MAT303 Spring 2009

Some Practice Final Solutions

Problem 2

i. xy' + y = 3

This is of the form a(x)y' + b(x)y = f(x), so it is linear. No integrating factor is needed (or you may use p(x) = 1).

$$xy' + y = 3$$

$$(xy)' = 3$$

$$xy = 3x + c$$

$$y = 3 + \frac{c}{r}$$

ii. $xy' - y = 2x^2$

This is linear, and $xy' - y = 2x^2 \Rightarrow y' - \frac{y}{x} = 2x$, so the integrating factor is given by $p(x) = e^{\int -\frac{1}{x} dx} = \frac{1}{x}$.

$$\frac{1}{x}\left(y'-\frac{y}{x}\right) = \frac{1}{x}2x$$
$$\frac{y'}{x}-\frac{y}{x^2} = 2$$
$$\left(\frac{y}{x}\right)' = 2$$
$$\frac{y}{x} = 2x+c$$
$$y = 2x^2+cx$$

iii. $y' - \frac{3}{x-1}y = (x-1)^4$

This is linear and has integrating factor $p(x) = e^{\int -\frac{3}{x-1} dx} = (x-1)^{-3}$.

$$(x-1)^{-3}\left(y'-\frac{3}{x-1}y\right) = (x-1)^{-3}(x-1)^4$$
$$(x-1)^{-3}y'-\frac{3}{(x-1)^4}y = (x-1)$$
$$((x-1)^{-3}y)' = x-1$$
$$(x-1)^{-3}y = \frac{1}{2}x^2-x+c$$
$$y = (x-1)^3\left(\frac{1}{2}x^2-x+c\right)$$

iv. $y' + \frac{1}{\sin x}y - y^2 = 0$

This is not linear because of the y^2 term.

v. $xy' + y = x^5$

This is linear with integrating factor p(x) = 1.

$$xy' + y = x^{5}$$

$$(xy)' = x^{5}$$

$$xy = \frac{1}{6}x^{6} + c$$

$$y = \frac{1}{6}x^{5} + \frac{c}{x}$$

Problem 4

i. dy/dx = (x+y)/(2x-y)

$$\frac{dy}{dx} = \frac{1 + \frac{y}{x}}{2 - \frac{y}{x}}$$

Make the substitution $u = \frac{y}{x}$. Then $\frac{dy}{dx} = x\frac{du}{dx} + u$ and so

$$x\frac{du}{dx} + u = \frac{1+u}{2-u}$$
$$x\frac{du}{dx} = \frac{u^2 - u + 1}{2-u}$$
$$\frac{u-2}{u^2 - u + 1} du = \frac{1}{x} dx$$

To compute the antiderivative $\int \frac{u-2}{u^2-u+1} du$ make the substitution $w = u^2 - u + 1$. Then dw = (2u - 1) du and the integral becomes

$$\int \frac{u-2}{u^2-u+1} \, du = \frac{1}{2} \int \frac{dw}{w} - \frac{3}{2} \int \frac{du}{u^2-u+1}$$

The first integral on the right is

$$\int \frac{dw}{w} = \ln|w| + c_1,$$

and for the second we complete the square in the denominator to obtain

$$\int \frac{du}{u^2 - u + 1} = \int \frac{du}{\left(u - \frac{1}{2}\right)^2 + \frac{3}{4}} = \frac{4}{3} \int \frac{du}{\left(\frac{2}{\sqrt{3}}u - \frac{1}{\sqrt{3}}\right)^2 + 1} = \frac{2}{\sqrt{3}} \arctan\left(\frac{2}{\sqrt{3}}u - \frac{1}{\sqrt{3}}\right) + c_2.$$

So we have

$$\frac{2}{\sqrt{3}}\arctan\left(\frac{3}{\sqrt{3}}u - \frac{1}{\sqrt{3}}\right) - \frac{1}{2}\ln|w| = \ln|x| + c_{1}$$

where $u = \frac{y}{x}$ and $w = \left(\frac{y}{x}\right)^2 - \frac{y}{x} + 1$.

ii. $dy/dx = xy + xy^4$

$$\frac{dy}{dx} = x(y+y^4)$$
$$\frac{dy}{y+y^4} = xdx$$
$$\frac{dy}{y(1+y^3)} = xdx$$

Use partial fractions to express $\frac{1}{y(1+y^3)}$ in the form

$$\frac{1}{y(1+y^3)} = \frac{A}{y} + \frac{By^2 + Cy + D}{1+y^3}$$

We find that A = 1, B = -1, C = 0, and D = 0.

