MAT303 Spring 2009

Some Practice Final Solutions

Problem 2

i. $x y^{\prime}+y=3$

This is of the form $a(x) y^{\prime}+b(x) y=f(x)$, so it is linear. No integrating factor is needed (or you may use $p(x)=1$).

$$
\begin{aligned}
x y^{\prime}+y & =3 \\
(x y)^{\prime} & =3 \\
x y & =3 x+c \\
y & =3+\frac{c}{x}
\end{aligned}
$$

ii. $x y^{\prime}-y=2 x^{2}$

This is linear, and $x y^{\prime}-y=2 x^{2} \Rightarrow y^{\prime}-\frac{y}{x}=2 x$, so the integrating factor is given by $p(x)=\mathrm{e}^{\int-\frac{1}{x} d x}=\frac{1}{x}$.

$$
\begin{aligned}
\frac{1}{x}\left(y^{\prime}-\frac{y}{x}\right) & =\frac{1}{x} 2 x \\
\frac{y^{\prime}}{x}-\frac{y}{x^{2}} & =2 \\
\left(\frac{y}{x}\right)^{\prime} & =2 \\
\frac{y}{x} & =2 x+c \\
y & =2 x^{2}+c x
\end{aligned}
$$

iii. $y^{\prime}-\frac{3}{x-1} y=(x-1)^{4}$

This is linear and has integrating factor $p(x)=\mathrm{e}^{\int-\frac{3}{x-1} d x}=(x-1)^{-3}$.

$$
\begin{aligned}
(x-1)^{-3}\left(y^{\prime}-\frac{3}{x-1} y\right) & =(x-1)^{-3}(x-1)^{4} \\
(x-1)^{-3} y^{\prime}-\frac{3}{(x-1)^{4}} y & =(x-1) \\
\left((x-1)^{-3} y\right)^{\prime} & =x-1 \\
(x-1)^{-3} y & =\frac{1}{2} x^{2}-x+c \\
y & =(x-1)^{3}\left(\frac{1}{2} x^{2}-x+c\right)
\end{aligned}
$$

iv. $y^{\prime}+\frac{1}{\sin x} y-y^{2}=0$

This is not linear because of the y^{2} term.
v. $x y^{\prime}+y=x^{5}$

This is linear with integrating factor $p(x)=1$.

$$
\begin{aligned}
x y^{\prime}+y & =x^{5} \\
(x y)^{\prime} & =x^{5} \\
x y & =\frac{1}{6} x^{6}+c \\
y & =\frac{1}{6} x^{5}+\frac{c}{x}
\end{aligned}
$$

Problem 4

i. $d y / d x=(x+y) /(2 x-y)$

$$
\frac{d y}{d x}=\frac{1+\frac{y}{x}}{2-\frac{y}{x}}
$$

Make the substitution $u=\frac{y}{x}$. Then $\frac{d y}{d x}=x \frac{d u}{d x}+u$ and so

$$
\begin{aligned}
x \frac{d u}{d x}+u & =\frac{1+u}{2-u} \\
x \frac{d u}{d x} & =\frac{u^{2}-u+1}{2-u} \\
-\frac{u-2}{u^{2}-u+1} d u & =\frac{1}{x} d x
\end{aligned}
$$

To compute the antiderivative $\int \frac{u-2}{u^{2}-u+1} d u$ make the substitution $w=u^{2}-u+1$. Then $d w=(2 u-1) d u$ and the integral becomes

$$
\int \frac{u-2}{u^{2}-u+1} d u=\frac{1}{2} \int \frac{d w}{w}-\frac{3}{2} \int \frac{d u}{u^{2}-u+1}
$$

The first integral on the right is

$$
\int \frac{d w}{w}=\ln |w|+c_{1}
$$

and for the second we complete the square in the denominator to obtain

$$
\int \frac{d u}{u^{2}-u+1}=\int \frac{d u}{\left(u-\frac{1}{2}\right)^{2}+\frac{3}{4}}=\frac{4}{3} \int \frac{d u}{\left(\frac{2}{\sqrt{3}} u-\frac{1}{\sqrt{3}}\right)^{2}+1}=\frac{2}{\sqrt{3}} \arctan \left(\frac{2}{\sqrt{3}} u-\frac{1}{\sqrt{3}}\right)+c_{2}
$$

