MAT 310 - Solutions to practice mid term 1

Problem 1 Let $F = \mathbb{R}^2$, $U = \{(x,0) | x \in \mathbb{R}\}$, $W = \{(0,y) | y \in \mathbb{R}\}$. Then (1,1) = (1,0) + (0,1) is not in $U \cup W$ but it should have been if $U \cup W$ was a subspace.

If $U \cup W$ is a subspace of F and $U \not\subset W, W \not\subset U$, choose $u \in U \setminus W$ and $w \in W \setminus U$. Then $u + w \in U \cup W$, since it is a subspace. If $u + w \in U$ then $w = (u + w) - u \in U$, a contradiction. On the other hand, if $u + w \in W$ then $u = (u + w) - w \in W$, again a contradiction.

Problem 2 (i) Suppose $a + b(t-1) + c(t-1)^2 + d(t-1)^3 = 0$. Then $(a-b+c-d) + (b-2c-3d)t + (c+3d)t^2 + dt^3 = 0$.

Since $(1, t, t^2, t^3)$ is a basis of \mathbb{P}_3 we conclude that d = 0. Since c + 3d = 0 this forces c = 0. Now b - 2c - 3d = 0 implies b = 0 and a - b + c - d = 0 implies a = 0. This proves that $(1, t - 1, (t - 1)^2, (t - 1)^3)$ is linearly independent. Since \mathcal{P}_3 has dimension 4 and $U = \operatorname{span}(1, t - 1, (t - 1)^2, (t - 1)^3)$ is a subspace of dimension 4, we conclude that $U = \mathcal{P}_3$. (ii) Yes. For example, take $S = \{(1, 0), (0, 1)\}$ and $T = \{(1, 1), (1, -1)\}$. The vectors in

S span \mathbb{R}^2 and so does the vectors in T but $S \neq T$.

Problem 3 It is given that $\psi\phi : V \to V$ is an isomorphism, i.e., it is injective (and surjective as well). If $\phi(v) = 0$ then $\psi\phi(v) = 0$ whence v = 0. Therefore, ϕ is injective. On the other hand, given $v \in V$, let $v' \in v$ be the unique element such that $\psi\phi(v') = v$. This is possible since $\psi\phi$ is surjective. Then $\psi(\phi(v')) = v$ and $\phi(v') \in W$, whence ψ is surjective.

Problem 4 Let $\rho: V \to V$ be such that $\rho \rho = \rho$. Let $v \in \operatorname{range}(\rho)$ and write $v = \rho(v')$ for some $v' \in V$. Then

$$\rho(v) = \rho\rho(v') = \rho(v') = v.$$

Thus, ρ is the identity on range(ρ).

Problem 5 It is enough to prove linear independence since then the span of the given vectors would be of dimension 3 and consequently has to be \mathbb{R}^3 . Suppose

$$a(1,1,0) + b(2,0,-1) + c(-3,1,1) = (a+2b-3c, a+c, -b+c) = (0,0,0).$$

This implies that b = c, a = -c and a + 2b - 3c = 0. The last equation can be written as -c + 2c - 3c = 0 whence c = 0 and a = b = 0.

Problem 6 Let $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $\phi(x, y) = (0, x)$. Since $\phi\phi(x, y) = \phi(0, x) = (0, 0)$ it defines a nilpotent endomorphism of order 2. Similarly, $\psi : \mathbb{R}^2 \to \mathbb{R}^2$ given by $\psi(x, y) = (y, 0)$ is also a nilpotent endomorphism of order 2. Now $\psi\phi : \mathbb{R}^2 \to \mathbb{R}^2$ is given

by $\psi\phi(x,y) = \psi(0,x) = (x,0)$. It is clear that $(\psi\phi)^2(x,y) = \psi\phi(x,0) = (x,0) = \psi\phi(x,y)$. Therefore, $\psi\phi$ is an idempotent.

Problem 7 Since $x \in \text{span}\{M, y\}$ and $x \notin M$ we can write

$$x = a_1 v_1 + \dots + a_k v_k + b_k$$

where v_i 's are a basis of M and $b \neq 0$. Then

$$y = (-a_1/b)v_1 + \dots + (-a_k/b)v_k + (1/b)x$$

and $y \in \text{span}\{M, x\}$. Clearly $M \subset \text{span}\{M, x\}$. Therefore, $\text{span}\{M, y\} \subset \text{span}\{M, x\}$. On the other hand, $x \in \text{span}\{M, y\}$ whence $\text{span}\{M, x\} \subset \text{span}\{M, y\}$. This proves that $\text{span}\{M, y\} = \text{span}\{M, x\}$.

