MAT 310 - Solutions to practice mid term 1

Problem 1 Let $F=\mathbb{R}^{2}, U=\{(x, 0) \mid x \in \mathbb{R}\}, W=\{(0, y) \mid y \in \mathbb{R}\}$. Then $(1,1)=$ $(1,0)+(0,1)$ is not in $U \cup W$ but it should have been if $U \cup W$ was a subspace.

If $U \cup W$ is a subspace of F and $U \not \subset W, W \not \subset U$, choose $u \in U \backslash W$ and $w \in W \backslash U$. Then $u+w \in U \cup W$, since it is a subspace. If $u+w \in U$ then $w=(u+w)-u \in U$, a contradiction. On the other hand, if $u+w \in W$ then $u=(u+w)-w \in W$, again a contradiction.

Problem 2 (i) Suppose $a+b(t-1)+c(t-1)^{2}+d(t-1)^{3}=0$. Then

$$
(a-b+c-d)+(b-2 c-3 d) t+(c+3 d) t^{2}+d t^{3}=0
$$

Since $\left(1, t, t^{2}, t^{3}\right)$ is a basis of \mathbb{P}_{3} we conclude that $d=0$. Since $c+3 d=0$ this forces $c=0$. Now $b-2 c-3 d=0$ implies $b=0$ and $a-b+c-d=0$ implies $a=0$. This proves that $\left(1, t-1,(t-1)^{2},(t-1)^{3}\right)$ is linearly independent. Since \mathcal{P}_{3} has dimension 4 and $U=\operatorname{span}\left(1, t-1,(t-1)^{2},(t-1)^{3}\right)$ is a subspace of dimension 4, we conclude that $U=\mathcal{P}_{3}$.
(ii) Yes. For example, take $S=\{(1,0),(0,1)\}$ and $T=\{(1,1),(1,-1)\}$. The vectors in S span \mathbb{R}^{2} and so does the vectors in T but $S \neq T$.

Problem 3 It is given that $\psi \phi: V \rightarrow V$ is an isomorphism, i.e., it is injective (and surjective as well). If $\phi(v)=0$ then $\psi \phi(v)=0$ whence $v=0$. Therefore, ϕ is injective. On the other hand, given $v \in V$, let $v^{\prime} \in v$ be the unique element such that $\psi \phi\left(v^{\prime}\right)=v$. This is possible since $\psi \phi$ is surjective. Then $\psi\left(\phi\left(v^{\prime}\right)\right)=v$ and $\phi\left(v^{\prime}\right) \in W$, whence ψ is surjective.

Problem 4 Let $\rho: V \rightarrow V$ be such that $\rho \rho=\rho$. Let $v \in \operatorname{range}(\rho)$ and write $v=\rho\left(v^{\prime}\right)$ for some $v^{\prime} \in V$. Then

$$
\rho(v)=\rho \rho\left(v^{\prime}\right)=\rho\left(v^{\prime}\right)=v .
$$

Thus, ρ is the identity on range (ρ).
Problem 5 It is enough to prove linear independence since then the span of the given vectors would be of dimension 3 and consequently has to be \mathbb{R}^{3}. Suppose

$$
a(1,1,0)+b(2,0,-1)+c(-3,1,1)=(a+2 b-3 c, a+c,-b+c)=(0,0,0) .
$$

This implies that $b=c, a=-c$ and $a+2 b-3 c=0$. The last equation can be written as $-c+2 c-3 c=0$ whence $c=0$ and $a=b=0$.

Problem 6 Let $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $\phi(x, y)=(0, x)$. Since $\phi \phi(x, y)=\phi(0, x)=$ $(0,0)$ it defines a nilpotent endomorphism of order 2 . Similarly, $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $\psi(x, y)=(y, 0)$ is also a nilpotent endomorphism of order 2 . Now $\psi \phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given
by $\psi \phi(x, y)=\psi(0, x)=(x, 0)$. It is clear that $(\psi \phi)^{2}(x, y)=\psi \phi(x, 0)=(x, 0)=\psi \phi(x, y)$. Therefore, $\psi \phi$ is an idempotent.

