + 1$$

Going in reverse, we get

$$1 = 3 - 2$$

= 3 - (5 - 3) = 2 \cdot 3 - 5
= 2 \cdot (8 - 5) - 5 = 2 \cdot 8 - 3 \cdot 5
= 2 \cdot 8 - 3(21 - 2 \cdot 8)
= 8 \cdot 8 - 3 \cdot 21

Indeed, $1 = 8 \cdot 8 - 3 \cdot 21 (= 64 - 63)$. Thus, the solution to the equation is

$$x = 2 \cdot 8 \cdot 8 - 7 \cdot 3 \cdot 21 \mod 168 (= 8 \cdot 21)$$

Get $x = -313 = 23 \mod 168$. (indeed $23 \equiv 2 \mod 21$, $23 \equiv 7 \mod 8$).

2. Can we write 12 as a linear combination of 24 and 114. If yes, find a and b such that 12 = 24a + 114b.

Answer: A necessary and sufficient condition to write $x = a \cdot n + b \cdot m$ is gcd(n,m)|x. Here, gcd(24,114) = 6, and 6|12. Thus, we can write 12 as a linear combination. By Euclid, or just by inspection, we get

$$6 = 5 \cdot 24 - 114$$

Multiply this by 2 and get

$$12 = 10 \cdot 24 - 2 \cdot 114$$

3. • Compute $6^{76} \mod 13$

By Euler, we know $6^{12} \equiv 1 \mod 13$. Thus $6^{76} = 6^{72+4} = 6^4 \mod 13$. Then $6^2 = 36 = 10 \mod 13$. Then $6^4 = (6^2)^2 = 100 = 9 \mod 13$.

• Suppose $a \equiv 4 \mod 10$. What are the possible last 2 digits of a^n . We have $a \equiv 0 \mod 2$ (i.e. a is even). Thus $a^n \equiv 0 \mod 4$ for $n \geq 2$.

On the other hand $a \equiv 4 \mod 5$. This gives a can be $5k + 4 \mod 24$, i.e. 4, 9, 14, 19, or 24.

$$a \in \{4, 9, 14, 19, 24\} \mod 25$$

For concreteness, let's take n = 102. We know $a^n \equiv 0 \mod 4$, we need to compute $a^{102} \mod 25$. Since, we know by Euler $a^{\phi(25)} = a^{20} = 1$. We get

$$a^{102} = a^2 \in \{4^2, 9^2, 14^2, 19^2, 24^2\} \mod 25$$

which gives

$$a^{102} = \{16, 6, 21, 11, 1\} \mod 25$$

And $a^{102} = 0 \mod 4$

Now we need to apply the Chinese reminder theorem. Note first

$$1 = 25 - 6 \cdot 4$$

So, the answer is if $a^{102} = 16$, then

$$a^{102} = 0 \cdot 25 - 16 \cdot 6 \cdot 4 = 16 \mod 100$$

Similarly, $a^{102} \cong 6 \mod 25$ gives $a^{102} = -6 \cdot 6 \cdot 4 = 56 \mod 100$. The other 3 cases are similar.

In conclusion, starting with $a \equiv 4 \mod 10$, we get that the last 2 digits of a^{102} are: 16, 56, 96, 36, 76 (depending on $a \mod 25$).

- 4. We define the quaternion group Q to be the group with 8 elements $\{\pm 1, \pm i, \pm j, \pm k\}$ such that $i^2 = j^2 = k^2 = -1$, and ij = k, jk = i, and ki = j. Show that Q is not isomorphic to
 - \mathbb{Z}_8
 - $\mathbb{Z}_4 \times \mathbb{Z}_2$
 - Σ_4
 - D(4)

Q is not abelian, while \mathbb{Z}_8 and $\mathbb{Z}_4 \times \mathbb{Z}_2$ are abelian. Thus, they cannot be isomorphic. Q has order 8, while Σ_4 has order 24, again non-isomorphic. Finally, to distinguish Q and D(4) we need to count the elements of order 4: there are 6 such elements in Q ($\pm i, \pm j, \pm k$), while there are only 2 in D(4) (ρ and ρ^3 , where ρ is a rotation of order 4).