Problem 8 Since $M \subset M + (L \cap N)$ this implies that $L \cap M \subset L \cap (M + (L \cap N))$. On the other hand

$$L \cap N = L \cap (L \cap N) \subset L \cap (M + (L \cap N)).$$

This means that $L \cap M$ and $L \cap N$ are both subspaces of $L \cap (M + (L \cap N))$ and therefore contains the sum as well, viz.,

$$(L \cap M) + (L \cap N) \subset L \cap (M + (L \cap N)).$$

On the other hand if $v \in L \cap (M + (L \cap N))$ then $v \in L$ and $v \in M + (L \cap N)$. Write v = m + l where $m \in M$ and $l \in L \cap N$. Then $m = v - l \in L$ whence $m \in L \cap M$. Therefore, $v = m + l \in (L \cap M) + (L \cap N)$.

Problem 9 (i) If $(1, \alpha) = \lambda(1, \beta)$ then $\lambda = 1$ and $\alpha = \beta$. Therefore, $(1, \alpha)$ and $(1, \beta)$ are linearly independent if and only if $\alpha \neq \beta$.

(ii) No. If there were then \mathbb{C}^2 would contain the span of these three vectors which is a 3 dimensional subspace while \mathbb{C}^2 is only 2 dimensional.

(iii) No matter what $x \in \mathbb{C}$ is, the vectors (1, 1, 1) and $(1, x, x^2)$ span a subspace of \mathbb{C}^3 of dimension at most 2. When x = 1 the span is $\{(z, z, z) | z \in \mathbb{C}\}$. When $x \neq 1$ the span is a 2 dimensional subspace. In either case, it does not span \mathbb{C}^3 .

(iv) If these vectors are linearly independent then we'll be done since we're in \mathbb{C}^3 . For any choice of $x \in \mathbb{C}$ we can write (x, 1, 1 + x) = (x, 0, 1) + (0, 1, x) whence they are not linearly independent and therefore not a basis.

Problem 10 (i) The first and the third transformations are linear. The second is not since T(2x, 2y) = 4T(x, y).

(ii) The first and the third are linear transformations. For example, in the first case

$$T(a_0 + a_1x + \dots + a_kx^k) = a_0 + a_1x^2 + \dots + a_kx^{2k} = T(a_0) + a_1T(x) + a_2T(x^2) + \dots + a_kT(x^k)$$

which precisely means that T is linear. Similarly, in the third case

$$T(a_0 + a_1x + \dots + a_kx^k) = X^2(a_0 + a_1x + \dots + a_kx^k) = T(a_0) + a_1T(x) + a_2T(x^2) + \dots + a_kT(x^k)$$

which implies linearity of T. In the second case, however, $T(2p(x)) = 4(p(x))^2 \neq 2T(p(x))$ whence T is not linear. **Problem** 11 (i) Let $p(x) = a_0 + a_1 x + \dots + a_6 x^6 \in \mathcal{P}_6$.

$$T(p(x)) := \int_{-3}^{x+9} p(t)dt = \sum_{i=0}^{6} a_i \int_{-3}^{x+9} t^i dt = \sum_{i=0}^{6} \frac{a_i}{i+1} ((x+9)^{i+1} - (-3)^{i+1}).$$

If T(p(x)) = 0 then a_6 , the coefficient of x^7 , is zero. Therefore,

$$T(p(x)) = \sum_{i=0}^{5} \frac{a_i}{i+1} ((x+9)^{i+1} - (-3)^{i+1}) = 0.$$

Again, the coefficient of x^6 is a_5 and it has to be zero. Doing this recursively leads one to $T(p(x) = a_0((x+9) - (-3)) = a_0(x+12) = 0$ whence $a_0 = 0$. Therefore, if $p(x) \in \text{null}(T)$ then p(x) = 0. So $\text{null}(T) = \{0\}$.

(ii) Let $p(x) = a_0 + a_1 x + \dots + a_5 x^5 \in \mathcal{P}_5$ such that

$$0 = D(p(x)) = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4.$$

Then $a_1 = a_2 = a_3 = a_3 = a_4 = a_5 = 0$. Therefore, $\operatorname{null}(D) = \mathbb{R}$, the space of constant polynomials.

(iii) If T(x,y) = 0 then 2x + 3y = 0 and 7x = 5y. Combining both these we get -2x/3 = 7x/5 which means x = 0 and y = 7x/5 = 0. Therefore, $\operatorname{null}(T) = \{0\}$.

(iv) We know that $(1, x, x^2, x^3, x^4, x^5)$ is a basis for \mathcal{P}_5 . It follows from the definition of T that $T(x^i) = x^{4i} \neq 0$, i.e., T is injective on the basis elements and therefore injective on \mathcal{P}_5 . Consequently, null $(T) = \{0\}$,

(v) If T(x,y) = (x,0) = (0,0) then x = 0. Therefore, $\operatorname{null}(T) = \{(0,y) \mid y \in \mathbb{R}\}.$

(vi) If T(x, y) = x + 2y = 0 then y = -x/2. Therefore, null $(T) = \{(2x, -x) \mid x \in \mathbb{R}\}$.

