MAT310 Fall 2012
 Practice Final

The actual Final exam will consist of twelve problems that cover chapters 1.2-5.4
(inclusive) with omission of 2.6,4.5,5.3

Problem 1 Let V, W be vector spaces. Define the following terms:

1. What is a subspace of V ?
2. Let $F: V \rightarrow W$ be a function. What does it mean to say that F is linear?
3. Let $T=\left\{v_{1}, v_{2}, \ldots\right\}$ be a subset of V. What is a linear combination of elements of T ? What is the span of T ? What does it mean to say that T is linearly independent? What does it mean to say that T spans V ? What does it mean to say that T is a basis of V ?
4. What is the dimension of V ?
5. Let $F: V \rightarrow W$ be linear. Define $N(F)=\operatorname{ker}(F)$. Define $\operatorname{im}(F)$. What is the rank of F ? What is the nullity of F ?
6. Let $F: V \rightarrow V$ be linear. What is an eigenvalue of F ? What is an eigenvector of F ?
7. What does it means to say that two $n \times n$ matrices are similar?
8. What does it mean to say that two vector spaces are isomorphic?
9. Let A be an $n \times n$ matrix. What is an eigenbasis for the matrix A ?
10. Let B be a basis of a vector space V. What does one mean by the coordinates of a vector $v \in V$ with respect to B ?

Problem 2 1. Let $F: V \rightarrow W$ be linear. Show that $\operatorname{ker}(F)$ is a subspace of V.
Show that $\operatorname{im}(F)$ is subspace of W
2. State the rank+nullity theorem.

Problem 3 Consider the system of equations

$$
\left\{\begin{array}{c}
x-2 y+3 z-w=2 \\
2 x+y-z+3 w=1 \\
5 x+z+5 w=4
\end{array}\right.
$$

1. Find all, if any, solutions to this system.
2. Write the system as a matrix equation

Problem 4 Determine linearly independent sets

1. Set of functions $1, e^{x}$ and $e^{2 x}$ thought of as elements of real linear space of continuous functions $C[0,1]$
2. Set of functions $1, \sin ^{2}(x)$ and $3-\cos ^{2}(x)$ thought of as elements of real linear space of continuous functions $C[0,2 \pi]$

Problem 5 Let $P: V \rightarrow V$ be a projection on a finite dimensional vector space, i.e., P is a linear map with the property that $P^{2}=P$. Show that there exists a basis B for V such that $M(P)=\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)$, where I_{r} is the $r \times r$ identity matrix. (Here $M(P)$ is the matrix representing the map P relative to the basis B.)

Problem 6 Find bases in $\operatorname{Im} A$ and $\operatorname{ker} A$ where the linear transformation $A: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ has a matrix
$\left[\begin{array}{ccccc}1 & -2 & 1 & 2 & 0 \\ 2 & 1 & 1 & -1 & 2 \\ 5 & 0 & 3 & 0 & 4\end{array}\right]$

Extend the bases to bases of $\mathbb{R}^{3}, \mathbb{R}^{5}$ respectively.

Problem 7 True or False. (Explain!)

1. The set of all vectors of the form $(a, b, 0, b)^{t}$ where a, b are real numbers forms a subspace in \mathbb{R}^{4}.
2. Let V be the space of all functions from \mathbb{R} to \mathbb{R} that have infinitely many derivatives. The function $F: V \rightarrow V F(f)=3 f^{\prime}-2 f^{\prime \prime}$ is linear.
3. If the determinant of a 4×4 matrix is 4 , then the rank of the matrix must be 4 .
4. If the standard vectors $\left\{e_{1}, e_{2}, \ldots e_{n}\right\}$ are eigenvectors of an $n \times n$ matrix, then the matrix is diagonal.
5. If 1 is the only eigenvalue of an $n \times n$ matrix A, then A must be I_{n}.
6. If two 3×3 matrices both have the eigenvalues $3,4,5$, then A must be similar to B.

Problem 8 Given an operator T that has in some basis a matrix $M(T)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, prove that there exists no basis, in which T has a diagonal matrix. (Do not simply quote facts about Jordan Canonical Form but give a direct proof.)

Problem 9 Let V be a finite dimensional vector space and T, S linear transformations which commute, i.e. $T S=S T$ and T and S are both diagonalizable, show that T and S are simultaneous diagonalizable, that is there exists a common basis of eigenvectors for both T and S

Problem 10 Let M be a real diagonalizable $n \times n$ matrix. Prove that there is an $n \times n$ matrix N with real entries such that $N^{3}=M$.

Problem 11 Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be distinct elements of the field \mathbb{F}. Then the matrix

$$
\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{n} \\
\cdots & \cdots & \cdots & \cdots \\
\lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \cdots & \lambda_{n}^{n-1}
\end{array}\right)
$$

is invertible. (Use the fact that a nonzero polynomial of degree less then n can not have n roots.)

Problem 12 Find the eigenvalues of the matrix A, given below. Find bases for the eigenspaces of A. Can you find an invertible matrix, S, such that $S^{-1} A S=D$, where D is a diagonal matrix? If no, why not? If yes, find the matrices S and D.
1.

$$
A=\left[\begin{array}{ccc}
3 & 2 & -2 \\
2 & 3 & -2 \\
6 & 6 & -5
\end{array}\right]
$$

2.

$$
A=\left[\begin{array}{ccc}
-8 & 5 & 4 \\
-9 & 5 & 5 \\
0 & 1 & 0
\end{array}\right]
$$

Problem 13 1. Find the determinant of the matrix
$\left[\begin{array}{ccccc}1 & 2 & 0 & 3 & 0 \\ 0 & 5 & 0 & 3 & 0 \\ 0 & 3 & 0 & 2 & 0 \\ 5 & 2 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 & 2\end{array}\right]$
2. What is the common denominator of the entries in A^{-1}.

Problem 14 A two by two matrix A has a trace $\operatorname{tr} A=8$ and determinant $\operatorname{det} A=12$.
Is A digonalizable?

Problem 15 A two by two matrix A has a characteristic polynomial $7-8 t+t^{2}$. In addition

$$
A^{2}=\left[\begin{array}{cc}
41 & -40 \\
-8 & 9
\end{array}\right]
$$

Find A.

Problem 16 Find the general solution of $y^{(4)}-8 y^{(2)}+16 y=0$.

