MAT310 Fall 2012 Practice Final

The actual Final exam will consist of twelve problems that cover chapters 1.2-5.4

(inclusive) with omission of 2.6,4.5,5.3

Problem 1 Let *V*, *W* be vector spaces. Define the following terms:

- 1. What is a subspace of V?
- 2. Let $F: V \to W$ be a function. What does it mean to say that *F* is linear?
- 3. Let $T = \{v_1, v_2, ...\}$ be a subset of *V*. What is a linear combination of elements of *T*? What is the span of *T*? What does it mean to say that *T* is linearly independent? What does it mean to say that *T* spans *V*? What does it mean to say that *T* is a basis of *V*?
- 4. What is the dimension of V?
- 5. Let $F : V \to W$ be linear. Define N(F) = ker(F). Define im(F). What is the *rank* of *F*? What is the nullity of *F*?
- 6. Let F : V → V be linear. What is an eigenvalue of F? What is an eigenvector of F?
- 7. What does it means to say that two $n \times n$ matrices are similar?
- 8. What does it mean to say that two vector spaces are isomorphic?
- 9. Let A be an $n \times n$ matrix. What is an eigenbasis for the matrix A?
- 10. Let *B* be a basis of a vector space *V*. What does one mean by the coordinates of a vector $v \in V$ with respect to *B*?

- **Problem 2** 1. Let $F : V \to W$ be linear. Show that ker(F) is a subspace of V. Show that im(F) is subspace of W
 - 2. State the rank+nullity theorem.

Problem 3 Consider the system of equations

$$\begin{cases} x - 2y + 3z - w = 2\\ 2x + y - z + 3w = 1\\ 5x + z + 5w = 4 \end{cases}$$

- 1. Find all, if any, solutions to this system.
- 2. Write the system as a matrix equation

Problem 4 Determine linearly independent sets

- 1. Set of functions 1, e^x and e^{2x} thought of as elements of real linear space of continuous functions C[0, 1]
- 2. Set of functions 1, $\sin^2(x)$ and $3 \cos^2(x)$ thought of as elements of real linear space of continuous functions $C[0, 2\pi]$

Problem 5 Let $P: V \to V$ be a projection on a finite dimensional vector space, i.e., P is a linear map with the property that $P^2 = P$. Show that there exists a basis B for V such that $M(P) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, where I_r is the $r \times r$ identity matrix. (Here M(P) is the matrix representing the map P relative to the basis B.)

Problem 6 Find bases in *ImA* and *kerA* where the linear transformation $A : \mathbb{R}^5 \to \mathbb{R}^3$ has a matrix

1	-2	1	2	0	
2	1	1	-1	2	
5	0	3	0	4	

Extend the bases to bases of \mathbb{R}^3 , \mathbb{R}^5 respectively.

Problem 7 True or False. (Explain!)

- The set of all vectors of the form (a, b, 0, b)^t where a, b are real numbers forms a subspace in ℝ⁴.
- 2. Let *V* be the space of all functions from \mathbb{R} to \mathbb{R} that have infinitely many derivatives. The function $F: V \to V F(f) = 3f' 2f''$ is linear.
- 3. If the determinant of a 4×4 matrix is 4, then the rank of the matrix must be 4.
- 4. If the standard vectors $\{e_1, e_2, \dots, e_n\}$ are eigenvectors of an $n \times n$ matrix, then the matrix is diagonal.
- 5. If 1 is the only eigenvalue of an $n \times n$ matrix A, then A must be I_n .
- If two 3 × 3 matrices both have the eigenvalues 3, 4, 5, then A must be similar to B.

Problem 8 Given an operator *T* that has in some basis a matrix $M(T) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, prove that there exists no basis , in which *T* has a diagonal matrix . (Do not simply quote facts about Jordan Canonical Form but give a direct proof.)

Problem 9 Let *V* be a finite dimensional vector space and *T*, *S* linear transformations which commute, i.e. TS = ST and *T* and *S* are both diagonalizable, show that *T* and *S* are simultaneous diagonalizable, that is there exists a common basis of eigenvectors for both *T* and *S*

Problem 10 Let *M* be a real diagonalizable $n \times n$ matrix. Prove that there is an $n \times n$ matrix *N* with real entries such that $N^3 = M$.

Problem 11 Let $\lambda_1, \lambda_2, ..., \lambda_n$ be distinct elements of the field \mathbb{F} . Then the matrix

$$\left(\begin{array}{cccccc} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \cdots & \cdots & \cdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{array}\right)$$

is invertible. (Use the fact that a nonzero polynomial of degree less then n can not have n roots.)

Problem 12 Find the eigenvalues of the matrix *A*, given below. Find bases for the eigenspaces of *A*. Can you find an invertible matrix, *S*, such that $S^{-1}AS = D$, where *D* is a diagonal matrix? If no, why not? If yes, find the matrices *S* and *D*.

1.

$$A = \begin{bmatrix} 3 & 2 & -2 \\ 2 & 3 & -2 \\ 6 & 6 & -5 \end{bmatrix}$$
$$A = \begin{bmatrix} -8 & 5 & 4 \\ -9 & 5 & 5 \\ 0 & 1 & 0 \end{bmatrix}$$

2.

Problem 13 1. Find the determinant of the matrix

1	2	0	3	0
0	5	0	3	0
0	3	0	2	0
5	2	-1	1	-1
1	1	1	1	2

2. What is the common denominator of the entries in A^{-1} .

Problem 14 A two by two matrix A has a trace trA = 8 and determinant detA = 12. Is A digonalizable? **Problem 15** A two by two matrix A has a characteristic polynomial $7 - 8t + t^2$. In addition

$A^{2} =$	41	-40
<u> </u>	-8	9

Find A.

Problem 16 Find the general solution of $y^{(4)} - 8y^{(2)} + 16y = 0$.