Problem 12 (i) We compute ST and TS and then compare them. On the one hand

$$ST(p(x)) = S(x^2p(x)) = x^4p(x^2)$$

while on the other hand

$$TS(p(x)) = T(p(x^2)) = x^2 p(x^2).$$

Therefore S and T don't commute.

(ii) As before, on the one hand

$$ST(a + bx + cx^{2} + dx^{3}) = S(a + cx^{2}) = a + c(x + 2)^{2} = (a + 4c) + 2cx + cx^{2}$$

while on the other hand

$$TS(a + bx + cx^{2} + dx^{3}) = T(a + 2b + 4c + 8d + (b + 2c + 12d)x + (c + 6d)x^{2} + dx^{3})$$

= $a + 2b + 4c + 8d + (c + 6d)x^{2}$.

Therefore, S and T don't commute.

Problem 13 (i) No. Any invertible linear transformation must be surjective, viz., the image must have full dimension. In this case, the image of $T : \mathbb{R}^2 \to \mathbb{R}^2$ is $\{(x, x) | x \in \mathbb{R}\}$ is 1 dimensional.

(ii) Yes. The inverse of T is T itself. For example, TT(x, y) = T(y, x) = (x, y) whence TT = Id.

(iii) No. Any invertible linear transformation must be injective, viz., it must have no null space. As we saw in 11 (ii), D on \mathcal{P}_5 has a 1 dimensional space as its null space and hence not invertible.

Note Title

Problem 4. (1) Let SV, ..., Ve J be a barris of L, where l = dim L. For any years e yeld, VEL, write V = R,V, + -- + Reve. Then $\varphi(v) = \varphi(a_1v_1 + \dots + a_ev_e) = a_1\varphi(v_1) + \dots + a_e\varphi(v_e)$ (φ is linear) That is, q(vi),..., q(ve) span q(L). Therefore, dim q(L) & l = dim L (2) When op is one to one, if a, p(v), + -... + a p(ve) = 0, which is equivalent to $\varphi(a_1v_1+\cdots+a_2v_2)=, \quad \text{from} \quad A_1v_1+\cdots+A_2v_2=0. \quad \left(\text{Norl}(\varphi)=\{o\} \right)$ Since {U1, ..., U2} is a basis of L, we must have a1 = --- = a2 = 0. Therefore qcuis, ..., qcues are linearly independent. Combining (1), we have fig (VI), ..., y (Ve)] is a barris of cech), So din p(L) = L = dim L Problem 15. {1, x, x², x³} is a basis of P3. Denote it by B. standard Denote Y the basis { (1,0), (0,1)} of R². Then $TTJ_{g}^{\beta} = \begin{pmatrix} l & \circ & \circ \\ l & l & l \end{pmatrix}$ $\operatorname{Fank}\left([T]_{\mathcal{F}}^{\beta}\right)=2$ => dim N(T)=2Actually { N'-n', n'-n' is a barin of N(7), denote it by a.

$$\begin{aligned} \nabla dfine \quad \mathcal{A}: \ N(T) &\longrightarrow \mathbb{R}^{2} \ \text{log} \quad \mathcal{A}: f^{3} = (f^{1}\circ), \ f^{1}(n), \\ \text{then} \quad \left[\mathcal{A} \right]_{Y}^{4} \stackrel{*}{=} \begin{pmatrix} \circ & -1 \\ 1 & 1 \end{pmatrix}, \ Y \text{ as defined above.} \\ \text{det} \left([\mathcal{A}]_{Y}^{4} \right) \neq \circ \implies \mathcal{A} \text{ insumophism}. \\ \text{det} \ \text{above be constructed } f_{Y} \quad \left\{ \mathcal{A}^{3} - \mathcal{A}^{3}, \ \mathcal{A}^{2} - \mathcal{A}, \ \mathcal{A}, \ i \ f, \ a \ boxind \ \mathbf{f}^{3}. \end{aligned}$$

$$\begin{aligned} Problem \quad 16. \\ T(i,3) = (-7), \nu 6) &= -34 (i, 3) + 47 (i, 4) \\ T(i, 4) &= (-io, 33) = -76 (i, 3) + 47 (i, 4) \\ T(i, 4) &= (-io, 33) = -76 (i, 3) + 46 (i, 4) \\ &= 2 \left[T \right]_{F} = \begin{pmatrix} -54 & -76 \\ 47 & 66 \end{pmatrix} \\ T(i, 5) &= (-i, 7o) = -415 (i, 2) + 42 (7, 5) \\ T(i, 5) &= (-i, 7o) = -415 (i, 2) + 42 (7, 5) \\ &= 2 \left[T \right]_{F^{1}} = \begin{pmatrix} -203 & -415 \\ 87 & 2i2 \end{pmatrix} \\ \mathcal{Q} = T \prod_{F^{1}} P_{F} = \begin{pmatrix} -16 & -23 \\ 7 & io \end{pmatrix} \\ &= 17 P_{F}, \mathcal{Q} = \begin{pmatrix} -2i1 & -23 \\ 7 & io \end{pmatrix} \end{aligned}$$