Problem 7 Since $x \in \operatorname{span}\{M, y\}$ and $x \notin M$ we can write

$$
x=a_{1} v_{1}+\cdots+a_{k} v_{k}+b y
$$

where v_{i} 's are a basis of M and $b \neq 0$. Then

$$
y=\left(-a_{1} / b\right) v_{1}+\cdots+\left(-a_{k} / b\right) v_{k}+(1 / b) x
$$

and $y \in \operatorname{span}\{M, x\}$. Clearly $M \subset \operatorname{span}\{M, x\}$. Therefore, $\operatorname{span}\{M, y\} \subset \operatorname{span}\{M, x\}$. On the other hand, $x \in \operatorname{span}\{M, y\}$ whence $\operatorname{span}\{M, x\} \subset \operatorname{span}\{M, y\}$. This proves that $\operatorname{span}\{M, y\}=\operatorname{span}\{M, x\}$.

Problem 8 Since $M \subset M+(L \cap N)$ this implies that $L \cap M \subset L \cap(M+(L \cap N))$. On the other hand

$$
L \cap N=L \cap(L \cap N) \subset L \cap(M+(L \cap N)) .
$$

This means that $L \cap M$ and $L \cap N$ are both subspaces of $L \cap(M+(L \cap N))$ and therefore contains the sum as well, viz.,

$$
(L \cap M)+(L \cap N) \subset L \cap(M+(L \cap N)) .
$$

On the other hand if $v \in L \cap(M+(L \cap N))$ then $v \in L$ and $v \in M+(L \cap N)$. Write $v=m+l$ where $m \in M$ and $l \in L \cap N$. Then $m=v-l \in L$ whence $m \in L \cap M$. Therefore, $v=m+l \in(L \cap M)+(L \cap N)$.

Problem 9 (i) If $(1, \alpha)=\lambda(1, \beta)$ then $\lambda=1$ and $\alpha=\beta$. Therefore, $(1, \alpha)$ and $(1, \beta)$ are linearly independent if and only if $\alpha \neq \beta$.
(ii) No. If there were then \mathbb{C}^{2} would contain the span of these three vectors which is a 3 dimensional subspace while \mathbb{C}^{2} is only 2 dimensional.
(iii) No matter what $x \in \mathbb{C}$ is, the vectors $(1,1,1)$ and $\left(1, x, x^{2}\right)$ span a subspace of \mathbb{C}^{3} of dimension at most 2 . When $x=1$ the span is $\{(z, z, z) \mid z \in \mathbb{C}\}$. When $x \neq 1$ the span is a 2 dimensional subspace. In either case, it does not span \mathbb{C}^{3}.
(iv) If these vectors are linearly independent then we'll be done since we're in \mathbb{C}^{3}. For any choice of $x \in \mathbb{C}$ we can write $(x, 1,1+x)=(x, 0,1)+(0,1, x)$ whence they are not linearly independent and therefore not a basis.

Problem 10 (i) The first and the third transformations are linear. The second is not since $T(2 x, 2 y)=4 T(x, y)$.
(ii) The first and the third are linear transformations. For example, in the first case
$T\left(a_{0}+a_{1} x+\cdots+a_{k} x^{k}\right)=a_{0}+a_{1} x^{2}+\cdots+a_{k} x^{2 k}=T\left(a_{0}\right)+a_{1} T(x)+a_{2} T\left(x^{2}\right)+\cdots+a_{k} T\left(x^{k}\right)$
which precisely means that T is linear. Similarly, in the third case
$T\left(a_{0}+a_{1} x+\cdots+a_{k} x^{k}\right)=X^{2}\left(a_{0}+a_{1} x+\cdots+a_{k} x^{k}\right)=T\left(a_{0}\right)+a_{1} T(x)+a_{2} T\left(x^{2}\right)+\cdots+a_{k} T\left(x^{k}\right)$
which implies linearity of T. In the second case, however, $T(2 p(x))=4(p(x))^{2} \neq 2 T(p(x))$ whence T is not linear.

