## Math 312/ AMS 351 (Fall '17) Sample Questions for Final

1. Solve the system of equations

$$
\begin{array}{rlr}
2 x & \equiv 1 & \bmod 3 \\
x & \equiv 2 & \bmod 7 \\
x & \equiv 7 & \bmod 8
\end{array}
$$

First note that the inverse of 2 is $2 \bmod 3$. Thus, the first equation becomes (multiply both sides be $2^{-1}=2$ )

$$
x \equiv 2 \quad \bmod 3
$$

We also have $x \equiv 2 \bmod 7$. Thus, obviously $x \equiv 2 \bmod 21$ is a solution for the first two equations. We are now reduced to

$$
\begin{aligned}
& x \equiv 2 \quad \bmod 21 \\
& x \equiv 7
\end{aligned}
$$

We need to write $1=\operatorname{gcd}(21,8)$ as linear combination of 21 and 8. Apply the Euclid algorithm and get

$$
\begin{aligned}
21 & =2 \cdot 8+5 \\
8 & =5+3 \\
5 & =3+2 \\
3 & =2+1
\end{aligned}
$$

Going in reverse, we get

$$
\begin{aligned}
1 & =3-2 \\
& =3-(5-3)=2 \cdot 3-5 \\
& =2 \cdot(8-5)-5=2 \cdot 8-3 \cdot 5 \\
& =2 \cdot 8-3(21-2 \cdot 8) \\
& =8 \cdot 8-3 \cdot 21
\end{aligned}
$$

Indeed, $1=8 \cdot 8-3 \cdot 21(=64-63)$. Thus, the solution to the equation is

$$
x=2 \cdot 8 \cdot 8-7 \cdot 3 \cdot 21 \quad \bmod 168(=8 \cdot 21)
$$

Get $x=-313=23 \bmod 168$. (indeed $23 \equiv 2 \bmod 21,23 \equiv 7$ $\bmod 8)$.
2. Can we write 12 as a linear combination of 24 and 114. If yes, find $a$ and $b$ such that $12=24 a+114 b$.
Answer: A necessary and sufficient condition to write $x=a \cdot n+b \cdot m$ is $\operatorname{gcd}(n, m) \mid x$. Here, $\operatorname{gcd}(24,114)=6$, and $6 \mid 12$. Thus, we can write 12 as a linear combination. By Euclid, or just by inspection, we get

$$
6=5 \cdot 24-114
$$

Multiply this by 2 and get

$$
12=10 \cdot 24-2 \cdot 114
$$

3. $\quad$ Compute $6^{76} \bmod 13$

By Euler, we know $6^{12} \equiv 1 \bmod 13$. Thus $6^{76}=6^{72+4}=6^{4}$ $\bmod 13$. Then $6^{2}=36=10 \bmod 13$. Then $6^{4}=\left(6^{2}\right)^{2}=100=9$ $\bmod 13$.

- Suppose $a \equiv 4 \bmod 10$. What are the possible last 2 digits of $a^{n}$. We have $a \equiv 0 \bmod 2$ (i.e. $a$ is even). Thus $a^{n} \equiv 0 \bmod 4$ for $n \geq 2$.
On the other hand $a \equiv 4 \bmod 5$. This gives $a$ can be $5 k+4 \bmod$ 24 , i.e. $4,9,14,19$, or 24 .

$$
a \in\{4,9,14,19,24\} \quad \bmod 25
$$

For concreteness, let's take $n=102$. We know $a^{n} \equiv 0 \bmod 4$, we need to compute $a^{102} \bmod 25$. Since, we know by Euler $a^{\phi(25)}=$ $a^{20}=1$. We get

$$
a^{102}=a^{2} \in\left\{4^{2}, 9^{2}, 14^{2}, 19^{2}, 24^{2}\right\} \quad \bmod 25
$$

which gives

$$
a^{102}=\{16,6,21,11,1\} \quad \bmod 25
$$

And $a^{102}=0 \bmod 4$
Now we need to apply the Chinese reminder theorem. Note first

$$
1=25-6 \cdot 4
$$

So, the answer is if $a^{102}=16$, then

$$
a^{102}=0 \cdot 25-16 \cdot 6 \cdot 4=16 \quad \bmod 100
$$

Similarly, $a^{102} \cong 6 \bmod 25$ gives $a^{102}=-6 \cdot 6 \cdot 4=56 \bmod 100$. The other 3 cases are similar.
In conclusion, starting with $a \equiv 4 \bmod 10$, we get that the last 2 digits of $a^{102}$ are: 16, 56, 96, 36, 76 (depending on $a \bmod 25$ ).
4. We define the quaternion group $Q$ to be the group with 8 elements $\{ \pm 1, \pm i, \pm j, \pm k\}$ such that $i^{2}=j^{2}=k^{2}=-1$, and $i j=k, j k=i$, and $k i=j$. Show that $Q$ is not isomorphic to

- $\mathbb{Z}_{8}$
- $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$
- $\Sigma_{4}$
- $D(4)$
$Q$ is not abelian, while $\mathbb{Z}_{8}$ and $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ are abelian. Thus, they cannot be isomorphic. $Q$ has order 8 , while $\Sigma_{4}$ has order 24, again non-isomorphic. Finally, to distinguish $Q$ and $D(4)$ we need to count the elements of order 4: there are 6 such elements in $Q( \pm i, \pm j, \pm k)$, while there are only 2 in $D(4)\left(\rho\right.$ and $\rho^{3}$, where $\rho$ is a rotation of order 4$)$.