So we have

$$
\frac{2}{\sqrt{3}} \arctan \left(\frac{3}{\sqrt{3}} u-\frac{1}{\sqrt{3}}\right)-\frac{1}{2} \ln |w|=\ln |x|+c
$$

where $u=\frac{y}{x}$ and $w=\left(\frac{y}{x}\right)^{2}-\frac{y}{x}+1$.
ii. $d y / d x=x y+x y^{4}$

$$
\begin{aligned}
\frac{d y}{d x} & =x\left(y+y^{4}\right) \\
\frac{d y}{y+y^{4}} & =x d x \\
\frac{d y}{y\left(1+y^{3}\right)} & =x d x
\end{aligned}
$$

Use partial fractions to express $\frac{1}{y\left(1+y^{3}\right)}$ in the form

$$
\frac{1}{y\left(1+y^{3}\right)}=\frac{A}{y}+\frac{B y^{2}+C y+D}{1+y^{3}}
$$

We find that $A=1, B=-1, C=0$, and $D=0$.

$$
\frac{1}{y\left(1+y^{3}\right)}=\frac{1}{y}-\frac{y^{2}}{1+y^{3}}
$$

This means we can write

$$
\begin{aligned}
\left(\frac{1}{y}-\frac{y^{2}}{1+y^{3}}\right) d y & =x d x \\
\ln |y|-\ln \left|1+y^{3}\right| & =\frac{1}{2} x^{2}+c \\
\ln \left|\frac{y}{1+y^{3}}\right| & =\frac{1}{2} x^{2}+c \\
\frac{y}{1+y^{3}} & =a e^{\frac{1}{2} x^{2}} .
\end{aligned}
$$

Problem 7

i. $y^{\prime \prime}-y^{\prime}-2 y=t^{2} e^{2 t}, y(0)=0, y^{\prime}(0)=1$

First find solutions to the homogeneous equation $y^{\prime \prime}-y^{\prime}-2 y=0$. The associated characteristic polynomial is

$$
r^{2}-r-2=(r-2)(r+1)
$$

Thus we have two independent complementary solutions $y_{1}=e^{2 t}$ and $y_{2}=e^{-t}$. Now we write the particular solution as

$$
y_{p}=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

for some functions u_{1} and u_{2}. We determine u_{1} and u_{2} by solving the system

$$
\begin{aligned}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2} & =0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime} & =t^{2} e^{2 t}
\end{aligned}
$$

This is

$$
\begin{aligned}
u_{1}^{\prime} e^{2 t}+u_{2}^{\prime} e^{-t} & =0 \\
2 u_{1}^{\prime} e^{2 t}-u_{2}^{\prime} e^{-t} & =t^{2} e^{2 t}
\end{aligned}
$$

We find

$$
u_{1}^{\prime}=\frac{t^{2}}{3} \quad \text { and } \quad u_{2}^{\prime}=-\frac{t^{2}}{3} e^{3 t}
$$

Thus we may take

$$
u_{1}=t^{3} \quad \text { and } \quad u_{2}=-\left(\frac{1}{9} t^{2}-\frac{2}{27} t+\frac{2}{81}\right) e^{3 t}
$$

Thus

$$
y_{p}=t^{3} e^{2 t}-\left(\frac{1}{9} t^{2}-\frac{2}{27} t+\frac{2}{81}\right) e^{2 t}
$$

We may drop the $\frac{2}{81} e^{2 t}$ term since it appears in the homogeneous solution. The general solution $y=y_{p}+c_{1} y_{1}+c_{2} y_{2}$ in this case may be written

$$
y=\left(t^{3}-\frac{1}{9} t^{2}+\frac{2}{27} t\right) e^{2 t}+c_{1} e^{2 t}+c_{2} e^{-t}
$$