Problem 11 (i) Let $p(x)=a_{0}+a_{1} x+\cdots+a_{6} x^{6} \in \mathcal{P}_{6}$.

$$
T(p(x)):=\int_{-3}^{x+9} p(t) d t=\sum_{i=0}^{6} a_{i} \int_{-3}^{x+9} t^{i} d t=\sum_{i=0}^{6} \frac{a_{i}}{i+1}\left((x+9)^{i+1}-(-3)^{i+1}\right) .
$$

If $T(p(x))=0$ then a_{6}, the coefficient of x^{7}, is zero. Therefore,

$$
T(p(x))=\sum_{i=0}^{5} \frac{a_{i}}{i+1}\left((x+9)^{i+1}-(-3)^{i+1}\right)=0 .
$$

Again, the coefficient of x^{6} is a_{5} and it has to be zero. Doing this recursively leads one to $T\left(p(x)=a_{0}((x+9)-(-3))=a_{0}(x+12)=0\right.$ whence $a_{0}=0$. Therefore, if $p(x) \in \operatorname{null}(T)$ then $p(x)=0$. So $\operatorname{null}(T)=\{0\}$.
(ii) Let $p(x)=a_{0}+a_{1} x+\cdots+a_{5} x^{5} \in \mathcal{P}_{5}$ such that

$$
0=D(p(x))=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+5 a_{5} x^{4} .
$$

Then $a_{1}=a_{2}=a_{3}=a_{3}=a_{4}=a_{5}=0$. Therefore, $\operatorname{null}(D)=\mathbb{R}$, the space of constant polynomials.
(iii) If $T(x, y)=0$ then $2 x+3 y=0$ and $7 x=5 y$. Combining both these we get $-2 x / 3=7 x / 5$ which means $x=0$ and $y=7 x / 5=0$. Therefore, $\operatorname{null}(T)=\{0\}$.
(iv) We know that ($1, x, x^{2}, x^{3}, x^{4}, x^{5}$) is a basis for \mathcal{P}_{5}. It follows from the definition of T that $T\left(x^{i}\right)=x^{4 i} \neq 0$, i.e., T is injective on the basis elements and therefore injective on \mathcal{P}_{5}. Consequently, $\operatorname{null}(T)=\{0\}$,
(v) If $T(x, y)=(x, 0)=(0,0)$ then $x=0$. Therefore, $\operatorname{null}(T)=\{(0, y) \mid y \in \mathbb{R}\}$.
(vi) If $T(x, y)=x+2 y=0$ then $y=-x / 2$. Therefore, $\operatorname{null}(T)=\{(2 x,-x) \mid x \in \mathbb{R}\}$.

Problem 12 (i) We compute $S T$ ans $T S$ and then compare them. On the one hand

$$
S T(p(x))=S\left(x^{2} p(x)\right)=x^{4} p\left(x^{2}\right)
$$

while on the other hand

$$
T S(p(x))=T\left(p\left(x^{2}\right)\right)=x^{2} p\left(x^{2}\right)
$$

Therefore S and T don't commute.
(ii) As before, on the one hand

$$
S T\left(a+b x+c x^{2}+d x^{3}\right)=S\left(a+c x^{2}\right)=a+c(x+2)^{2}=(a+4 c)+2 c x+c x^{2}
$$

while on the other hand

$$
\begin{aligned}
T S\left(a+b x+c x^{2}+d x^{3}\right) & =T\left(a+2 b+4 c+8 d+(b+2 c+12 d) x+(c+6 d) x^{2}+d x^{3}\right) \\
& =a+2 b+4 c+8 d+(c+6 d) x^{2} .
\end{aligned}
$$

Therefore, S and T don't commute.
Problem 13 (i) No. Any invertible linear transformation must be surjective, viz., the image must have full dimension. In this case, the image of $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is $\{(x, x) \mid x \in \mathbb{R}\}$ is 1 dimensional.
(ii) Yes. The inverse of T is T itself. For example, $T T(x, y)=T(y, x)=(x, y)$ whence $T T=\mathrm{Id}$.
(iii) No. Any invertible linear transformation must be injective, viz., it must have no null space. As we saw in 11 (ii), D on \mathcal{P}_{5} has a 1 dimensional space as its null space and hence not invertible.