$$\frac{1}{y(1+y^3)} = \frac{1}{y} - \frac{y^2}{1+y^3}$$

This means we can write

$$\left(\frac{1}{y} - \frac{y^2}{1+y^3}\right) dy = x dx$$

$$\ln|y| - \ln|1+y^3| = \frac{1}{2}x^2 + c$$

$$\ln\left|\frac{y}{1+y^3}\right| = \frac{1}{2}x^2 + c$$

$$\frac{y}{1+y^3} = ae^{\frac{1}{2}x^2}.$$

Problem 7

i.
$$y'' - y' - 2y = t^2 e^{2t}, \ y(0) = 0, \ y'(0) = 1$$

First find solutions to the homogeneous equation y'' - y' - 2y = 0. The associated characteristic polynomial is

$$r^{2} - r - 2 = (r - 2)(r + 1).$$

Thus we have two independent complementary solutions $y_1 = e^{2t}$ and $y_2 = e^{-t}$. Now we write the particular solution as

$$y_p = u_1(t)y_1(t) + u_2(t)y_2(t),$$

for some functions u_1 and u_2 . We determine u_1 and u_2 by solving the system

$$\begin{array}{rcl} u_1'y_1 + u_2'y_2 &=& 0\\ u_1'y_1' + u_2'y_2' &=& t^2e^{2t} \end{array}$$

This is

$$u_1'e^{2t} + u_2'e^{-t} = 0$$

$$2u_1'e^{2t} - u_2'e^{-t} = t^2e^{2t}$$

We find

$$u_1' = \frac{t^2}{3}$$
 and $u_2' = -\frac{t^2}{3}e^{3t}$.

Thus we may take

$$u_1 = t^3$$
 and $u_2 = -\left(\frac{1}{9}t^2 - \frac{2}{27}t + \frac{2}{81}\right)e^{3t}$

Thus

$$y_p = t^3 e^{2t} - \left(\frac{1}{9}t^2 - \frac{2}{27}t + \frac{2}{81}\right)e^{2t}.$$

We may drop the $\frac{2}{81}e^{2t}$ term since it appears in the homogeneous solution. The general solution $y = y_p + c_1y_1 + c_2y_2$ in this case may be written

$$y = \left(t^3 - \frac{1}{9}t^2 + \frac{2}{27}t\right)e^{2t} + c_1e^{2t} + c_2e^{-t}.$$

Initial conditions give $y(0) = 0 \Rightarrow c_1 + c_2 = 0 \Rightarrow c_2 = -c_1$. $y'(0) = 1 \Rightarrow \frac{2}{27} + 2c_1 - c_2 = 1 \Rightarrow c_1 = \frac{25}{81}$. So the final answer is

$$y = \left(t^3 - \frac{1}{9}t^2 + \frac{2}{27}t\right)e^{2t} + \frac{25}{81}e^{2t} - \frac{25}{81}e^{-t}$$

ii. $y'' + y = -2\sin t$, y(0) = 1, y'(0) = 1

The characteristic equation is $r^2 + 1 = 0$. This gives homogeneous solutions $y_1 = \cos t$ and $y_2 = \sin t$. We solve the system

$$u'_1 \cos t + u'_2 \sin t = 0$$

$$-u'_1 \sin t + u'_2 \cos t = -2 \sin t$$

which gives $u'_1 = 2\sin^2 t$ and $u'_2 = -2\sin t \cos t$. Using the identity $2\sin^2 t = 1 - \cos 2t$, we find

$$u_1 = t - \frac{1}{2}\sin 2t$$
 and $u_2 = \cos^2 t$.

The particular solution is thus

$$y_p = \left(t - \frac{1}{2}\sin 2t\right)\cos t + \cos^2 t\sin t$$

= $(t - \sin t\cos t)\cos t + (1 - \sin^2 t)\sin t$
= $t\cos t - \sin t\cos^2 t + \sin t - \sin^3 t$
= $t\cos t - \sin t(1 - \sin^2 t) + \sin t - \sin^3 t$
= $t\cos t$

so the general solution is

$$y = t\cos t + c_1\cos t + c_2\sin t.$$

The initial conditions show $y(0) = 1 \Rightarrow c_1 = 1$ and $y'(0) = 1 \Rightarrow c_2 = 0$, so the final answer is

$$y = t\cos t + \cos t = (t+1)\cos t.$$

Problem 9

y'' + 5y' + 6y = 0

i. The characteristic equation is

$$r^{2} + 5r + 6 = 0 \Rightarrow (r+2)(r+3) = 0.$$

So the general solution is

$$y = c_1 e^{-2t} + c_2 e^{-3t}.$$

ii. Put x = y'. Then x' = y'', so we obtain the first order system

$$\begin{cases} x' &= -5x - 6y \\ y' &= x \end{cases}$$

which may be expressed using matrices in the form $\vec{x}' = P\vec{x}$

$$\left[\begin{array}{c} x'\\y'\end{array}\right] = \left[\begin{array}{cc} -5 & -6\\1 & 0\end{array}\right] \left[\begin{array}{c} x\\y\end{array}\right]$$

