MAT310 Fall 2012 Practice Midterm II

The actual midterm will consist of six problems. You will be allowed to use calculators. Sections covered:2.7-4.2(inclusive) with the exception of economics applications.

Problem 1 1. Find the number of path of length four connecting points a and b in the graph

2. Find the number of loops of length four in the same graph.

Problem 2

1. Find all λ such that the equation $y^{\prime \prime}=\lambda y$ has a solution $y(t)$ with $y(0)=y(1)=0$
2. Find the general solution of

$$
y^{(4)}+2 y^{(3)}+10 y^{(2)}+18 y+9=0
$$

Problem 3 1. Compute the rank the matrix
$\left[\begin{array}{cccc}2 & 6 & 1 & 0 \\ 3 & 3 & 0 & 1 \\ -2 & -2 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right]$
2. Complete the set of two vectors $(2,3,-2,1)$ and $(6,3,-2,1)$ to a basis of \mathbb{R}^{4}.
3. Which of the monomials $p_{i}(x)=x^{i}, i=0, \ldots, 3$ is a linear combination of $q_{1}(x)=2+3 x-2 x^{2}+x^{3}$ and $q_{1}(x)=6+3 x-2 x^{2}+x^{3}$

Problem 4 1. Compute the matrix inverse of

$$
\left[\begin{array}{cccc}
1 & 0 & 3 & 0 \\
-1 & 1 & -3 & 1 \\
0 & 2 & 3 & 0 \\
-5 & 1 & -15 & 0
\end{array}\right]
$$

2. Use A^{-1} to solve

$$
\begin{gathered}
x_{1}+2 x_{2}=5 \\
-3 x_{1}+x_{2}=6
\end{gathered}
$$

Problem 5 Compute the determinant of
$\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 0 & 0 & 9 & 10 \\ 0 & 0 & 11 & 12\end{array}\right]$

Problem 6 Determine the values of a for which the system .

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}+x_{4}=5 \\
& x_{1}+x_{2}-2 x_{3}+3 x_{4}=6 \\
& -2 x_{1}+6 x_{3}-10 x_{4}=a
\end{aligned}
$$

is consistent. Find the basis in the space of solution for such a.

Problem 7 1. What happens to the determinant of $n \times n$ matrix if you swap the first k rows with the remaining $n-k$ rows.
2. A matrix $A \in M a t_{10,10}$ is a product of $B \in M a t_{10,5}$ and $C \in M a t_{5,10}$. Why $\operatorname{det} A=0$?

Problem 8 Label the following statements as being true or false or being incorrectly stated.

1. A square matrix with positive entries has a nonnegative determinant.
2. The set of vectors $\left(u_{1}, \ldots, u_{k}\right)$ is a basis in a k-dimensional subspace $V \subset \mathbb{F}^{n}$. Then the determinant of a matrix, whose columns are u_{1}, \ldots, u_{k} is nonzero.
3. Determinant of an elementary matrix is equal to ± 1.
4. Determinant of an lower triangular matrix is is a product of diagonal terms.
5. If a square matrix contains two identical entries then its determinant is zero.
6. Any rank n matrix $A \in M a t_{n, n}$ is invertible.
7. If a matrix $A \in M a t_{n, n}$ is invertible, then it contains no nonzero entries.

Problem 9

1. The short arrow of a clock represents the first vector of a basis in \mathbb{R}^{2}, the long represents the second vector. What is the orientation of this basis at 3:10, 6:05 and $7: 10$. What can you say about the time 12:00?
2. What is the orientation of (u, v), where $u=(1,-5), v=(-2,3)$? What is the area of the parallelogram spanned by u and v ?

Problem 10 Present

$\left[\begin{array}{ccc}1 & 2 & 1 \\ -2 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$
as a product of elementary matrices

Problem 11 Show that $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$ for $A, B \in \operatorname{Mat}_{m, n}$