Problem 4.
(1) Let $\left\{v_{1}, \cdots, v_{l}\right\}$ be a basis of L, where $l=\operatorname{dim} L$. For any $\varphi(v) \in \varphi(L)$ $v \in L$, write $v=a_{1} v_{1}+\cdots+a_{2} v_{l}$. Then

$$
\varphi(v)=\varphi\left(a_{1} v_{1}+\cdots+a_{2} v_{l}\right)=a_{1} \varphi\left(v_{1}\right)+\cdots+a_{l} \varphi\left(v_{l}\right) \quad \text { (} \varphi \text { is linear) }
$$

That is, $\varphi\left(v_{1}\right), \cdots, \varphi\left(v_{e}\right)$ span $\varphi(L)$. Therefore, $\operatorname{dim} \varphi(L) \leqslant l=\operatorname{dim} L$.
(2) When φ is one to one, if $a_{1} \varphi\left(w_{1}\right)+\cdots+a_{2} \varphi\left(w_{1}\right)=0$, which is equivalent z_{0} $\varphi\left(a_{1} v_{1}+\cdots+a_{2} v_{l}\right)=0$, them $a_{1} v_{1}+\cdots+a_{l} v_{l}=0 . \quad\left(N_{n} l l(\varphi)=\{0\}\right)$

Since $\left\{v_{1}, \cdots, v_{l}\right\}$ is a basis of L, we mast have $a_{l}=\cdots=a_{l}=0$. therefore $\varphi\left(v_{1}\right), \cdots, \varphi\left(v_{l}\right)$ are linearly independent.

Combining (1), we have $\left\{\varphi\left(v_{1}\right), \cdots, \varphi\left(v_{l}\right)\right\}$ is a basis of $\varphi(L)$, So $\operatorname{dim} \varphi(L)=l=\operatorname{dim} L$.

Problem is.
$\left\{1, x, x^{2}, x^{3}\right\}$ is a basis of P_{3}. Denote it by β.
Standard
Denote γ the basis $\{(1,0),(0,1)\}$ of \mathbb{R}^{2}.
Then $[T]_{\gamma}^{\beta}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}\right)$

$$
\operatorname{rank}\left([T]_{\gamma}^{\beta}\right)=2 \quad \Rightarrow \quad \operatorname{dim} N(T)=2
$$

Actually $\left\{x^{3}-x^{2}, x^{2}-x\right\}$ is a basin of $N(7)$, dentine it by α.

Define $\mathscr{A}: N(T) \rightarrow \mathbb{R}^{2}$ by $\mathscr{A}(f)=\left(f^{\prime}(0), f^{\prime}(11)\right.$,
then $[A]_{\gamma}^{\alpha}=\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$, γ as defined above.
$\operatorname{det}\left([\phi]_{\gamma}^{\alpha}\right) \neq 0 \Rightarrow \not$ riommphism.
α can be excerended to $\left\{x^{3}-x^{2}, x^{2}-x, x, 1\right\}$, a basis of P_{3}.

Problem 16.

$$
\begin{aligned}
& T(1,3)=(-7,26)=-54(1,3)+47(1,4) \\
& T(1,4)=(-10,33)=-76(1,3)+66(1,4) \\
& \Rightarrow[T]_{\beta}=\left(\begin{array}{cc}
-54 & -76 \\
47 & 66
\end{array}\right) \\
& T(3,2)=(0,29)=-203(3,2)+87(7,5) \\
& T(7,5)=(-1,70)=-495(3,2)+212(7,5) \\
& \Rightarrow[T]_{\beta}^{\prime}=\left(\begin{array}{cc}
-203 & -495 \\
87 & 212
\end{array}\right) \\
& Q=\left[I \beta_{\beta}^{\prime}=\left(\begin{array}{cc}
-16 & -23 \\
7 & 10
\end{array}\right)\right. \\
& {[T]_{\beta}^{\prime} Q=\left(\begin{array}{cc}
-217 & -281 \\
92 & 119
\end{array}\right)=Q[T]_{\beta}}
\end{aligned}
$$