We find the eigenvalues by equating the determinant of $\lambda I - P$ to 0

$$\begin{vmatrix} -5 - \lambda & -6 \\ 1 & -\lambda \end{vmatrix} = \lambda(\lambda+5) + 6 = \lambda^2 + 5\lambda + 6 = (\lambda+3)(\lambda+2)$$

this has solutions $\lambda = -3$ and $\lambda = -2$. Substituting these into $(\lambda I - P)(\vec{v}) = 0$ we find solutions

$$\vec{v_1} = \begin{bmatrix} 3\\ -1 \end{bmatrix}$$
 and $\vec{v_2} = \begin{bmatrix} -2\\ 1 \end{bmatrix}$

This gives

$$\begin{bmatrix} x \\ y \end{bmatrix} = c_1 e^{-3t} \begin{bmatrix} 3 \\ -1 \end{bmatrix} + c_2 e^{-2t} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Problem 12

Without damping we have the equation F = -ku. Given that it takes 8lbs to stretch the spring $\frac{1}{2}$ ft, we find that $-8 = -k\frac{1}{2}$, so k = 16ft·lb. We also know that the acceleration due to gravity is 32ft/ s^2 . Using F = ma where F = 8 is the weight of the object, we find its mass to be m = 8/32 = 1/4 slugs.

i. The motion of the mass is given by

$$\frac{1}{4}u'' + 2u' + 16u = \cos 3t, \ u(0) = \frac{1}{6}, u'(0) = 0$$

where u(t) denotes the displacement from equilibrium (its natural dangling position) t seconds after it is released. We have u'(0) = 0 since it is released from rest.

ii. The characteristic equation is $\frac{1}{4}r^2 + 2r + 16 = 0$ which has roots $-4 \pm 4\sqrt{3}i$. Therefore the complimentary solution is $u_c = e^{-4t} \left[c_1 \cos(4\sqrt{3}t) + c_2 \sin(4\sqrt{3}t) \right]$.

$$u_p = A\cos 3t + B\sin 3t.$$

Substituting this into the equation of motion gives

$$-\frac{9}{4}A\cos 3t - \frac{9}{4}B\sin 3t - 6A\sin 3t + 6B\cos 3t + 16A\cos 3t + 16B\sin 3t = \cos 3t$$

This is equivalent to the system of equations

$$-\frac{9}{4}A + 6B + 16A = 1$$

$$-\frac{9}{4}B - 6A + 16B = 0$$

we find $A = \frac{220}{3601}$ and $B = \frac{96}{3601}$. The general solution is given by

$$u = e^{-4t} \left[c_1 \cos(4\sqrt{3}t) + c_2 \sin(4\sqrt{3}t) \right] + A \cos 3t + B \sin 3t.$$

The initial conditions $u(0) = \frac{1}{6}$ and u'(0) = 0 yield the system

_

$$A + c_1 = 1/6$$

-4c_1 + 4\sqrt{3}c_2 + 3B = 0

Solving gives $c_1 = \frac{2281}{31606}$ and $c_2 = \frac{1849}{64818}\sqrt{3}$.

Problem 13

The operational determinant is given by

$$L = \begin{vmatrix} D^2 + 1 & -D^2 \\ D^2 - 1 & D^2 \end{vmatrix} = (D^2 + 1)D^2 - D^2(D^2 - 1) = 2D^4$$

This gives the equations

$$2D^{4}x = \begin{vmatrix} 2e^{-t} & -D^{2} \\ 0 & D^{2} \end{vmatrix} = 2e^{-t} \text{ and } 2D^{4}y = \begin{vmatrix} D^{2}+1 & 2e^{-t} \\ D^{2}-1 & 0 \end{vmatrix} = 0$$

 $D^4x = e^{-t}$ has the general solution $x = a_3t^3 + a_2t^2 + a_1t + a_0 + e^{-t}$ and $D^4y = 0$ has the general solution $y = b_3t^3 + b_2t^2 + b_1t + b_0$. Resubstituting these back into the second equation $(D^2 - 1)x + D^2y = 0$ yields

$$6a_3t + 2a_2 - a_3t^3 - a_2t^2 - a_1t - a_0 + 6b_3t + 2b_2 = 0.$$

Thus matching like terms gives

$$2a_2 - a_0 + 2b_2 = 0$$

$$6a_3 - a_1 + 6b_3 = 0$$

$$a_2 = 0$$

$$a_3 = 0$$

We obtain the same system if we substitute into the first equation $(D^2+1)x - D^2y = 2e^{-t}$. Thus the general solution is

$$\left(\begin{array}{c} x\\ y\end{array}\right) = \left(\begin{array}{c} a_0 + a_1 t + e^{-t}\\ b_0 + b_1 t + \frac{a_0}{2} t^2 + \frac{a_1}{6} t^3\end{array}\right)$$

where a_0, a_1, b_0 , and b_1 are arbitrary constants.