- 5. Give an example of
 - a field with finitely many elements: \mathbb{Z}_p (p prime)
 - two different examples of integral domains, which are not fields: $\mathbb{Z}, \mathbb{Z}_2[X].$
 - a ring (commutative and with unit) which is not an integral domain: \mathbb{Z}_n
 - a ring which doesn't have a unit: $2\mathbb{Z}$

- a ring which is not commutative: $M_{n,n}(\mathbb{R})$ $(n \times n \text{ matrices, with real coefficients})$
- 6. Find the decomposition into irreducible factors for
 - i) $x^3 3x^2 + 3x 2$ over \mathbb{Z}_7 Let $f = x^3 3x^2 + 3x 2$. We compute f(0) = -2, f(1) = -1, f(2) = 8 12 + 6 2 = 0, f(3) = 27 27 + 9 2 = 7 = 0, f(4) = 64 48 + 12 2 = 26, f(5) = 125 75 + 15 2 = 63 = 0. Thus, we get 3 roots, 2,3, 5. We conclude

$$f = (x-2)(x-3)(x-5)$$

ii) $x^4 - x^2 - 6$ over \mathbb{R}

$$x^{4} - x^{2} - 6 = (x^{2} - 3)(x^{2} + 2) = (x - \sqrt{3})(x + \sqrt{3})(x^{2} + 2)$$

iii) same as (ii), but over \mathbb{C}

$$x^{4} - x^{2} - 6 = (x - \sqrt{3})(x + \sqrt{3})(x^{2} + 2) = (x - \sqrt{3})(x + \sqrt{3})(x + i\sqrt{2})(x - i\sqrt{2})$$

7. Find the gcd and lcm of the following polynomials x^4+x+1 and x^3+x+1 over \mathbb{Z}_3 . Use both methods: factorization and Euclid's Algorithm.

Euclid Algorithm:

(Step 1) divide $x^4 + x + 1$ by $x^3 + x + 1$. We get

$$x^{4} + x + 1 = x \cdot (x^{3} + x + 1) + 2x^{2} + 1$$

(Step 2) divide $(x^3 + x + 1)$ by the reminder $2x^2 + 1$

$$x^{3} + x + 1 = 2x \cdot (2x^{2} + 1) - (x - 1)$$

(Step 3) Repeat: divide $2x^2 + 1$ by x - 1. We get

$$(2x^2 + 1) = 2(x - 1)(x + 1)$$

thus remainder 0. Euclid tells us that the last non-zero remainder (i.e. (x-1) is the gcd).

In general, we have

$$gcd(f,g) \cdot lcm(f,g) = f \cdot g$$

Thus

$$lcm = \frac{(x^4 + x + 1)(x^3 + x + 1)}{x - 1} = (x^4 + x + 1)(x^2 + x + 2)$$

8. Find all irreducible cubic polynomials over \mathbb{Z}_2 .

List all polynomials of degree 3 over \mathbb{Z}_2 , then eliminate those that have 0 or 1 as root. Note that 0 is a root iff the coefficient of the constant is 0, and 1 is a root iff the sum of the coefficients is even.

Thus, we get two possibilities: $x^3 + x^2 + 1$ and $x^3 + x + 1$ (the coefficient of x^3 and of the constant have to be 1, and then we need an odd number of non-zero coefficients).

- 9. Let $f = x^2 + x + 2$ over \mathbb{Z}_3
 - i) Show that f is irreducible.

f(0) = 2, f(1) = 4 = 1, f(2) = 2. Thus, degree 2 and no root; it implies irreducible.

ii) Write down the 9 representatives for the congruence classes mod f.

Just the polynomials of degree less than 1. Thus, answer: x, x+1, x+2, 2x, 2x+1, 2x+2, 0, 1, 2.

iii) Compute $(x+1)^3 \mod f$.

We know $x^2 + x + 2 = 0$ (because we work modulo $x^2 + x + 2$). Thus

$$x^2 = 2x + 1$$

Also note

$$x^{3} = x \cdot x^{2} = 2x^{2} + x = 2(2x + 1) + x = 2x + 2$$

Back to the question

$$(x+1)^3 = x^3 + 3x^2 + 3x + 1 = x^3 + 1 = 2x + 3 = 2x$$

iv) Find the inverse of $[x + 1]_f$. We look for ax + b such that

$$(x+1)(ax+b) = 1$$

Expanding we get

$$ax^2 + (a+b)x + b = 1$$

Use $x^2 = 2x + 1$ and get

$$1 = ax^{2} + (a + b)x + b = 2ax + a + (a + b)x + b = bx + (a + b)$$

giving

$$b = 0, a + b = 1$$

Thus, b = 0, a = 1. Thus the inverse of x + 1 is just x. Let's check:

$$x(x+1) = x^{2} + x = 2x + 1 + x = 3x + 1 = 1$$

10. Give example of a field with 9 elements.

In general, the answer to such a question (a field with p^n elements, here p = 3, n = 2) is to say polynomials over \mathbb{Z}_p modulo an **irreducible** polynomial of degree n. In this case, you are given a degree 2 polynomial over \mathbb{Z}_3 in the example above... $(f = x^2 + x + 2)$. In general, you have to find such an irreducible polynomial. Typically, you can find irreducible polynomials of type $x^n + a$ (exception over \mathbb{Z}_2).