5. Give an example of

- a field with finitely many elements: $\mathbb{Z}_{p}$ ( $p$ prime)
- two different examples of integral domains, which are not fields: $\mathbb{Z}, \mathbb{Z}_{2}[X]$.
- a ring (commutative and with unit) which is not an integral domain: $\mathbb{Z}_{n}$
- a ring which doesn't have a unit: $2 \mathbb{Z}$
- a ring which is not commutative: $M_{n, n}(\mathbb{R})(n \times n$ matrices, with real coefficients)

6. Find the decomposition into irreducible factors for
i) $x^{3}-3 x^{2}+3 x-2$ over $\mathbb{Z}_{7}$ Let $f=x^{3}-3 x^{2}+3 x-2$. We compute $f(0)=-2, f(1)=-1, f(2)=8-12+6-2=0, f(3)=$ $27-27+9-2=7=0, f(4)=64-48+12-2=26, f(5)=$ $125-75+15-2=63=0$. Thus, we get 3 roots, $2,3,5$. We conclude

$$
f=(x-2)(x-3)(x-5)
$$

ii) $x^{4}-x^{2}-6$ over $\mathbb{R}$

$$
x^{4}-x^{2}-6=\left(x^{2}-3\right)\left(x^{2}+2\right)=(x-\sqrt{3})(x+\sqrt{3})\left(x^{2}+2\right)
$$

iii) same as (ii), but over $\mathbb{C}$

$$
x^{4}-x^{2}-6=(x-\sqrt{3})(x+\sqrt{3})\left(x^{2}+2\right)=(x-\sqrt{3})(x+\sqrt{3})(x+i \sqrt{2})(x-i \sqrt{2})
$$

7. Find the gcd and lcm of the following polynomials $x^{4}+x+1$ and $x^{3}+x+1$ over $\mathbb{Z}_{3}$. Use both methods: factorization and Euclid's Algorithm.

Euclid Algorithm:
(Step 1) divide $x^{4}+x+1$ by $x^{3}+x+1$. We get

$$
x^{4}+x+1=x \cdot\left(x^{3}+x+1\right)+2 x^{2}+1
$$

(Step 2) divide $\left(x^{3}+x+1\right)$ by the reminder $2 x^{2}+1$

$$
x^{3}+x+1=2 x \cdot\left(2 x^{2}+1\right)-(x-1)
$$

(Step 3) Repeat: divide $2 x^{2}+1$ by $x-1$. We get

$$
\left(2 x^{2}+1\right)=2(x-1)(x+1)
$$

thus remainder 0. Euclid tells us that the last non-zero remainder (i.e. $(x-1)$ is the gcd).

In general, we have

$$
\operatorname{gcd}(f, g) \cdot l c m(f, g)=f \cdot g
$$

Thus

$$
l c m=\frac{\left(x^{4}+x+1\right)\left(x^{3}+x+1\right)}{x-1}=\left(x^{4}+x+1\right)\left(x^{2}+x+2\right)
$$

8. Find all irreducible cubic polynomials over $\mathbb{Z}_{2}$.

List all polynomials of degree 3 over $\mathbb{Z}_{2}$, then eliminate those that have 0 or 1 as root. Note that 0 is a root iff the coefficient of the constant is 0 , and 1 is a root iff the sum of the coefficients is even.
Thus, we get two possibilities: $x^{3}+x^{2}+1$ and $x^{3}+x+1$ (the coefficient of $x^{3}$ and of the constant have to be 1 , and then we need an odd number of non-zero coefficients).
9. Let $f=x^{2}+x+2$ over $\mathbb{Z}_{3}$
i) Show that $f$ is irreducible.
$f(0)=2, f(1)=4=1, f(2)=2$. Thus, degree 2 and no root; it implies irreducible.
ii) Write down the 9 representatives for the congruence classes mod $f$.
Just the polynomials of degree less than 1. Thus, answer: $x, x+1$, $x+2,2 x, 2 x+1,2 x+2,0,1,2$.
iii) Compute $(x+1)^{3} \bmod f$.

We know $x^{2}+x+2=0$ (because we work modulo $x^{2}+x+2$ ). Thus

$$
x^{2}=2 x+1
$$

Also note

$$
x^{3}=x \cdot x^{2}=2 x^{2}+x=2(2 x+1)+x=2 x+2
$$

Back to the question

$$
(x+1)^{3}=x^{3}+3 x^{2}+3 x+1=x^{3}+1=2 x+3=2 x
$$

iv) Find the inverse of $[x+1]_{f}$.

We look for $a x+b$ such that

$$
(x+1)(a x+b)=1
$$

Expanding we get

$$
a x^{2}+(a+b) x+b=1
$$

Use $x^{2}=2 x+1$ and get

$$
1=a x^{2}+(a+b) x+b=2 a x+a+(a+b) x+b=b x+(a+b)
$$

giving

$$
b=0, \quad a+b=1
$$

Thus, $b=0, a=1$. Thus the inverse of $x+1$ is just $x$.
Let's check:

$$
x(x+1)=x^{2}+x=2 x+1+x=3 x+1=1
$$

10. Give example of a field with 9 elements.

In general, the answer to such a question (a field with $p^{n}$ elements, here $p=3, n=2)$ is to say polynomials over $\mathbb{Z}_{p}$ modulo an irreducible polynomial of degree $n$. In this case, you are given a degree 2 polynomial over $\mathbb{Z}_{3}$ in the example above... $\left(f=x^{2}+x+2\right)$. In general, you have to find such an irreducible polynomial. Typically, you can find irreducible polynomials of type $x^{n}+a$ (exception over $\mathbb{Z}_{2}$ ).

