MAT310 Fall 2012 Practice Midterm I

The actual midterm will consist of six problems

Problem 1 If U and W are subspaces of a linear space: F, show that $U \cup W$ need not be a subspace. However, if $U \cup W$ is a subspace, show that either $U \subset W$ or $W \subset U$.

Problem 2

- Show that the set $\{1, (t-1), (t-1)^2, (t-1)^3\}$ generates $P_3(\mathbb{R})$.
- Can two disjoint subsets of R², each containing two vectors, have the same span?
 Explain.

Problem 3 Let $V \xrightarrow{\phi} W \xrightarrow{\psi} V$ be linear maps such that $\psi \phi : V \to V$ is an isomorphism. Show that ϕ is one-to-one (injective) and ψ is onto (surjective). **Problem 4** Let $V \xrightarrow{\phi} W$ be a linear map of finite-dimensional linear spaces and let $L \subset V$ be a linear subspace.

- Show that dimension of φ(L) = {w ∈ W|w = φ(v), v ∈ V} is not greater then dimension of L.
- What is the relation between dim $\phi(L)$ and dim L when ϕ is one-to-one.

Problem 5 A linear map $\rho : V \to V$ is idempotent if $\rho \rho = \rho$. Show that if ρ is idempotent then ρ acts as the identity on range(*V*). (Such linear maps are called projections: ρ projects *V* onto range(*V*).)

Problem 6 Determine whether or not $\{(1, 1, 0), (2, 0, -1), (-3, 1, 1)\}$ is a basis for \mathbb{R}^3 .

Problem 7 ψ : $V \to V$ is nilpotent of order 2 if ψ^2 is the zero endomorphism. Now composition of two such endomorphisms need not be nilpotent of order 2. Find ψ, ϕ : $\mathbb{R}^2 \to \mathbb{R}^2$, each nilpotent of order 2, whose composition is idempotent.

Problem 8 If x and y are vectors and M is a subspace of V such that $x \notin M$ but $x \in$ span{M, y}, does it follow that

$$\operatorname{span}\{M, y\} = \operatorname{span}\{M, x\}$$

Problem 9 Is it true that if L, M, and N are subspaces of a vector space, then

 $L \cap (M + (L \cap N)) = (L \cap M) + (L \cap N)?$

Problem 10

- Under what conditions on the scalars α, β ∈ C are the vectors (1, α) and (1, β) in C² linearly independent?
- 2. Is there a set of three linearly independent vectors in \mathbb{C}^2 considered as a vector space over
 - (a) Real numbers
 - (b) Complex numbers.
- 3. Under what conditions on the scalar $x \in \mathbb{C}$ do the vectors (1, 1, 1) and $(1, x, x^2)$ form a basis of a two-dimensional subspace in \mathbb{C}^3 ?
- 4. Under what conditions on the scalar x do the vectors (0, 1, x), (x, 0, 1), and (x, 1, 1 + x) form a basis \mathbb{C}^3 ?

Problem 11 1. Which of the following three definitions of transformations on \mathbb{R}^2 give linear transformations? (The equations are intended to hold for arbitrary real scalars $\alpha, \beta, \gamma, \delta$)

$$T(x, y) = (\alpha x + \beta y, \gamma x + \delta y)$$

$$T(x, y) = (\alpha x^{2} + \beta y^{2}, \gamma x^{2} + \delta y^{2})$$

$$T(x, y) = (\alpha^{2} x + \beta^{2} y, \gamma^{2} x + \delta^{2} y)$$
(1)

2. Which of the following three definitions of transformations on the space of polynomials *P* give linear transformations? (The equations are intended to hold for arbitrary polynomials *p*.)

$$T p(x) = p(x^{2})$$

$$T p(x) = (p(x))^{2}$$

$$T p(x) = x^{2} p(x)$$
(2)

Problem 12 What are the null-spaces of the linear transformations named below?

1. The linear transformation T defined by integration:

$$Tp(x) = \int_{-3}^{x+9} p(t)dt,$$

from P_6 to P_7 .

- 2. The linear transformation D of differentiation on P_5 .
- 3. The linear transformation *T* on \mathbb{R}^2 defined by

$$T(x, y) = (2x + 3y, 7x - 5y)$$

4. The transformation T from P_5 to P_{20} defined by the change of variables

$$Tp(x) = p(x^4);$$

5. The linear transformation T on \mathbb{R}^2 defined by

$$T(x,y) = (x,0).$$

6. The linear transformation *F* from \mathbb{R}^6 to \mathbb{R}^1 defined by

$$F(x_1,...,x_6) = \sum_{i=1}^6 x_i.$$

Construct bases of the null spaces and extend them to bases of the ambient space.

Problem 13 1. If S is a linear transformation on $\mathbb{R}[x]$ defined by

$$S\,p(x)=p(x^2),$$

and T is the multiplication transformation defined by

$$Tp(x) = x^2 p(x),$$

do *S* and *T* commute?

2. If *S* is a linear transformation on $P_3(\mathbb{R})$ by

$$S p(x) = p(x+2),$$

and T is the transformation defined by

$$T(\alpha + \beta x + \gamma x^2 + \delta x^3) = \alpha + \gamma x^2,$$

(for all $\alpha, \beta, \gamma, \delta$) do *S* and *T* commute?

Problem 14 1. Is the linear transformation defined by

$$T(x, y) = (2y + x, 2y + x)$$

invertible?

2. What about

$$T(x, y) = (y, x)$$

3. Is the differentiation transformation D on the vector space P_5 invertible?

Problem 15 A linear map $T : P_3 \to \mathbb{R}^2$ is defined by the formula T(f) = (f(0), f(1)). Define an isomorphism $N(T) \to \mathbb{R}^k$ for a suitable k. You have to determine k first. Extend a basis in N(T) to a basis in P_3 . **Problem 16** Find the matrices of a linear transformation T(a, b) = (2x - 3y, 5x + 7y)in the bases $\beta = \{(1, 3), (1, 4)\}$ and $\beta' = \{(3, 2), (7, 5)\}$. Find $Q = [I]_{\beta'}^{\beta}$. Verify $Q[T]_{\beta'} = [T]_{\beta}Q$.