Initial conditions give $y(0)=0 \Rightarrow c_{1}+c_{2}=0 \Rightarrow c_{2}=-c_{1} . \quad y^{\prime}(0)=1 \Rightarrow$ $\frac{2}{27}+2 c_{1}-c_{2}=1 \Rightarrow c_{1}=\frac{25}{81}$. So the final answer is

$$
y=\left(t^{3}-\frac{1}{9} t^{2}+\frac{2}{27} t\right) e^{2 t}+\frac{25}{81} e^{2 t}-\frac{25}{81} e^{-t}
$$

ii. $y^{\prime \prime}+y=-2 \sin t, y(0)=1, y^{\prime}(0)=1$

The characteristic equation is $r^{2}+1=0$. This gives homogeneous solutions $y_{1}=$ $\cos t$ and $y_{2}=\sin t$. We solve the system

$$
\begin{aligned}
u_{1}^{\prime} \cos t+u_{2}^{\prime} \sin t & =0 \\
-u_{1}^{\prime} \sin t+u_{2}^{\prime} \cos t & =-2 \sin t
\end{aligned}
$$

which gives $u_{1}^{\prime}=2 \sin ^{2} t$ and $u_{2}^{\prime}=-2 \sin t \cos t$. Using the identity $2 \sin ^{2} t=1-\cos 2 t$, we find

$$
u_{1}=t-\frac{1}{2} \sin 2 t \quad \text { and } \quad u_{2}=\cos ^{2} t
$$

The particular solution is thus

$$
\begin{aligned}
y_{p} & =\left(t-\frac{1}{2} \sin 2 t\right) \cos t+\cos ^{2} t \sin t \\
& =(t-\sin t \cos t) \cos t+\left(1-\sin ^{2} t\right) \sin t \\
& =t \cos t-\sin t \cos ^{2} t+\sin t-\sin ^{3} t \\
& =t \cos t-\sin t\left(1-\sin ^{2} t\right)+\sin t-\sin ^{3} t \\
& =t \cos t
\end{aligned}
$$

so the general solution is

$$
y=t \cos t+c_{1} \cos t+c_{2} \sin t
$$

The initial conditions show $y(0)=1 \Rightarrow c_{1}=1$ and $y^{\prime}(0)=1 \Rightarrow c_{2}=0$, so the final answer is

$$
y=t \cos t+\cos t=(t+1) \cos t
$$

Problem 9

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

i. The characteristic equation is

$$
r^{2}+5 r+6=0 \Rightarrow(r+2)(r+3)=0
$$

So the general solution is

$$
y=c_{1} e^{-2 t}+c_{2} e^{-3 t}
$$

ii. Put $x=y^{\prime}$. Then $x^{\prime}=y^{\prime \prime}$, so we obtain the first order system

$$
\left\{\begin{array}{l}
x^{\prime}=-5 x-6 y \\
y^{\prime}=x
\end{array}\right.
$$

which may be expressed using matrices in the form $\vec{x}^{\prime}=P \vec{x}$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-5 & -6 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

We find the eigenvalues by equating the determinant of $\lambda I-P$ to 0

$$
\left|\begin{array}{cc}
-5-\lambda & -6 \\
1 & -\lambda
\end{array}\right|=\lambda(\lambda+5)+6=\lambda^{2}+5 \lambda+6=(\lambda+3)(\lambda+2)
$$

this has solutions $\lambda=-3$ and $\lambda=-2$. Substituting these into $(\lambda I-P)(\vec{v})=0$ we find solutions

$$
\overrightarrow{v_{1}}=\left[\begin{array}{c}
3 \\
-1
\end{array}\right] \text { and } \overrightarrow{v_{2}}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

This gives

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=c_{1} e^{-3 t}\left[\begin{array}{c}
3 \\
-1
\end{array}\right]+c_{2} e^{-2 t}\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Problem 12

