MAT310 Fall 2012
 Practice Midterm I

The actual midterm will consist of six problems

Problem 1 If U and W are subspaces of a linear space: F, show that $U \cup W$ need not be a subspace. However, if $U \cup W$ is a subspace, show that either $U \subset W$ or $W \subset U$.

Problem 2

- Show that the set $\left\{1,(t-1),(t-1)^{2},(t-1)^{3}\right\}$ generates $P_{3}(\mathbb{R})$.
- Can two disjoint subsets of \mathbb{R}^{2}, each containing two vectors, have the same span?

Explain.

Problem 3 Let $V \xrightarrow{\phi} W \xrightarrow{\psi} V$ be linear maps such that $\psi \phi: V \rightarrow V$ is an isomorphism.
Show that ϕ is one-to-one (injective) and ψ is onto (surjective).

Problem 4 Let $V \xrightarrow{\phi} W$ be a linear map of finite-dimensional linear spaces and let $L \subset V$ be a linear subspace.

- Show that dimension of $\phi(L)=\{w \in W \mid w=\phi(v), v \in V\}$ is not greater then dimension of L.
- What is the relation between $\operatorname{dim} \phi(L)$ and $\operatorname{dim} L$ when ϕ is one-to-one.

Problem 5 A linear map $\rho: V \rightarrow V$ is idempotent if $\rho \rho=\rho$. Show that if ρ is idempotent then ρ acts as the identity on range(V). (Such linear maps are called projections: ρ projects V onto range (V).)

Problem 6 Determine whether or not $\{(1,1,0),(2,0,-1),(-3,1,1)\}$ is a basis for \mathbb{R}^{3}.

Problem $7 \psi: V \rightarrow V$ is nilpotent of order 2 if ψ^{2} is the zero endomorphism. Now composition of two such endomorphisms need not be nilpotent of order 2. Find ψ, ϕ : $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, each nilpotent of order 2 , whose composition is idempotent.

Problem 8 If x and y are vectors and M is a subspace of V such that $x \notin M$ but $x \in$ $\operatorname{span}\{M, y\}$, does it follow that

$$
\operatorname{span}\{M, y\}=\operatorname{span}\{M, x\}
$$

Problem 9 Is it true that if L, M, and N are subspaces of a vector space, then

$$
L \cap(M+(L \cap N))=(L \cap M)+(L \cap N) ?
$$

Problem 10

1. Under what conditions on the scalars $\alpha, \beta \in \mathbb{C}$ are the vectors $(1, \alpha)$ and $(1, \beta)$ in \mathbb{C}^{2} linearly independent?
2. Is there a set of three linearly independent vectors in \mathbb{C}^{2} considered as a vector space over
(a) Real numbers
(b) Complex numbers.
3. Under what conditions on the scalar $x \in \mathbb{C}$ do the vectors $(1,1,1)$ and $\left(1, x, x^{2}\right)$ form a basis of a two-dimensional subspace in \mathbb{C}^{3} ?
4. Under what conditions on the scalar x do the vectors $(0,1, x),(x, 0,1)$, and $(x, 1,1+x)$ form a basis $\mathbb{C}^{3} ?$

Problem 11 1. Which of the following three definitions of transformations on \mathbb{R}^{2} give linear transformations? (The equations are intended to hold for arbitrary real scalars $\alpha, \beta, \gamma, \delta)$

$$
\begin{align*}
& T(x, y)=(\alpha x+\beta y, \gamma x+\delta y) \\
& T(x, y)=\left(\alpha x^{2}+\beta y^{2}, \gamma x^{2}+\delta y^{2}\right) \tag{1}\\
& T(x, y)=\left(\alpha^{2} x+\beta^{2} y, \gamma^{2} x+\delta^{2} y\right)
\end{align*}
$$

2. Which of the following three definitions of transformations on the space of polynomials P give linear transformations? (The equations are intended to hold for arbitrary polynomials p.)

$$
\begin{align*}
& T p(x)=p\left(x^{2}\right) \\
& T p(x)=(p(x))^{2} \tag{2}\\
& T p(x)=x^{2} p(x)
\end{align*}
$$

Problem 12 What are the null-spaces of the linear transformations named below?

1. The linear transformation T defined by integration:

$$
T p(x)=\int_{-3}^{x+9} p(t) d t
$$

from P_{6} to P_{7}.
2. The linear transformation D of differentiation on P_{5}.
3. The linear transformation T on \mathbb{R}^{2} defined by

$$
T(x, y)=(2 x+3 y, 7 x-5 y)
$$

4. The transformation T from P_{5} to P_{20} defined by the change of variables

$$
T p(x)=p\left(x^{4}\right)
$$

5. The linear transformation T on \mathbb{R}^{2} defined by

$$
T(x, y)=(x, 0) .
$$

6. The linear transformation F from \mathbb{R}^{6} to \mathbb{R}^{1} defined by

$$
F\left(x_{1}, \ldots, x_{6}\right)=\sum_{i=1}^{6} x_{i}
$$

Construct bases of the null spaces and extend them to bases of the ambient space.

Problem 13 1. If S is a linear transformation on $\mathbb{R}[x]$ defined by

$$
S p(x)=p\left(x^{2}\right)
$$

and T is the multiplication transformation defined by

$$
T p(x)=x^{2} p(x)
$$

do S and T commute?
2. If S isa linear transformation on $P_{3}(\mathbb{R})$ by

$$
S p(x)=p(x+2)
$$

and T is the transformation defined by

$$
T\left(\alpha+\beta x+\gamma x^{2}+\delta x^{3}\right)=\alpha+\gamma x^{2}
$$

(for all $\alpha, \beta, \gamma, \delta)$ do S and T commute?

Problem 14 1. Is the linear transformation defined by

$$
T(x, y)=(2 y+x, 2 y+x)
$$

invertible?

2. What about

$$
T(x, y)=(y, x)
$$

3. Is the differentiation transformation D on the vector space P_{5} invertible?

Problem 15 A linear map $T: P_{3} \rightarrow \mathbb{R}^{2}$ is defined by the formula $T(f)=(f(0), f(1))$. Define an isomorphism $N(T) \rightarrow \mathbb{R}^{k}$ for a suitable k. You have to determine k first. Extend a basis in $N(T)$ to a basis in P_{3}.

Problem 16 Find the matrices of a linear transformation $T(a, b)=(2 x-3 y, 5 x+7 y)$ in the bases $\beta=\{(1,3),(1,4)\}$ and $\beta^{\prime}=\{(3,2),(7,5)\}$. Find $Q=[I]_{\beta^{\prime}}^{\beta}$. Verify $Q[T]_{\beta^{\prime}}=$ $[T]_{\beta} Q$.

