MAT310 Fall 2012 Practice Midterm II

The actual midterm will consist of six problems. You will be allowed to use calculators. Sections covered:2.7-4.2(inclusive) with the exception of economics applications.

Problem 1 1. Find the number of path of length four connecting points *a* and *b* in the graph

2. Find the number of loops of length four in the same graph.

Problem 2

- 1. Find all λ such that the equation $y'' = \lambda y$ has a solution y(t) with y(0) = y(1) = 0
- 2. Find the general solution of

$$y^{(4)} + 2y^{(3)} + 10y^{(2)} + 18y + 9 = 0$$

Problem 3 1. Compute the rank the matrix

·

ſ	2	6	1	0	
	3	3	0	1	
	-2	-2	0	0	
	1	1	0	0	-

- 2. Complete the set of two vectors (2, 3, -2, 1) and (6, 3, -2, 1) to a basis of \mathbb{R}^4 .
- 3. Which of the monomials $p_i(x) = x^i$, i = 0, ..., 3 is a linear combination of $q_1(x) = 2 + 3x 2x^2 + x^3$ and $q_1(x) = 6 + 3x 2x^2 + x^3$

Problem 4 1. Compute the matrix inverse of

1	0	3	0
-1	1	-3	1
0	2	3	0
5	1	-15	0

2. Use A^{-1} to solve

$$x_1 + 2 x_2 = 5$$

$$-3 x_1 + x_2 = 6$$

5

Problem 5 Compute the determinant of

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 0 & 0 & 9 & 10 \\ 0 & 0 & 11 & 12 \end{bmatrix}$$

Problem 6 Determine the values of *a* for which the system .

$$x_1 + 2 x_2 - x_3 + x_4 = 5$$
$$x_1 + x_2 - 2 x_3 + 3 x_4 = 6$$
$$-2 x_1 + 6 x_3 - 10 x_4 = a$$

is consistent. Find the basis in the space of solution for such a.

- **Problem 7** 1. What happens to the determinant of $n \times n$ matrix if you swap the first k rows with the remaining n k rows.
 - 2. A matrix $A \in Mat_{10,10}$ is a product of $B \in Mat_{10,5}$ and $C \in Mat_{5,10}$. Why det A = 0?

Problem 8 Label the following statements as being true or false or being incorrectly stated.

- 1. A square matrix with positive entries has a nonnegative determinant.
- 2. The set of vectors (u_1, \ldots, u_k) is a basis in a *k*-dimensional subspace $V \subset \mathbb{F}^n$. Then the determinant of a matrix, whose columns are u_1, \ldots, u_k is nonzero.
- 3. Determinant of an elementary matrix is equal to ± 1 .
- 4. Determinant of an lower triangular matrix is is a product of diagonal terms.
- 5. If a square matrix contains two identical entries then its determinant is zero.
- 6. Any *rank n* matrix $A \in Mat_{n,n}$ is invertible.
- 7. If a matrix $A \in Mat_{n,n}$ is invertible, then it contains no nonzero entries.

Problem 9

- 1. The short arrow of a clock represents the first vector of a basis in \mathbb{R}^2 , the long represents the second vector. What is the orientation of this basis at 3:10, 6:05 and 7:10. What can you say about the time 12:00?
- 2. What is the orientation of (u, v), where u = (1, -5), v = (-2, 3)? What is the area of the parallelogram spanned by *u* and *v*?

Problem 10 Present

$$\left[\begin{array}{rrrrr} 1 & 2 & 1 \\ -2 & 0 & 1 \\ 1 & 1 & 1 \end{array}\right]$$

as a product of elementary matrices

Problem 11 Show that $rank(A + B) \le rank(A) + rank(B)$ for $A, B \in Mat_{m,n}$