Without damping we have the equation $F=-k u$. Given that it takes 81 lbs to stretch the spring $\frac{1}{2} \mathrm{ft}$, we find that $-8=-k \frac{1}{2}$, so $k=16 \mathrm{ft} \cdot \mathrm{lb}$. We also know that the acceleration due to gravity is $32 \mathrm{ft} / s^{2}$. Using $F=m a$ where $F=8$ is the weight of the object, we find its mass to be $m=8 / 32=1 / 4$ slugs.
i. The motion of the mass is given by

$$
\frac{1}{4} u^{\prime \prime}+2 u^{\prime}+16 u=\cos 3 t, u(0)=\frac{1}{6}, u^{\prime}(0)=0
$$

where $u(t)$ denotes the displacement from equilibrium (its natural dangling position) t seconds after it is released. We have $u^{\prime}(0)=0$ since it is released from rest.
ii. The characteristic equation is $\frac{1}{4} r^{2}+2 r+16=0$ which has roots $-4 \pm 4 \sqrt{3} i$. Therefore the complimentary solution is $u_{c}=e^{-4 t}\left[c_{1} \cos (4 \sqrt{3} t)+c_{2} \sin (4 \sqrt{3} t)\right]$.

Using the method of undetermined coefficients, we guess a sparticular solution to have the form

$$
u_{p}=A \cos 3 t+B \sin 3 t
$$

Substituting this into the equation of motion gives

$$
-\frac{9}{4} A \cos 3 t-\frac{9}{4} B \sin 3 t-6 A \sin 3 t+6 B \cos 3 t+16 A \cos 3 t+16 B \sin 3 t=\cos 3 t
$$

This is equivalent to the system of equations

$$
\begin{aligned}
-\frac{9}{4} A+6 B+16 A & =1 \\
-\frac{9}{4} B-6 A+16 B & =0
\end{aligned}
$$

we find $A=\frac{220}{3601}$ and $B=\frac{96}{3601}$. The general solution is given by

$$
u=e^{-4 t}\left[c_{1} \cos (4 \sqrt{3} t)+c_{2} \sin (4 \sqrt{3} t)\right]+A \cos 3 t+B \sin 3 t
$$

The initial conditions $u(0)=\frac{1}{6}$ and $u^{\prime}(0)=0$ yield the system

$$
\begin{aligned}
A+c_{1} & =1 / 6 \\
-4 c_{1}+4 \sqrt{3} c_{2}+3 B & =0
\end{aligned}
$$

Solving gives $c_{1}=\frac{2281}{31606}$ and $c_{2}=\frac{1849}{64818} \sqrt{3}$.

Problem 13

The operational determinant is given by

$$
L=\left|\begin{array}{cc}
D^{2}+1 & -D^{2} \\
D^{2}-1 & D^{2}
\end{array}\right|=\left(D^{2}+1\right) D^{2}--D^{2}\left(D^{2}-1\right)=2 D^{4}
$$

This gives the equations

$$
2 D^{4} x=\left|\begin{array}{cc}
2 e^{-t} & -D^{2} \\
0 & D^{2}
\end{array}\right|=2 e^{-t} \quad \text { and } \quad 2 D^{4} y=\left|\begin{array}{cc}
D^{2}+1 & 2 e^{-t} \\
D^{2}-1 & 0
\end{array}\right|=0
$$

$D^{4} x=e^{-t}$ has the general solution $x=a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+e^{-t}$ and $D^{4} y=0$ has the general solution $y=b_{3} t^{3}+b_{2} t^{2}+b_{1} t+b_{0}$. Resubstituting these back into the second equation $\left(D^{2}-1\right) x+D^{2} y=0$ yields

$$
6 a_{3} t+2 a_{2}-a_{3} t^{3}-a_{2} t^{2}-a_{1} t-a_{0}+6 b_{3} t+2 b_{2}=0
$$

Thus matching like terms gives

$$
\begin{aligned}
2 a_{2}-a_{0}+2 b_{2} & =0 \\
6 a_{3}-a_{1}+6 b_{3} & =0 \\
a_{2} & =0 \\
a_{3} & =0
\end{aligned}
$$

We obtain the same system if we substitute into the first equation $\left(D^{2}+1\right) x-D^{2} y=$ $2 e^{-t}$. Thus the general solution is

$$
\binom{x}{y}=\binom{a_{0}+a_{1} t+e^{-t}}{b_{0}+b_{1} t+\frac{a_{0}}{2} t^{2}+\frac{a_{1}}{6} t^{3}}
$$

where a_{0}, a_{1}, b_{0}, and b_{1} are arbitrary constants.

